Skip to main content
Log in

V-optimality of designs in random effects Poisson regression models

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The knowledge of the Fisher information is a fundamental tool to judge the quality of an experiment. Unlike in linear and generalized linear models without random effects, there is no closed form for the Fisher information in the situation of generalized linear mixed models, in general. To circumvent this problem, we make use of the quasi-information in this paper as an approximation to the Fisher information. We derive optimal designs based on the V-criterion, which aims to minimize the average variance of prediction of the mean response. For this criterion, we obtain locally optimal designs in two specific cases of a Poisson straight line regression model with either random intercepts or random slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson AC, Donev AN, Tobias RD (2007) Optimum experimental designs. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Cameron AC, Trivedi PK (2013) Regression analysis of count data. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bandemer H (1977) Theorie und Anwendung der optimalen Versuchsplanung I. Akademie-Verlag, Berlin

    MATH  Google Scholar 

  • Davidian M, Giltinan D (1995) Nonlinear models for repeated measurement data. Chapman and Hall, London

    Google Scholar 

  • Entholzner M, Benda N, Schmelter T, Schwabe R (2005) A note on designs for estimating population parameters. Biometr Lett-Listy Biometryczne 42:25–41

    Google Scholar 

  • Groß J (2003) Linear regression. Springer, Berlin

    Book  MATH  Google Scholar 

  • Idais O and Schwabe R (2021) Equivariance and invariance for optimal designs in generalized linear models exemplified by a class of gamma models. J Stat Theory Pract

  • Kiefer J, Wolfowitz J (1960) The equivalence of two extremum problem. Can J Math 12:363–366

    Article  MathSciNet  MATH  Google Scholar 

  • McCullagh P (1983) Quasi-likelihood functions. Ann Stat 11:59–67

    Article  MATH  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • McCulloch CE, Searle SR (2001) Generalized linear and mixed models. Wiley, New York

    MATH  Google Scholar 

  • Mielke T (2012) Approximations of the Fisher information for the construction of efficient experimental designs in nonlinear mixed effects models. Ph.D. Thesis. Otto-von-Guericke University Magdeburg

  • Mielke T, Schwabe R (2010) Some considerations on the Fisher information in nonlinear mixed effects models. In: Giovagnoli A, Atkinson AC, Torsney B, May C (eds) mODa9-advances in model-oriented design and analysis. Physica, Heidelberg, pp 129–136

    Chapter  Google Scholar 

  • Minkin S (1993) Experimental designs for clonogenic assay in chemotherapy. J Am Stat Assoc 88:410–420

    Article  MathSciNet  Google Scholar 

  • Niaparast M (2009) On optimal design for a Poisson regression model with random intercept. Statist Probab Lett 79:741–747

    Article  MathSciNet  MATH  Google Scholar 

  • Niaparast M (2010) Optimal designs for mixed effects Poisson regression models. J Stat Plann Inference. Ph.D. Thesis. Otto-von-Guericke-University of Magdeburg

  • Niaparast M, Schwabe R (2013) Optimal design for quasi-likelihood estimation in Poisson regression with random coefficients. J Stat Plann Inference 143:296–306

    Article  MathSciNet  MATH  Google Scholar 

  • Schmelter T (2007) The optimality of single-group designs for certain mixed models. Metrika 65:183–193

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt D (2019) Characterization of c-, L- and \( \phi _k \)-optimal designs for a class of non-linear multiple-regression models. J Roy Stat Soc B 81:101–120

    Article  Google Scholar 

  • White LV (1973) An extension of the general equivalence theorem to nonlinear models. Biometrika 60:345–348

    Article  MathSciNet  MATH  Google Scholar 

  • Whittle P (1973) Some general points in the theory of optimal experimental design. J Roy Stat Soc B 35:123–130

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Niaparast.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of the convexity of the V-criterion

Let \( \xi _1 \) and \( \xi _2\) be two designs. For any \( \alpha \in [0,1] \), Niaparast and Schwabe (2013) showed

$$\begin{aligned} {\mathfrak {M}}_{\varvec{\beta }}((1-\alpha )\xi _1+\alpha \xi _2)\ge (1-\alpha ){\mathfrak {M}}_{\varvec{\beta }}(\xi _1)+\alpha {\mathfrak {M}}_{\varvec{\beta }}(\xi _2) \end{aligned}$$
(B1)

in the sense of Loewner ordering of non-negative definiteness. This requires that the matrices \(\varvec{C}_\xi \) of variance correction terms are non-negative definite which follows from the corresponding property of \(\varvec{C}_i\) mentioned in Sect. 2.

