Skip to main content
Log in

Data based loss estimation of the mean of a spherical distribution with a residual vector

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (XU) in \({\mathbb {R}}^p \times {\mathbb {R}}^k\) having a density of the form \(1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) \) where \(\varvec{\theta }\) and \(\sigma \) are both unknown, we consider general estimators \( \varphi (X,\Vert U\Vert ^2) \) of \(\varvec{\theta }\) under two losses: the usual quadratic loss \(\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2\) and the data-based loss \(\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2\). Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator \(\delta _0(X,\Vert U\Vert ^2)\) with a general alternative loss estimator \(\delta (X,\Vert U\Vert ^2)\). Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between \(\delta (X,\Vert U\Vert ^2)\) and \(\delta _0(X,\Vert U\Vert ^2)\), which gives rise to a sufficient domination condition of \(\delta (X,\Vert U\Vert ^2)\) over \(\delta _0(X,\Vert U\Vert ^2)\). Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Even if, for a smaller sample size, the different measures of improvement can be observed, because of a large variance, the choice of \(10^6\) allows to present smoother graphics, especially in the Student case.

References

  • Baranchik AJ (1970) A family of minimax estimators of the mean of a multivariate normal distribution. Ann Math Stat 41(2):642–645. https://doi.org/10.1214/aoms/1177697104

    Article  MathSciNet  MATH  Google Scholar 

  • Boisbunon A, Canu S, Fourdrinier D, Strawderman W, Wells MT (2014) Akaike’s information criterion, \({C}_p\) and estimators of loss for elliptically symmetric distributions. Int Stat Rev 82(3):422–439

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B, Morris C (1976) Families of minimax estimators of the mean of a multivariate normal distribution. Ann Stat, pp 11–21

  • Fourdrinier D, Strawderman W (2014) On the non existence of unbiased estimators of risk for spherically symmetric distributions. Stat Probabil Lett 91:6–13

    Article  MathSciNet  MATH  Google Scholar 

  • Fourdrinier D, Strawderman W (2015) Robust minimax Stein estimation under invariant data-based loss for spherically and elliptically symmetric distributions. Metrika 78(4):461–484

    Article  MathSciNet  MATH  Google Scholar 

  • Fourdrinier D, Strawderman WE (2010) Robust generalized Bayes minimax estimators of location vectors for spherically symmetric distributions with unknown scale. In: Borrowing strength: theory powering applications–A Festschrift for Lawrence D. Brown, pP 249–262. Institute of Mathematical Statistics

  • Fourdrinier D, Wells MT (1995) Estimation of a loss function for spherically symmetric distributions in the general linear model. Ann Stat 23(2):571–592

    Article  MathSciNet  MATH  Google Scholar 

  • Fourdrinier D, Wells MT (2012) On improved loss estimation for shrinkage estimators. Stat Sci 27:61–81

    Article  MathSciNet  MATH  Google Scholar 

  • Fourdrinier D, Strawderman WE, Wells MT (2018) Shrinkage estimation. Springer, New York

    Book  MATH  Google Scholar 

  • Johnstone I (1988) On inadmissibility of some unbiased estimates of loss. In: Gupta SS, Berger JO (eds) Statistical decision theory and related topics 4, vol 1. Springer, New York, pp 361–379

    Chapter  Google Scholar 

  • Lu KL, Berger JO (1989) Estimation of normal means: frequentist estimation of loss. Ann Stat 17:890–906

    Article  MathSciNet  MATH  Google Scholar 

  • Maruyama Y (2003) A robust generalized Bayes estimator improving on the James-Stein estimator for spherically symmetric distributions. Stat Decis 21(1):69–78

    Article  MathSciNet  MATH  Google Scholar 

  • Maruyama Y, Strawderman WE (2020) Admissible Bayes equivariant estimation of location vectors for spherically symmetric distributions with unknown scale. Ann Stat 48(2):1052–1071

    Article  MathSciNet  MATH  Google Scholar 

  • Matsuda T, Strawderman WE (2019) Improved loss estimation for a normal mean matrix. J Multivar Anal 169:300–311

    Article  MathSciNet  MATH  Google Scholar 

  • Narayanan R, Wells MT (2015) Improved loss estimation for the lasso: A variable selection tool. Sankhya B 77(1):45–74

  • Tsukuma H, Konno Y (2006) On improved estimation of normal precision matrix and discriminant coefficients. J Multivar Anal 97(7):1477–1500

    Article  MathSciNet  MATH  Google Scholar 

  • Wan ATK, Zou G (2004) On unbiased and improved loss estimation for the mean of a multivariate normal distribution with unknown variance. J Stat Plan Infer 119:17–22

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Aurélie Boisbunon for providing us a python code. They also thank an anonymous referee and the editor in chief for helpful comments which lead us to improve on a first version of the article. This work was partially supported by a grant from ANR (#ANR-20-CHIA-0021 Raimo to Stéphane Canu) and the grant 20E02165 from Normandy region).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Canu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A Stein like identity

The following lemma is a rewrite of Lemma 2.1 in Fourdrinier and Strawderman (2015).

Lemma A.1

Let (XU) have a spherically symmetric distribution about \((\varvec{\theta },{\textbf{0}}) \in {\mathbb {R}}^p \times {\mathbb {R}}^k\) as in (1.1). For any function h(xt) from \({{\mathbb {R}}}^p\times {{\mathbb {R}}}_{+}\) into \({{\mathbb {R}}}^p\) differentiable in x for any t, we have

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ (X-\varvec{\theta })^{\mathrm{\scriptscriptstyle T}}h(X,\Vert U\Vert ^2) \right] = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{ \Vert U\Vert ^2}{2} \int _0^1 \textrm{div}_X h(X,\Vert U\Vert ^2\, t) \, t^{k/2-1} \, dt \right] , \nonumber \\ \end{aligned}$$
(A.1)

provided either of these expectations exists. Here, \(\textrm{div}_X\) denotes the weak divergence operator with respect to X.

Thanks to Lemma A.1 we have the following result.

