Skip to main content
Log in

Functional single-index composite quantile regression

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The functional single-index model is a very flexible semiparametric model when modeling the relationship between a scalar response and functional predictors. However, the efficiency of the model may be affected by non-normal errors. So, in this paper, we propose functional single index composite quantile regression. The unknown slope function and link function are estimated by using B-spline basis functions. The convergence rates of the estimators are established. Some simulation studies and an application of NIR spectroscopy dataset are presented to illustrate the performance of the proposed methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank the Editor, Associate Editor and referees for their careful reading and insightful suggestions that lead to substantially improved the paper. The research was supported by the Humanities and Social Science Foundation of Ministry of Education of China [Grant Number 21YJA910004].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhensheng Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Proof of the main results

Appendix. Proof of the main results

Proof of Theorem 3.1

Let \(\theta =(\gamma ^{\top },\lambda ^\top )^{\top }\), \(\theta _0=(\gamma _0^{\top },\lambda _0^{\top })^{\top }\), \(\delta =n^{-\frac{d}{2d+1}}\), \(T_{1}=\delta ^{-1}(\gamma -\gamma _{0})\), \(T_{1}=\delta ^{-1}(\lambda -\lambda _{0})\) and \(T=(T_{1}^{\top }, T_{2}^{\top })^{\top }\). We next show that, for any given \(\epsilon >0\), there exists a sufficient large constant \(L=L_{\epsilon }\) such that

$$\begin{aligned} P\left\{ \inf _{\Vert T\Vert =L} Q(\theta _{0}+\delta T)>Q(\theta _{0})\right\} \ge 1-\epsilon . \end{aligned}$$
(A.1)

This implies with the probability at least \(1-\epsilon \) that there exists a local minimizer in the ball \(\{\theta _{0}+\delta T:\Vert T\Vert \le L\}\).

By the Knight’s identity (Knight 1998), we have

$$\begin{aligned}&Q(\theta _{0}+\delta T)-Q(\theta _{0})\\&\quad =\sum _{k=1}^{K}\sum _{i=1}^{n}\rho _{\tau _k}(Y_i-\mathbf {B}_1^{\top }(\Phi _{i}^{\top }\gamma )\lambda ) -\sum _{k=1}^{K}\sum _{i=1}^{n}\rho _{\tau _k}(Y_i-\mathbf {B}_1^{\top }(\Phi _{i}^{\top }\gamma _0)\lambda _0)\\&\quad =\sum _{k=1}^{K}\sum _{i=1}^{n}\{\mathbf {B}_1^{\top }(\Phi _{i}^{\top }\gamma )\lambda -\mathbf {B}_1^{\top }(\Phi _i^{\top }\gamma _0)\lambda _0\}[I(\varepsilon _i\le 0)-\tau ]\\&\qquad +\sum _{k=1}^{K}\sum _{i=1}^{n}\int _{\mathbf {B}_1^{\top }(\Phi _i^{\top }\gamma _0)\lambda _0-\varvec{g}_0(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )}^ {\mathbf {B}_1^{\top }(\Phi _i^{\top }\gamma )\lambda -\varvec{g}_0(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )} [I(\varepsilon _i\le t)-I(\varepsilon _i\le 0)]dt\\&\quad \equiv A_1+A_2. \end{aligned}$$