By standard inversion formulas the convexity of the inverse follows,

$$\begin{aligned} {\mathfrak {M}}^{-1}_{\varvec{\beta }}((1-\alpha )\xi _1+\alpha \xi _2)\le (1-\alpha ){\mathfrak {M}}^{-1}_{\varvec{\beta }}(\xi _1)+\alpha {\mathfrak {M}}^{-1}_{\varvec{\beta }}(\xi _2) . \end{aligned}$$

Hence, because \(\textrm{tr}(\varvec{A}\varvec{B})\) is linear in \(\varvec{A}\), the V-criterion is a convex functional in \(\xi \).

Appendix B Proof of Theorem 1

In order to obtain an equivalence theorem we consider the directional derivative of the trace \(\phi (\xi )=\textrm{tr}({\mathfrak {M}}_{\varvec{\beta }}^{-1}(\xi )\varvec{B})\). The directional derivative of \(\phi (\xi )\) in the direction of \(\xi '\), \(F_{\phi }(\xi ,\xi ')\) is

$$\begin{aligned} F_{\phi }(\xi ,\xi ')=\frac{\textrm{d}}{\textrm{d} \alpha }\textrm{tr}(({\mathfrak {M}}_{\varvec{\beta }}^{-1}((1-\alpha ){\xi }+\alpha {\xi '}))\varvec{B})|_{\alpha =0^+} \end{aligned}$$
(B1)

Since \((\varvec{A}^{-1}_{\xi }+\varvec{C}_{\xi })^{-1}=\varvec{A}_{\xi }-\varvec{A}_{\xi }(\varvec{I}+\varvec{C}_{\xi }\varvec{A}_{\xi })^{-1}\varvec{C}_{\xi }\varvec{A}_{\xi }\) where \( \varvec{I} \) is the identity matrix, the quasi-information matrix in Eq. (2) can be represented as

$$\begin{aligned} {\mathfrak {M}}_{\varvec{\beta }}(\xi )=\varvec{F}^\textrm{T}_{\xi }\left( \varvec{A}_{\xi }-\varvec{A}_{\xi }(\varvec{I}+{\varvec{C}}_{\xi }\varvec{A}_{\xi })^{-1}\varvec{C}_{\xi }\varvec{A}_{\xi }\right) \varvec{F}_{\xi }. \end{aligned}$$
(B2)

As in Niaparast and Schwabe (2013) we will derive a representation of the quasi-information matrix of the convex combination of \(\xi \) and \(\xi '\). For this we define the weighted joint intensity matrix \(\varvec{A}_{\xi , \xi '}(\alpha )=\left( \begin{array}{cc}(1-\alpha )\varvec{A}_{\xi }&{}0\\ 0&{}\alpha \varvec{A}_{\xi '}\end{array}\right) \) for two designs \(\xi \) and \(\xi '\), \( 0 \le \alpha \le 1\), where \(\varvec{A}_{\xi }\) and \(\varvec{A}_{\xi '}\) are diagonal matrices with the weighted response means \((m_{j}\mu _{j})\) as diagonal elements corresponding to \(\xi \) and \(\xi '\) respectively, \( \varvec{F}_{\xi ,\xi '}=\left( \begin{array}{cc}\varvec{F}^\textrm{T}_{\xi }&\varvec{F}^\textrm{T}_{\xi '}\end{array}\right) ^\textrm{T}\) the joint reduced design matrix for the designs \(\xi \) and \(\xi '\) and by \(\varvec{C}_{\xi ,\xi '}=\left( \begin{array}{cc}\varvec{C}_{\xi }&{}\varvec{\Gamma }_{\xi ,\xi '}\\ \varvec{\Gamma }^\textrm{T}_{\xi ,\xi '}&{}\varvec{C}_{\xi '} \end{array}\right) \) the combined correction matrix, which contains the mixed correction terms for \(\xi \) and \(\xi '\) in \(\varvec{\Gamma }_{\xi ,\xi '}=(c(x,x'))\), where x and \(x'\) are the support points of \(\xi \) and \(\xi '\), respectively.