Corollary A.1

Let (XU) have a spherically symmetric distribution about \((\varvec{\theta },{\textbf{0}}) \in {\mathbb {R}}^p \times {\mathbb {R}}^k\) as in (1.1). For any function H(xt) from \({{\mathbb {R}}}^p\times {{\mathbb {R}}}_{+}\) into \({{\mathbb {R}}}\) twice weakly differentiable in x for any t, we have

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^2 \, H(X,\Vert U\Vert ^2) \right]= & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ p \, \frac{\Vert U\Vert ^2}{2} \displaystyle \int _0^1 H(X,\Vert U\Vert ^2 \, t) \, t^{k/2-1} \, dt \right] \nonumber \\{} & {} + \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^4}{4} \displaystyle \int _0^1 {\varDelta }_X H(X,\Vert U\Vert ^2\,t) \,(1-t)\, t^{k/2-1} \, dt \right] \! \!, \nonumber \\ \end{aligned}$$
(A.2)

provided either of these expectations exists and, for any \(w \in {\mathbb {R}}_+\) and any \(x \in {\mathbb {R}}^p\), the following differentiation under the integral sign

$$\begin{aligned} \textrm{div}_x \int _0^1 \nabla _x H(x, w \, t) \, t^{k/2-1} \, dt = \int _0^1 {\varDelta }_x H(x, w \, t) \, t^{k/2-1} \, dt \end{aligned}$$
(A.3)

is valid. Here, \({{\varDelta }}_X\) denotes the weak Laplacian operator with respect to X.

Proof

Applying Lemma A.1 with

$$\begin{aligned} h(X,\Vert U\Vert ^2) = (X - \varvec{\theta }) \, H(X,\Vert U\Vert ^2), \end{aligned}$$

we have

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^2 \, H(X,\Vert U\Vert ^2) \right]= & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^2}{2} \int _0^1 \textrm{div}_X \bigl \{(X - \varvec{\theta }) \, H(X,\Vert U\Vert ^2\, t)\bigr \} \, t^{k/2-1} \, dt \right] \nonumber \\= & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^2}{2} \int _0^1 (X - \varvec{\theta })^{\mathrm{\scriptscriptstyle T}}\, \nabla _X H(X,\Vert U\Vert ^2 \, t) \bigr \} \, t^{k/2-1} \, dt \right] \nonumber \\{} & {} + \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^2}{2} \int _0^1 p \, H(X,\Vert U\Vert ^2\, t) \, t^{k/2-1} \, dt \right] , \end{aligned}$$
(A.4)

according to the product rule for the divergence and since \(\textrm{div}_X (X - \varvec{\theta }) = p\). Now, the elimination of the parameter \(\varvec{\theta }\) in the first term of the right-hand side of (A.4) can be done again through the application of Lemma A.1 with

$$\begin{aligned} h(X,\Vert U\Vert ^2) = \frac{\Vert U\Vert ^2}{2} \int _0^1 \nabla _X H(X,\Vert U\Vert ^2 \, t) \, t^{k/2-1} \, dt. \end{aligned}$$

This leads to

$$\begin{aligned}{} & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^2}{2} \int _0^1 (X - \varvec{\theta })^{\mathrm{\scriptscriptstyle T}}\nabla _X H(X,\Vert U\Vert ^2 \, t) \bigr \} \, t^{k/2-1} \, dt \right] \\{} & {} \quad = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^2}{2} \int _0^1 \textrm{div}_X h(X,\Vert U\Vert ^2 s) \, s^{k/2-1} \, ds \right] \\{} & {} \quad = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^4}{4} \int _0^1 \textrm{div}_X \! \left\{ \int _0^1 \nabla _X H(X,\Vert U\Vert ^2 \,s \, t) \, t^{k/2-1} \, dt \right\} \, s^{k/2} \, ds \right] \\{} & {} \quad = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^4}{4} \int _0^1 \int _0^1 {\varDelta }_X H(X,\Vert U\Vert ^2 \,s \, t) \, t^{k/2-1} \, dt \, s^{k/2} \, ds \right] , \end{aligned}$$

thanks to (A.3) and the definition of the Laplacian. Then, setting \(\tau = st\) and applying Fubini’s theorem, we have

$$\begin{aligned}{} & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^2}{2} \int _0^1 (X - \varvec{\theta })^{\mathrm{\scriptscriptstyle T}}\nabla _X H(X,\Vert U\Vert ^2 \, t) \bigr \} \, t^{k/2-1} \, dt \right] \nonumber \\{} & {} \quad = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^4}{4} \int _0^1 \int _0^s {\varDelta }_X H(X,\Vert U\Vert ^2 \,\tau ) \, \tau ^{k/2-1} \, d\tau \, ds \right] \nonumber \\{} & {} \quad = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^4}{4} \int _0^1 {\varDelta }_X H(X,\Vert U\Vert ^2 \,\tau ) \, \tau ^{k/2-1} \int _\tau ^1\, ds \, d\tau \right] \nonumber \\{} & {} \quad = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^4}{4} \int _0^1 {\varDelta }_X H(X,\Vert U\Vert ^2 \,\tau ) \, \tau ^{k/2-1} \, (1-\tau ) \, d\tau \right] . \end{aligned}$$
(A.5)

Finally, the result follows from (A.4) and (A.5). \(\square \)

As an application of Corollary A.1, we have the following.

Proposition A.1

Under the density in (1.2), we have, as soon as \(k > q\),

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2}\Bigl [ \Vert X - \varvec{\theta }\Vert ^2 \, \Vert U\Vert ^{-q} \Bigr ] = \frac{p}{k-q} \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2}\bigl [ \Vert U\Vert ^{2-q} \bigr ] \,, \end{aligned}$$
(A.6)

and, as soon as \(k > 2 \, q\),

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^4 \, \Vert U\Vert ^{-2q} \right] = \frac{p \, (p + 2)}{(k - 2 \, q) \, (k - 2 \, q + 2)} \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{4 - 2 \, q} \right] , \end{aligned}$$
(A.7)

provided either of these expectations is finite.