For \(A_2\), we have

$$\begin{aligned} A_2&=\sum _{k=1}^{K}\sum _{i=1}^{n}\int _{\mathbf {B}_1^{\top }(\Phi _i^{\top }\gamma _0)\lambda _0 -\varvec{g}_0(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )}^ {\mathbf {B}_1^{\top }(\Phi _i^{\top }\gamma )\lambda -\varvec{g}_0(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )} [I(\varepsilon _i\le t)-I(\varepsilon _i\le 0)]dt\\&=\sum _{k=1}^{K}\sum _{i=1}^{n}\int _{\mathbf {B}_1^{\top }(\Phi _i^{\top }\gamma _0)\lambda _0 -\varvec{g}_0(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )}^ {\mathbf {B}_1^{\top }(\Phi _i^{\top }\gamma )\lambda -\varvec{g}_0(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )} [tf(0|X)]dt+o_p(1)\\&=\sum _{k=1}^{K}\sum _{i=1}^{n}f(0|X)\left\{ \mathbf {B}_1^{\top }(\Phi _i^{\top }\gamma )\lambda -\mathbf {B}_1^{\top }(\Phi _i^{\top }\gamma _0)\lambda _0\right\} ^2+o_p(1)\\&\equiv \sum _{k=1}^{K}\sum _{i=1}^{n}f(0|X)\left\{ A_{21}+A_{22}\right\} ^2+o_p(1). \end{aligned}$$

Let \(u_0=\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle \), using Taylor expansion to \(A_{21}\) and \(A_{22}\) at \((u_0,\lambda _0)\) respectively, by conditions (C1)-(C3), we have

$$\begin{aligned} A_2&=\sum _{k=1}^{K}\sum _{i=1}^{n}f(0|X)\left\{ A_{21}+A_{22}\right\} ^2+o_p(1)\\&=\sum _{k=1}^{K}\sum _{i=1}^{n}f(0|X)\Big \{-\mathbf {B}_1^{\top }(\Phi _i^{\top }\gamma _0)\lambda _0 +\mathbf {B}_1^{\top }(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )\lambda _0 +\mathbf {B}_1^{\top }(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )(\lambda -\lambda _0)\\&\quad +\mathbf {B}_1^{(1)\top }(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )\lambda _0(\Phi _i^{\top }\gamma -\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )\Big \}^2+o_p(1)\\&=\sum _{k=1}^{K}\sum _{i=1}^{n}f(0|X)\Big \{-\mathbf {B}_1^{(1)\top }(\langle \varvec{X}_i(t), \varvec{\gamma }_0(t)\rangle )\lambda _0(\Phi _i^{\top }\gamma _0-\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )\\&\quad +\mathbf {B}_1^{\top }(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )(\lambda -\lambda _0) +\mathbf {B}_1^{(1)\top }(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )\lambda _0(\Phi _i^{\top }\gamma -\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )\Big \}^2+o_p(1)\\&=\sum _{k=1}^{K}\sum _{i=1}^{n}f(0|X)\Big \{\mathbf {B}_1^{(1)\top }(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )\lambda _0\Phi _i^{\top }(\gamma \!-\!\gamma _0) +\mathbf {B}_1^{\top }(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )(\lambda \!-\!\lambda _0)\Big \}^2\!\!+\!o_p(1)\\&=\delta ^2\sum _{k=1}^{K}\sum _{i=1}^{n}f(0|X)\Big \{\mathbf {B}_1^{(1)\top }(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )\lambda _0\Phi _i^{\top }T_1 +\mathbf {B}_1^{\top }(\langle \varvec{X}_i(t),\varvec{\gamma }_0(t)\rangle )T_2\Big \}^2+o_p(1)\\&=O_p(n\delta ^{2})\Vert T\Vert ^2. \end{aligned}$$

Similarly, we can get \(A_1=O_p(n\delta )\Vert T\Vert \). Then, \(A_1+A_2=O_p(n\delta ^2)\Vert T\Vert ^2\) uniformly in \(||T\Vert =L\) when L is sufficiently large. Therefore, similar to Yu et al. (2020), (A.1) holds, and there exists local minimizers \(\hat{\gamma }\) and \(\hat{\lambda }\) such that \(\Vert \hat{\gamma }-\gamma _0\Vert =O_p(\delta )\) and \(\Vert \hat{\lambda }-\lambda _0\Vert =O_p(\delta )\). Then, similar to the argument in Yu et al. (2020), we can finish the proof of this theorem. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Huang, Z. & Zhang, J. Functional single-index composite quantile regression. Metrika 86, 595–603 (2023). https://doi.org/10.1007/s00184-022-00887-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-022-00887-w

Keywords

Navigation