Then regarding (B2), the quasi-information matrix of the convex combination of \(\xi \) and \(\xi '\) is as follow

$$\begin{aligned} \varvec{{\mathfrak {M}}}_{\varvec{\beta }}{((1-\alpha ){\xi }+\alpha {\xi '})}= & {} \varvec{F}^\textrm{T}_{\xi ,\xi '}[\varvec{A}_{\xi ,\xi '}(\alpha )\\{} & {} - \varvec{A}_{\xi ,\xi '}(\alpha )(\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(\alpha ))^{-1}\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(\alpha )]{\varvec{F}_{\xi ,\xi '}}. \end{aligned}$$

Then,

$$\begin{aligned} F_{\phi }(\xi ,\xi ')= & {} \textrm{tr}(\frac{\textrm{d}}{\textrm{d}\alpha }(\varvec{F}^\textrm{T}_{\xi ,\xi '}[\varvec{A}_{\xi ,\xi '}(\alpha )-\varvec{A}_{\xi ,\xi '}(\alpha )(\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(\alpha ))^{-1}\nonumber \\{} & {} \varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(\alpha )]\varvec{F}_{\xi ,\xi '})\varvec{B})|_{\alpha =0^+}\nonumber \\= & {} \textrm{tr}[-\varvec{{\mathfrak {M}}}_{\varvec{\beta }}^{-1}((1-\alpha ){\xi }+\alpha {\xi '})(\varvec{F}^\textrm{T}_{\xi ,\xi '}([\varvec{A}'_{\xi ,\xi '}(\alpha )-\varvec{A}'_{\xi ,\xi '}(0)\nonumber \\{} & {} (\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(\alpha ))^{-1}\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(\alpha )+\varvec{A}_{\xi ,\xi '}(\alpha )\nonumber \\{} & {} (\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(\alpha ))^{-1} \varvec{C}_{\xi ,\xi '}\varvec{A}'_{\xi ,\xi '}(\alpha ) (\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(\alpha ))^{-1}\nonumber \\{} & {} \varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(\alpha )-\varvec{A}_{\xi ,\xi '}(\alpha )(\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(\alpha ))^{-1}\varvec{C}_{\xi ,\xi '}\varvec{A}'_{\xi ,\xi '}(\alpha )]\nonumber \\{} & {} \varvec{F}_{\xi ,\xi '})\varvec{{\mathfrak {M}}}_{\varvec{\beta }}^{-1}((1-\alpha ){\xi }+\alpha {\xi '})]\varvec{B})|_{\alpha =0^+}, \end{aligned}$$
(B3)

where \(\varvec{A}'_{\xi ,\xi '}(\alpha )\) is the derivative of \(\varvec{A}_{\xi ,\xi '}(\alpha )\) w.r.t. \(\alpha \). We obtain for \(\alpha =0\) that

\( (\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(0))= \left( \begin{array}{cc} \varvec{I}+\varvec{C}_{\xi }\varvec{A}_{\xi }&{}0\\ \varvec{\Gamma }^\textrm{T}_{\xi ,\xi '}\varvec{A}_{\xi }&{}\varvec{I} \end{array}\right) \) is lower block triangular as well its inverse \( (\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(0))^{-1}=\left( \begin{array}{cc} (\varvec{I}+\varvec{C}_{\xi }\varvec{A}_{\xi })^{-1}&{}0\\ \varvec{-\Gamma }^\textrm{T}_{\xi ,\xi '}\varvec{A}_{\xi }(\varvec{I}+\varvec{C}_{\xi }\varvec{A}_{\xi })^{-1}&{}\varvec{I }\end{array}\right) \).

We obtain by multiplication of the block matrix

$$\begin{aligned} \varvec{F}^\textrm{T}_{\xi ,\xi '}\varvec{A}'_{\xi ,\xi '}(0)\varvec{F}_{\xi ,\xi '}= -\varvec{F}^\textrm{T}_{\xi }\varvec{A}_{\xi }\varvec{F}_{\xi }+\varvec{F}^\textrm{T}_{\xi '}\varvec{A}_{\xi '}\varvec{F}_{\xi '} \end{aligned}$$

and also we obtain

\(\varvec{F}^\textrm{T}_{\xi ,\xi '}\varvec{A}'_{\xi ,\xi '}(0)(\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(0))^{-1}\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(0)\varvec{F}_{\xi ,\xi '}\)

$$\begin{aligned}= & {} -\varvec{F}^\textrm{T}_{\xi }\varvec{A}_{\xi }(\varvec{C}_{\xi }\varvec{A}_{\xi }+\varvec{I})^{-1}\varvec{C}_{\xi }\varvec{A}_{\xi }\varvec{F}_{\xi }-\varvec{F}^\textrm{T}_{\xi '}\varvec{A}_{\xi '}\varvec{\Gamma }^\textrm{T}_{\xi ,\xi '}\varvec{A}_{\xi }(\varvec{C}_{\xi }\varvec{A}_{\xi }+\varvec{I})^{-1}\varvec{C}_{\xi }\varvec{A}_{\xi }\varvec{F}_{\xi }\\{} & {} \quad +\varvec{F}^\textrm{T}_{\xi '}\varvec{A}_{\xi '}\varvec{\Gamma }^\textrm{T}_{\xi ,\xi '}\varvec{A}_{\xi '}\varvec{F}_{\xi }. \end{aligned}$$