Proof

First, assume that \({\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^2 \, \Vert U\Vert ^{-q} \right] < \infty \). We can apply Corollary A.1 with \( H(X,\Vert U\Vert ^2) = \big ( \Vert U\Vert ^2 \big )^{\! -q} \), noticing that Condition (2.8) is satisfied since \( H(X,\Vert U\Vert ^2) \) does not depend on X. Then

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \left[ \Vert X - \varvec{\theta }\Vert ^ 2 \, \Vert U\Vert ^{-q} \right]= & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ p \, \frac{\Vert U\Vert ^2}{2} \int _0^1 \big ( \Vert U\Vert ^2 \, t \big )^{\! -q/2} \, t^{k/2-1} \, dt \right] \\= & {} \frac{p}{2} \, \int _0^1 t^{(k-q)/2-1} \, dt \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \big ( \Vert U\Vert ^2 \big )^{1-q/2} \right] \\= & {} \frac{p}{k - q} \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{2-q} \right] . \end{aligned}$$

Now, assume that \({\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^4 \, \Vert U\Vert ^{-2q} \, \right] < \infty \). We can apply Corollary A.1 with \( H(X,\Vert U\Vert ^2) = \Vert X - \varvec{\theta }\Vert ^2 \, \big ( \Vert U\Vert ^2 \big )^{\! -q} \), noticing that Condition (2.8) is satisfied since \( H(X,\Vert U\Vert ^2) \) is the product of a function of X and a function of \( \Vert U\Vert ^2 \). Then

$$\begin{aligned}{} & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \left[ \Vert X - \varvec{\theta }\Vert ^4 \, \Vert U\Vert ^{-2q} \right] = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^2 \, \big \{ \Vert X - \varvec{\theta }\Vert ^2 \, \Vert U\Vert ^{-2q} \big \} \right] \\{} & {} \quad = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ p \, \frac{\Vert U\Vert ^2}{2} \int _0^1 \Vert X - \varvec{\theta }\Vert ^2 \, \big ( \Vert U\Vert ^2 \, t \big )^{\! -q} \, t^{k/2-1} \, dt \right] \\{} & {} \qquad + {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^4}{4} \int _0^1 {\varDelta }_X \! \Big ( \Vert X - \varvec{\theta }\Vert ^2 \big ( \Vert U\Vert ^2 \, t \big )^{\! -q} \Big ) (1 - t) \, t^{k/2-1} \, dt \right] . \end{aligned}$$

Factorizing and expressing \({\varDelta }_X \! \Big (\Vert X - \varvec{\theta }\Vert ^2 \Big ) = 2 \, p\), it follows that

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^4 \, \Vert U\Vert ^{-2q} \right]= & {} \frac{p}{k - 2 \, q} \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^2 \, \Vert U\Vert ^{2-2q} \right] \nonumber \\{} & {} + \frac{2 \, p}{(k - 2 \, q) \, (k - 2 \, q + 2)} \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{4 - 2 \, q} \right] \nonumber \\ \end{aligned}$$
(A.8)

since

$$\begin{aligned} \int _0^1 t^{k/2-q-1} \, dt = \frac{2}{k - 2 \, q} \quad \text {and} \quad \int _0^1 (1 - t) \, t^{k/2-1} \, dt = \frac{4}{(k - 2 \, q) \, (k - 2 \, q + 2)} \,. \end{aligned}$$

Now, applying again Corollary A.1 to the first expectation on the right-hand side of (A.8) with \( H(X,\Vert U\Vert ^2) = \big ( \Vert U\Vert ^2 \big )^{\! 1-q} \), we obtain

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^2 \, \Vert U\Vert ^{2-2q} \right]= & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ p \, \frac{\Vert U\Vert ^2}{2} \int _0^1 \big ( \Vert U\Vert ^2 \, t \big )^{\! 1-q} \, t^{k/2-1} \, dt \right] \nonumber \\= & {} \frac{p}{k - 2 \, q + 2} \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{4 - 2 \, q} \right] \end{aligned}$$
(A.9)

since

$$\begin{aligned} {\varDelta }_X \! \Big ( \Vert U\Vert ^2 \big )^{\! 1-q} \Big ) = 0 \quad \text {and} \quad \int _0^1 t^{k/2-q} \, dt = \frac{2}{k - 2 \, q + 2} \,. \end{aligned}$$

Hence it follows from (A.8) and (A.9) that

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^4 \, \Vert U\Vert ^{-2q} \right] = \frac{p^2 + 2 \, p}{(k - 2 \, q) \, (k - 2 \, q + 2)} \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{4 - 2 \, q} \right] , \end{aligned}$$

which is is the desired result in (A.7).

To show (A.6) assuming \({\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{2-q} \right] < \infty \) (respectively (A.7) assuming \({\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{4-2\,q} \right] < \infty \)) it suffices essentially to reverse the steps in the above argument. \(\square \)

Remark 1

The finiteness conditions of the expectations in Proposition A.1 are weaker for \(q = 2\) than for \(q = 0\). Indeed, for \(q = 2\), the expectation in (A.6) is finite as soon as \(k > 3\) since it reduces to

$$\begin{aligned} \frac{p}{k - 2} \,, \end{aligned}$$

while, for \(q = 0\), it equals

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2}\Bigl [ \Vert X - \varvec{\theta }\Vert ^2 \Bigr ] = \frac{p}{k} \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2}\bigl [ \Vert U\Vert ^{2} \bigr ] \,. \end{aligned}$$

Similarly, for \(q = 2\), the expectation in (A.7) is finite as soon as \(k > 4\) since it reduces to

$$\begin{aligned} \frac{p \, (p + 2)}{(k - 4) \, (k - 2)} \,, \end{aligned}$$

while, for \(q = 0\), it equals

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^4 \right] = \frac{p \, (p + 2)}{k \, (k + 2)} \, {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{2} \right] . \end{aligned}$$

1.2 Proof of Theorem 2.1

We use repeatedly the Cauchy–Schwarz inequality to prove the risk finiteness of \( \delta _{q,0} \bigl (X,\Vert U\Vert ^2\bigr ) \) in (2.2). Clearly, it is equivalent to

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \left[ \ell _q^2(\varphi _{a,g},\varvec{\theta }) \right]< \infty \quad \text {and} \quad {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \delta _{q,0}^2 \bigl (X,\Vert U\Vert ^2\bigr ) \right] < \infty \end{aligned}$$

which is guaranteed if, respectively, one has

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert X - \varvec{\theta }\Vert ^4 \, \Vert U\Vert ^{-2q} \right]< \infty \quad \text {and} \quad {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{8-2q} \, \Vert g\bigl (X,\Vert U\Vert ^2\bigr )\Vert ^4 \right] < \infty \nonumber \\ \end{aligned}$$
(A.10)

and

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{4-2q} \right]< \infty \; \text {and} \; {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{8-2q} \, \left\{ \int _0^1 \!\! {\textrm{div}}_X g(X,\Vert U\Vert ^2 \, t) \, t^{(k-q)/2} \, dt \right\} ^{\! \! 2} \right] < \infty \,. \nonumber \\ \end{aligned}$$
(A.11)

According to (A.7) in Proposition A.1, the first condition in (A.10) is reduced to

$$\begin{aligned} k > 2 \, q \quad \text {and} \quad {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{4-2\,q} \right] < \infty \end{aligned}$$

which implies the first condition in (A.11). Note that the second condition in (A.10) implies the risk finiteness condition of \(\varphi _{a,g}\bigl (X,\Vert U\Vert ^2\bigr )\) in (2.4). Finally, under these above conditions which guarantee the finiteness of the risk of \( \delta _{q,0} \bigl (X,\Vert U\Vert ^2\bigr ) \) in (2.2), a risk finiteness condition for \( \delta _{q,\gamma } \bigl (X,\Vert U\Vert ^2\bigr ) \) in (2.5) is

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{8 - 2 \, q} \, \gamma ^2\bigl (X,\Vert U\Vert ^2\bigr ) \right] < \infty \,, \end{aligned}$$

also thanks to the Cauchy–Schwarz inequality.

Thus the finiteness of the risk difference between \( \delta _{q,\gamma } \bigl (X,\Vert U\Vert ^2\bigr ) \) and \( \delta _{q,0} \bigl (X,\Vert U\Vert ^2\bigr ) \) is guaranteed. It is expressed as

$$\begin{aligned} D_{\varvec{\theta },\sigma ^2}^q \!= & {} \! {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Bigl (\delta _{q,\gamma } \bigl (X,\Vert U\Vert ^2\bigr ) - \ell _q(\varphi _{a,g},\varvec{\theta }) \Bigr )^{\! 2} - \Bigl (\delta _{q,0} \bigl (X,\Vert U\Vert ^2\bigr ) - \ell _q(\varphi _{a,g},\varvec{\theta }) \Bigr )^{\! 2} \right] \\ \!= & {} \! {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \Vert U\Vert ^{8-2q} \, \gamma ^2\bigl (X,\Vert U\Vert ^2\bigr ) - 2 \, \Vert U\Vert ^{4-q} \, \gamma \bigl (X,\Vert U\Vert ^2\bigr ) \bigl ( \delta _{q,0} \bigl (X,\Vert U\Vert ^2\bigr ) - \ell _q(\varphi _{a,g},\varvec{\theta }) \bigr ) \right] , \nonumber \\ \end{aligned}$$

according to the expression of \(\delta _{q,\gamma }\bigl (X,\Vert U\Vert ^2\bigr ) \) in (2.5). Then, using \(\delta _{q,0} \bigl (X,\Vert U\Vert ^2\bigr )\) in (2.2) and \(\varphi _{a,g}\) in (2.1), and expressing the loss in (1.9), it follows that

$$\begin{aligned} D_{\varvec{\theta },\sigma ^2}^q= & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \bigl [ \bigr . \; \Vert U\Vert ^{8-2q} \, \gamma ^2\bigl (X,\Vert U\Vert ^2\bigr ) \nonumber \\{} & {} - 2 \, \tfrac{p}{k-q} \, \Vert U\Vert ^{6-2q} \, \gamma \bigl (X,\Vert U\Vert ^2\bigr ) \nonumber \\{} & {} - 2 \, a \, \Vert U\Vert ^{8-2q} \, \gamma \bigl (X,\Vert U\Vert ^2\bigr ) \int _0^1 {\textrm{div}}_X g(X,\Vert U\Vert ^2 \, t) \, t^{(k-q)/2} \, dt \nonumber \\{} & {} + 4 \, a \, \Vert U\Vert ^{6-2q} \, \gamma \bigl (X,\Vert U\Vert ^2\bigr ) \, (X - \varvec{\theta })^{{\mathrm{\scriptscriptstyle T}}} g\bigl (X,\Vert U\Vert ^2\bigr ) \nonumber \\{} & {} + 2 \, \Vert U\Vert ^{4-2q} \, \gamma \bigl (X,\Vert U\Vert ^2\bigr ) \, \Vert X - \varvec{\theta }\Vert ^2 \left. \right] , \end{aligned}$$
(A.12)

where the terms involving \(2 \, a^2 \, \Vert U\Vert ^{8-2q} \, \gamma \bigl (X,\Vert U\Vert ^2\bigr ) \bigl \Vert g\bigl (X,\Vert U\Vert ^2\bigr ) \bigr \Vert ^2\) have been simplified.

Note that, not only \(D_{\varvec{\theta },\sigma ^2}^q\) in (A.12) is finite, but also it can be shown, using again the Cauchy–Schwarz inequality (through appropriate factorizations), that the expectation of each of the four last integrand terms in (A.12) exists. We first replace the two last integrand terms in (A.12) by terms independent of \(\varvec{\theta }\). As for the penultimate term in (A.12), applying Lemma A.1 with

$$\begin{aligned} h(X,\Vert U\Vert ^2) = 4 \, a \, \Vert U\Vert ^{6-2q} \, \gamma \bigl (X,\Vert U\Vert ^2\bigr ) \, g\bigl (X,\Vert U\Vert ^2\bigr ), \end{aligned}$$

we have

$$\begin{aligned}{} & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ 4 \, a \, \Vert U\Vert ^{6-2q} \, \gamma \bigl (X,\Vert U\Vert ^2\bigr ) \, (X - \varvec{\theta })^{{\mathrm{\scriptscriptstyle T}}} g\bigl (X,\Vert U\Vert ^2\bigr ) \right] \nonumber \\{} & {} \quad = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ 2 \, a \, \Vert U\Vert ^{8-2q} \, \int _0^1 \textrm{div}_X \! \left\{ \gamma \bigl (X,\Vert U\Vert ^2 t\bigr ) \, g\bigl (X,\Vert U\Vert ^2 t\bigr ) \right\} \, t^{k/2-q+2} \, dt \right] . \nonumber \\ \end{aligned}$$
(A.13)