By the same way we have

\(\varvec{F}^\textrm{T}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(0)(\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(0))^{-1}\varvec{C}_{\xi ,\xi '}\varvec{A}'_{\xi ,\xi '}(0)(\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(0))^{-1}\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(0)\varvec{F}_{\xi ,\xi '}\)

$$\begin{aligned}= & {} -\varvec{F}^\textrm{T}_{\xi }\varvec{A}_{\xi }(\varvec{C}_{\xi }\varvec{A}_{\xi }+\varvec{I})^{-1}\varvec{C}_{\xi }\varvec{A}_{\xi }(\varvec{C}_{\xi }\varvec{A}_{\xi }+\varvec{I})^{-1}\varvec{C}_{\xi }\varvec{A}_{\xi }\varvec{F}_{\xi }\\{} & {} -\varvec{F}^\textrm{T}_{\xi }\varvec{A}_{\xi }(\varvec{C}_{\xi }\varvec{A}_{\xi }+\varvec{I})^{-1} \varvec{\Gamma }_{\xi ,\xi '}\varvec{A}_{\xi '}\varvec{\Gamma }^\textrm{T}_{\xi ,\xi '}\varvec{A}_{\xi }(\varvec{C}_{\xi }\varvec{A}_{\xi }+\varvec{I})^{-1}\varvec{C}_{\xi }\varvec{A}_{\xi }\varvec{F}_{\xi }\\{} & {} +\varvec{F}^\textrm{T}_{\xi }\varvec{A}_{\xi }(\varvec{C}_{\xi }\varvec{A}_{\xi }+\varvec{I})^{-1}\varvec{\Gamma }_{\xi ,\xi '}\varvec{A}_{\xi '}\varvec{\Gamma }^\textrm{T}_{\xi ,\xi '}\varvec{A}_{\xi }\varvec{F}_{\xi }, \end{aligned}$$

and also

\(\varvec{F}^\textrm{T}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(0)(\varvec{I}+\varvec{C}_{\xi ,\xi '}\varvec{A}_{\xi ,\xi '}(0))^{-1}\varvec{C}_{\xi ,\xi '}\varvec{A}'_{\xi ,\xi '}(0)\varvec{F}_{\xi ,\xi '}\)

$$\begin{aligned}= & {} -\varvec{F}^\textrm{T}_{\xi }\varvec{A}_{\xi }(\varvec{C}_{\xi }\varvec{A}_{\xi }+\varvec{I})^{-1}\varvec{C}_{\xi }\varvec{A}_{\xi }\varvec{F}_{\xi }+\varvec{F}^\textrm{T}_{\xi }\varvec{A}_{\xi }(\varvec{C}_{\xi }\varvec{A}_{\xi }+\varvec{I})^{-1} \varvec{\Gamma }_{\xi ,\xi '}\varvec{A}_{\xi '}\varvec{F}_{\xi '}. \end{aligned}$$

Inserting these results into (B3) we obtain

By \((\varvec{A}^{-1}_{\xi }+\varvec{C}_{\xi })^{-1}=\varvec{A}_{\xi }-\varvec{A}_{\xi }(\varvec{C}_{\xi }\varvec{A}_{\xi }+\varvec{I})^{-1}\varvec{C}_{\xi }\varvec{A}_{\xi }\), it follows that

The directional derivative \({F}_{\phi }(\xi ,\xi ')\) is linear in \(\xi ' \). Therefore, it suffices to consider one-point designs \(\xi _x\) which assign all observations to a single setting x. For such one-point designs the directional derivative reduces to

According to the general equivalence theorem a design \(\xi ^*\) is optimal, if and only if

$$\begin{aligned} F_{\phi }(\xi ^* ,\xi _x)\ge 0;~\forall x \in {\mathcal {X}} \end{aligned}$$

Hence, the result follows.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niaparast, M., MehrMansour, S. & Schwabe, R. V-optimality of designs in random effects Poisson regression models. Metrika 86, 879–897 (2023). https://doi.org/10.1007/s00184-023-00896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-023-00896-3

Keywords

Navigation