Also, to deal with the last term on the right-hand side of (A.12), we apply Corollary A.1 with

$$\begin{aligned} H(X,\Vert U\Vert ^2) = 2 \, \Vert U\Vert ^{4-2q} \, \gamma \bigl (X,\Vert U\Vert ^2\bigr )\,, \end{aligned}$$

thanks to Condition (2.8). This gives

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \left[ 2 \, \Vert U\Vert ^{4-2q} \, \gamma \bigl (X,\Vert U\Vert ^2\bigr ) \, \Vert X - \varvec{\theta }\Vert ^2 \right] = A_1 + A_2, \end{aligned}$$
(A.14)

with

$$\begin{aligned} A_1 = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ p \, \Vert U\Vert ^{6-2q} \, \int _0^1 \gamma \bigl (X,\Vert U\Vert ^2 t\bigr ) \, \, t^{k/2-q+1} \, dt \right] \end{aligned}$$

and

$$\begin{aligned} A_2 = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \frac{\Vert U\Vert ^{8-2q}}{2} \, \int _0^1 \Delta _X \! \left\{ \gamma \bigl (X,\Vert U\Vert ^2 t\bigr ) \right\} \, (1-t)\, t^{k/2-q+1} \, dt \right] . \end{aligned}$$

Consequently, according to (A.13) and (A.14), the risk difference in (A.12) can be written as

$$\begin{aligned} D_{\varvec{\theta },\sigma ^2}^q = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \Bigl [ \Vert U\Vert ^{8-2q}\left( \frac{A_3}{\Vert U\Vert ^2} + A_4\right) \Bigr ] \end{aligned}$$
(A.15)

with

$$\begin{aligned} A_3 = p \left( \int _0^1 \gamma \bigl (X,\Vert U\Vert ^2 t\bigr ) \, t^{k/2-q+1} \, dt - \frac{2}{k-q} \, \gamma \bigl (X,\Vert U\Vert ^2 \bigr ) \right) , \end{aligned}$$
(A.16)

and

$$\begin{aligned} A_4= & {} \gamma ^2\bigl (X,\Vert U\Vert ^2\bigr ) \; -\; 2 \, a \, \gamma \bigl (X,\Vert U\Vert ^2\bigr ) \int _0^1 {\textrm{div}}_X g(X,\Vert U\Vert ^2 \, t) \, t^{(k-q)/2} \, dt \nonumber \\{} & {} + \, 2 \, a \int _0^1 \textrm{div}_X \! \left\{ \! \gamma \bigl (X,\Vert U\Vert ^2 \, t \bigr ) \, g\bigl (X,\Vert U\Vert ^2 \, t\bigr ) \! \right\} t^{k/2-q+2} \, dt \nonumber \\{} & {} +\; \frac{1}{2} \, \int _0^1 {\Delta }_X \! \left\{ \! \gamma \bigl (X,\Vert U\Vert ^2 \, t\bigr ) \! \right\} (1-t) \, t^{k/2-q+1} \, dt. \end{aligned}$$
(A.17)

Replacing (A.16) and (A.17) in (A.15) gives that the risk difference between \( \delta _{q,\gamma } \bigl (X,\Vert U\Vert ^2\bigr ) \) and \( \delta _{q,0} \bigl (X,\Vert U\Vert ^2\bigr ) \) is

$$\begin{aligned} D_{\varvec{\theta },\sigma ^2}^q = {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \Bigl [ \Vert U\Vert ^{8-2q} \, {{{\mathscr {O}}}}\bigl (X,\Vert U\Vert ^2\bigr ) \Bigr ] \end{aligned}$$

with \({{{\mathscr {O}}}}\bigl (X,\Vert U\Vert ^2\bigr ) \) in (2.9), which is the first part of the theorem.

The second part is immediate.

1.3 Proof of Proposition 3.1

1.3.1 Checking Condition (3.8)

Note that, according to (3.8), the moment assumption \( {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \bigl [ \Vert U\Vert ^{4-q} \bigr ] < \infty \) in Theorem 2.1 is satisfied. Now we check the moment conditions involving g given at the beginning of Theorem 2.1. As according to (3.2), for any \(({{\textbf{x}}},{{\textbf{u}}}) \in {\mathbb {R}}^p \times {\mathbb {R}}^k\),

$$\begin{aligned} g({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2) = - \frac{2 \, (p-2)}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c} \, {{\textbf{x}}}\,, \end{aligned}$$

the moment condition \({\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \bigl [ \Vert U\Vert ^{8-2q} \, \Vert g\bigl (X,\Vert U\Vert ^2\bigr )\Vert ^4 \bigr ] < \infty \) is satisfied when \(q = 2\) since it reduces to

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \! \left( \frac{\Vert U\Vert ^{2}}{\Vert X\Vert ^2 + \Vert U\Vert ^2 + c} \right) ^{\! \! 2} \left( \frac{\Vert X\Vert ^2}{\Vert X\Vert ^2 + \Vert U\Vert ^2 + c} \right) ^{\! \!2} \right] < \infty \,. \end{aligned}$$

Also, when \(q = 0\), we have

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \left[ \! \left( \! \frac{\Vert U\Vert ^{2}}{\Vert X\Vert ^2 + \Vert U\Vert ^2 + c} \! \right) ^{\! \! \! 4} \Vert X\Vert ^4 \! \right] < \infty \,, \end{aligned}$$

which is satisfied as soon as \({\mathbb {E}}_{\varvec{\theta },\sigma ^2} [\Vert X\Vert ^4] < \infty \). This is the case since this last condition is equivalent to \({\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! [\Vert X - \varvec{\theta }\Vert ^4] < \infty \), and hence by sphericity of the distribution of (XU), equivalent to \({\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \bigl [ \Vert U\Vert ^{4} \bigr ] < \infty \) (also according to (A.7)).

At the beginning of Sect. 3, we have addressed the issue of the weak differentiability of \(g({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2)\) in \({{\textbf{x}}}\in {\mathbb {R}}^p\); it weakly differentiable for \(p \ge 3\). Now, thanks to the product rule for the divergence, we can express

$$\begin{aligned} \textrm{div}_{{\textbf{x}}}g({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2)= & {} \textrm{div}_{{\textbf{x}}}\left( \frac{- 2 \, (p - 2)}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c} \, {{\textbf{x}}}\right) \nonumber \\= & {} - p \, \frac{2 \, (p - 2)}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2+ c} - {{\textbf{x}}}^{{\mathrm{\scriptscriptstyle T}}}\, \nabla _{{\textbf{x}}}\frac{1}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2+ c} \nonumber \\= & {} - p \, \frac{2 \, (p - 2)}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2+ c} - \, {{\textbf{x}}}^{{\mathrm{\scriptscriptstyle T}}} \, \frac{-2 \, {{\textbf{x}}}}{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2+ c\bigr )^2} \nonumber \\= & {} - \frac{2 \, (p - 2)}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2+ c} \left( \! p - 2 \, \frac{\Vert {{\textbf{x}}}\Vert ^2}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2+ c} \right) \end{aligned}$$
(A.18)

Then, according to (A.18), the last moment condition reduces to show that

$$\begin{aligned}{} & {} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \! \left\{ \Vert U\Vert ^{8 - 2 \, q} \int _0^1 \!\! {\textrm{div}}_X g(X,\Vert U\Vert ^2 \, t) \, t^{(k-q)/2} \, dt \right\} ^{\! \! 2} \right] \! \! \nonumber \\{} & {} \quad ={\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \! \left\{ \Vert U\Vert ^{8 - 2 \, q} \int _0^1 \frac{2 \, (p - 2)}{\Vert X\Vert ^2+ \Vert U\Vert ^2 \, t+ c} \left( \! p - 2 \, \frac{\Vert X\Vert ^2}{\Vert X\Vert ^2+ \Vert U\Vert ^2 \, t + c} \right) \, t^{(k-q)/2} \, dt \right\} ^{\! \! 2} \right] \! \! < \infty \,. \nonumber \\ \end{aligned}$$
(A.19)

First, note that the integrand term in (A.19) is non increasing in \(\Vert {{\textbf{u}}}\Vert ^2 \, t + c\) since, setting

$$\begin{aligned} m(s) = \frac{1}{\Vert {{\textbf{x}}}\Vert ^2+ s} \left( \! p - 2 \, \frac{\Vert {{\textbf{x}}}\Vert ^2}{\Vert {{\textbf{x}}}\Vert ^2+ s } \right) , \end{aligned}$$

it can be seen that its derivative satisfies

$$\begin{aligned} m^\prime (s) = - \frac{1}{(\Vert {{\textbf{x}}}\Vert ^2+ s )^2} \left( \! p - 4 \, \frac{\Vert {{\textbf{x}}}\Vert ^2}{\Vert {{\textbf{x}}}\Vert ^2+ s } \right) , \end{aligned}$$

which is non positive for \(p \ge 4\). Hence (A.19) is bounded above by

$$\begin{aligned} \left( \frac{4 \,(p-2) \, p}{k - q + 2} \right) ^{\! \! 2} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \! \left\{ \frac{\Vert U\Vert ^{8 - 2 \, q}}{\Vert X\Vert ^2} \right\} ^{\!\!2} \right] . \end{aligned}$$
(A.20)

It is pointed out in Fourdrinier and Strawderman (2015) that, by superharmocity of the function \({{\textbf{x}}}\mapsto {1}/{\Vert {{\textbf{x}}}\Vert ^2}\) for \(p \ge 4\), we have

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^{2}} \! \!\left[ \! \left\{ \frac{\Vert U\Vert ^{8 - 2 \, q}}{\Vert X\Vert ^2} \right\} ^{\!\!2} \right] \le {\mathbb {E}}_{0,\sigma ^2} \! \! \left[ \! \left\{ \frac{\Vert U\Vert ^{8 - 2 \, q}}{\Vert X\Vert ^2} \right\} ^{\!\!2} \right] \,, \end{aligned}$$

for any \(\varvec{\theta }\) in \({\mathbb {R}}^p\). Now we have

$$\begin{aligned} {\mathbb {E}}_{0,\sigma ^2} \! \! \left[ \! \left\{ \frac{\Vert U\Vert ^{8 - 2 \, q}}{\Vert X\Vert ^2} \right\} ^{\!\!2} \right] = {\mathbb {E}}\! \! \left[ \! \left( \frac{Z^{8-2q}}{(1 - Z)^2} \right) \big ( \Vert X\Vert ^2 + \Vert U\Vert ^2 \big )^{6-2q} \right] \,, \end{aligned}$$

where \(Z = \Vert U\Vert ^2 / \big ( \Vert X\Vert ^2 + \Vert U\Vert ^2 \big )\) has the beta distribution \({{{\mathscr {B}}}}(k/2,p/2)\) and is independent of \( \Vert X\Vert ^2 + \Vert U\Vert ^2\). Then

$$\begin{aligned} {\mathbb {E}}_{0,\sigma ^2} \! \! \left[ \! \left\{ \frac{\Vert U\Vert ^{8 - 2 \, q}}{\Vert X\Vert ^2} \right\} ^{\!\!2} \right] = \frac{B(k/2 - 8 + 2q,p/2-2) }{B(k/2,p/2)} \; {\mathbb {E}}_{0,\sigma ^2} \! \! \left[ \! \big ( \Vert X\Vert ^2 + \Vert U\Vert ^2 \big )^{6-2q} \right] \,, \end{aligned}$$

where, for any \(a > 0\) and \(b>0\), \(B(a,b) = {{\varGamma }(a) \, {\varGamma }(b)}/{{\varGamma }(a+b)}\). This expectation is finite if \(p > 4\), \(k > 16 - 4\, q\) and if the radius of the underlying distribution has a moment of order \(12-4\, q\) which are conditions in (3.8). Thus, under these conditions, the expectation in (A.20) is finite and hence, the expectations in (A.19) are finite as well.

The alternative estimator \( \delta _{q,\gamma }\bigl (X,\Vert U\Vert ^2\bigr ) \) is expressed through the loss correction \(\gamma \) in (3.7), that is,

$$\begin{aligned} \gamma ({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2 ) = b \, \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2 + \Vert {{\textbf{u}}}\Vert ^2 + c} \,. \end{aligned}$$
(A.21)

The moment condition \({\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \big [ \! \Vert U\Vert ^{8 - 2 \, q} \, \gamma ^2\bigl (X,\Vert U\Vert ^2\bigr ) \! \big ]\) \(< \infty \) in Theorem 2.1 is satisfied when \(q = 2\) since it is expressed as

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \! \left[ \! \left( \frac{\Vert U\Vert ^{2}}{\Vert X\Vert ^2 + \Vert U\Vert ^2 + c} \right) ^{\! \! 2} \right] < \infty \,. \end{aligned}$$

Also, when \(q = 0\), we have

$$\begin{aligned} {\mathbb {E}}_{\varvec{\theta },\sigma ^2} \! \left[ \! \left( \! \frac{\Vert U\Vert ^{2}}{\Vert X\Vert ^2 + \Vert U\Vert ^2 + c} \! \right) ^{\! \! \! 2} \Vert U\Vert ^4 \! \right] < \infty \,, \end{aligned}$$

which is satisfied as soon as \({\mathbb {E}}_{\varvec{\theta },\sigma ^2} [\Vert U\Vert ^4] < \infty \), which is implied by (3.8).

We have mentioned, at the beginning of Sect. 3, that \(\gamma ({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2 )\) is twice weakly differentiable as a function of \({{\textbf{x}}}\) for \(p \ge 5\). In that case, its weak Laplacian can be calculated as follows. Indeed its weak gradient with respect to x is

$$\begin{aligned} \nabla _{{\textbf{x}}}\gamma ({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2 ) = - b \, \frac{ 2 }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2+ c\bigr )^2} \, {{\textbf{x}}}\end{aligned}$$
(A.22)

which, taking the divergence of this gradient, gives rise to the Laplacian

$$\begin{aligned}{} & {} {{\varDelta }}_{{\textbf{x}}}\gamma ({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2 )\nonumber \\ {}{} & {} = - p \, \frac{2 \, b }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2+ c\bigr )^2} + {{\textbf{x}}}^{{\mathrm{\scriptscriptstyle T}}} \nabla _{{\textbf{x}}}\frac{- 2 \, b }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2+ c\bigr )^2} \nonumber \\= & {} - p \, \frac{2 \, b }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2+ c\bigr )^2} + {{\textbf{x}}}^{{\mathrm{\scriptscriptstyle T}}} \frac{8 \, b \, {{\textbf{x}}}}{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c\bigr )^3} \nonumber \\= & {} -\frac{2 \, b }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c\bigr )^2} \left( p - 4 \, \frac{ \Vert {{\textbf{x}}}\Vert ^2 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c}\right) . \end{aligned}$$
(A.23)

Also the divergence of the product of \(\gamma ({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2 )\) and \(g ({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2 )\) is

$$\begin{aligned}{} & {} \textrm{div}_{{\textbf{x}}}\bigl (\gamma ({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2 ) \, g({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2) \bigr ) \nonumber \\ {}{} & {} = \frac{b }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c} \left( \! \frac{- 2 \, (p - 2)}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c} \left( \! p - \, \frac{2 \, \Vert {{\textbf{x}}}\Vert ^2}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c} \! \right) \! \! \right) \nonumber \\{} & {} \quad + \frac{- 2 \, b }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c\bigr )^2} \, {{\textbf{x}}}^{\mathrm{\scriptscriptstyle T}}\frac{ - 2 \, (p - 2)}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c} \, {{\textbf{x}}}\nonumber \\= & {} - 2 \, (p - 2) \, \frac{ b }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c\bigr )^2} \left( \! p - 4 \, \frac{ \Vert {{\textbf{x}}}\Vert ^2}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c} \! \right) . \end{aligned}$$
(A.24)

We may note in passing that, for this example,

$$\begin{aligned} (p - 2) \, {{\varDelta }}_{{\textbf{x}}}\gamma ({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2 ) = \textrm{div}_{{\textbf{x}}}\bigl (\gamma ({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2 ) \, g({{\textbf{x}}}, \Vert {{\textbf{u}}}\Vert ^2) \bigr ) \,. \end{aligned}$$

It remains to check Condition (2.8). According to (A.22), this reduces to verify, for any \(i =1, \ldots , p\) and for any \(w \in {\mathbb {R}}_+\), the following derivation under the integral sign:

$$\begin{aligned} \frac{\partial }{\partial x_i} \int _0^1 \frac{ x_i }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ w \, t + c\bigr )^{\! 2}} \, t^{k/2-q+1} \, dt = \int _0^1 \frac{\partial }{\partial x_i} \, \frac{ x_i }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ w \, t + c\bigr )^{\! 2}} \, t^{k/2-q+1} \, dt \,. \nonumber \\ \end{aligned}$$
(A.25)

The left-hand side of (A.25) equals

$$\begin{aligned}{} & {} \frac{\partial }{\partial x_i} \! \left( \! x_i \int _0^1 \frac{ t^{k/2-q+1} }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ w \, t + c\bigr )^{\! 2}} \, dt \! \right) = \int _0^1 \frac{ t^{k/2-q+1} }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ w \, t + c\bigr )^{\! 2}} \, dt \nonumber \\ {}{} & {} \qquad \qquad \quad + x_i \, \frac{\partial }{\partial x_i} \! \int _0^1 \frac{ t^{k/2-q+1} }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ w \, t + c\bigr )^{\! 2}} \, dt \,, \end{aligned}$$
(A.26)

since the Lebesgue dominated convergence theorem applies for \(k > 2 \, q\), in so far as

$$\begin{aligned} \forall {{\textbf{x}}}\in {\mathbb {R}}^p \quad \forall t \in [0,1] \quad \frac{ t^{k/2-q+1} }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ w \, t + c\bigr )^{\! 2}} \le \frac{ t^{k/2-q-1} }{w^2} \,. \end{aligned}$$

Thus the conditions of Theorem 2.1 are satisfied.

1.3.2 Checking (3.11)

We can see that, using (A.18), (A.21), (A.23) and (A.24), the term \({{{\mathscr {O}}}}\bigl ({{\textbf{x}}},\Vert {{\textbf{u}}}\Vert ^2\bigr )\) in (2.9) equals

$$\begin{aligned}{} & {} \left( \! \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2 + \Vert {{\textbf{u}}}\Vert ^2 + c } \! \right) ^{\! \! \! \! ^2} b^2 \nonumber \\{} & {} \quad + \frac{p}{\Vert {{\textbf{u}}}\Vert ^2} \, b \left( \int _0^1 \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \, t^{k/2-q+1} \, dt - \frac{2}{k - q} \, \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c } \right) \nonumber \\{} & {} \quad + 2 \, \alpha \, \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c } \, b \int _0^1 \frac{1}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \left( \! p - 2 \, \frac{\Vert {{\textbf{x}}}\Vert ^2}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \! \right) t^{(k-q)/2} \, dt \nonumber \\{} & {} \quad - \, b \int _0^1 \frac{ 1 }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c\bigr )^{\!2}} \left( \! p - 4 \, \frac{ \Vert {{\textbf{x}}}\Vert ^2}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \! \right) (2 \, \alpha \, t + 1 - t) \, t^{k/2-q+1} \, dt, \nonumber \\ \end{aligned}$$
(A.27)

which corresponds to the expression in (3.10).

We will now show that the polynomial in (A.27) is non positive. For any \(t \in [0,1]\), as for the third term in (A.27), we can write

$$\begin{aligned} \frac{1}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \left( p - 2 \, \frac{\Vert {{\textbf{x}}}\Vert ^2}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \right) \le \frac{p}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \,, \end{aligned}$$

and, as for the fourth term,

$$\begin{aligned} \begin{array}{lcl} &{} - \displaystyle \frac{ 1 }{\bigl (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c\bigr )^2} \left( p - 4 \, \frac{ \Vert {{\textbf{x}}}\Vert ^2}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \right) \nonumber \\ &{} \le \displaystyle \frac{ - ( p - 4 ) }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c} \, \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \end{array} \end{aligned}$$

Then the polynomial in (A.27) is bounded from above by

$$\begin{aligned}{} & {} \left( \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c } \right) ^{\! \! \! \! ^2} b^2 \\ {}{} & {} + \frac{p}{\Vert {{\textbf{u}}}\Vert ^2} \, b \left( \int _0^1 \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \, t^{k/2-q+1} \, dt - \frac{2}{k - q} \, \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c } \right) \\{} & {} \quad + 2 \, \alpha \, p \, \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c } \, b \int _0^1 \frac{t^{(k-q)/2}}{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \, dt \\{} & {} \quad - \, \frac{ p - 4 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c} {\tiny {\tiny }} \, b \int _0^1 \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \, (2 \, \alpha \, t+1-t)\, t^{k/2-q+1} \, dt, \end{aligned}$$

so that the expression in (A.27) will be non positive as soon as

$$\begin{aligned}{} & {} 0 \le b \le \frac{p}{\Vert {{\textbf{u}}}\Vert ^2} \left( \! \frac{2}{k - q} \, \big ( \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c \big ) - \big (\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c\big )^{\! 2}\right. \nonumber \\ {}{} & {} \left. \int _0^1 \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \, t^{k/2-q+1} \, dt \! \right) \nonumber \\{} & {} \quad - 2 \, \alpha \, p \, \big ( \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c \big ) \int _0^1 \frac{t^{(k-q)/2}}{ \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c } \, dt \nonumber \\{} & {} \quad + \, ( p - 4 ) \, \big ( \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c \big ) \int _0^1 \frac{ 1 }{\Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c} \, (2 \, \alpha \, t + 1 - t) \, t^{k/2-q+1} \, dt \,. \nonumber \\ \end{aligned}$$
(A.28)

Using the fact that, for any \(t \in (0,1]\),

$$\begin{aligned} \frac{ \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c }{ \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c } \le \frac{1}{t} \,, \end{aligned}$$
(A.29)

the second term in parentheses on the right-hand side of (A.28) is bounded below by

$$\begin{aligned} - \big ( \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c \big ) \int _0^1 \, t^{k/2-q} \, dt = - \frac{2}{k - 2 \, q + 2} \, \big ( \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c \big ) \,. \end{aligned}$$

Hence the sum of the two first terms in (A.28) is bounded below by

$$\begin{aligned} 2 \, p \, \frac{ \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c }{ \Vert {{\textbf{u}}}\Vert ^2 } \left( \! \frac{1}{k-q} - \frac{1}{k-2 q+2} \! \right) \ge \frac{2 \, p \, (2-q)}{(k - q) (k - 2 q + 2)} \,. \end{aligned}$$
(A.30)

Now, using again (A.29), the third term in the right-hand side of (A.28) is bounded from below by

$$\begin{aligned} - 2 \,p \, \alpha \, \int _0^1 t^{(k-q)/2 - 1} \, dt = - \frac{ 4 \, p }{ k - q} \, \alpha \,. \end{aligned}$$
(A.31)

Also, as

$$\begin{aligned} \frac{ \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 + c }{ \Vert {{\textbf{x}}}\Vert ^2+ \Vert {{\textbf{u}}}\Vert ^2 \, t + c } \ge 1 \,, \end{aligned}$$

the fourth term on the right-hand side of (A.28) is bounded from below by

$$\begin{aligned}{} & {} (p - 4) \int _0^1 (2 \, \alpha \, t + 1-t)\, t^{ k/2 -q + 1} \, dt \nonumber \\{} & {} = (p - 4) \left[ \frac{ 4 }{ k - 2 \, q + 6 } \, \alpha + \frac{ 4 }{ (k - 2 \, q + 4) \, (k - 2 \, q + 6) } \right] \nonumber \\{} & {} = \frac{4 \, ( p - 4 )}{ k - 2 \, q + 6 } \left[ \alpha + \frac{ 1 }{ k - 2 \, q + 4 } \right] . \end{aligned}$$
(A.32)

Therefore, according to (A.30), (A.31) and (A.32), the double inequality in (A.28) is satisfied as soon as

$$\begin{aligned} 0\le & {} b \le \displaystyle 4 \left( \! \frac{p\, (2-q)}{ 2 (k - q) \, (k - 2\, q + 2)} - \frac{ p }{ k - q } \, \alpha + \frac{ p - 4 }{ k - 2 \, q + 6 } \left[ \! \alpha + \frac{ 1 }{ k - 2 \, q + 4 } \! \right] \! \right) \nonumber \\= & {} \displaystyle 4 \left( \! \left[ \! \frac{ p - 4 }{k - 2 \, q + 6 } - \frac{ p }{ k-q } \! \right] \! \alpha + \frac{ p \, (2 - q) }{2 \, (k - q ) \, (k - 2 \, q + 2) } + \frac{ p - 4 }{(k - 2 \, q + 4) \, (k - 2 \, q + 6) } \! \right) \!, \nonumber \\ \end{aligned}$$
(A.33)

which is (3.11). Thus Proposition 3.1 is proved.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canu, S., Fourdrinier, D. Data based loss estimation of the mean of a spherical distribution with a residual vector. Metrika 86, 851–878 (2023). https://doi.org/10.1007/s00184-023-00895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-023-00895-4

Keywords

Navigation