Skip to main content
Log in

Expectile regression for spatial functional data analysis (sFDA)

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

This paper deals with the nonparametric estimation of the expectile regression when the observations are spatially correlated and are of a functional nature. The main findings of this work is the establishment of the almost complete convergence for the proposed estimator under some general mixing conditions. The performance of the proposed estimator is examined by using simulated data. Finally, the studied model is used to evaluate the air quality indicators in northeast China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.lsp.ups-tlse.fr/staph/npfda.

  2. https://dataverse.harvard.edu/dataverse/beijing-air.

References

  • Aneiros G, Cao R, Fraiman R, Genest C, Vieu P (2019) Recent advances in functional data analysis and high-dimensional statistics. J Multivar Anal 170:3–9

    Article  MathSciNet  Google Scholar 

  • Bellini F, Negri I, Pyatkova M (2019) Backtesting VaR and expectiles with realized scores. Stat Methods Appl 28:119–142

    Article  MathSciNet  Google Scholar 

  • Bersimis S, Degiannakis S, Georgakellos D (2017) Real time monitoring of carbon monoxide using value-at-risk measure and control charting. J Appl Stat 1:89–118

    Article  MathSciNet  Google Scholar 

  • Biau G, Cadre B (2004) Nonparametric spatial prediction. Stat Inference Stoch Process 7:327–349

    Article  MathSciNet  Google Scholar 

  • Bogachev VI (1999) Gaussian measures. Math surveys and monographs, vol 62. American Mathematical Society

  • Bosq D (2000) Linear processes in function spaces: theory and applications. Lecture notes in statistics, vol 149. Springer, New-York

  • Campbell S (2005) A review of backtesting and backtesting procedures. Finance and economics discussion series, Federal Reserve Board, Washington

    Book  Google Scholar 

  • Carbon M, Hallin M, Tran LT (1996) Kernel density estimation for random fields: the \(L^1\)-theory. J Nonparametric Stat 6:157–170

    Article  Google Scholar 

  • Chen JM (2018) On exactitude in financial regulation: value-at-risk, expected shortfall, and expectiles. Risks 6:1–28

    Article  Google Scholar 

  • Dabo-Niang S, Yao AF (2007) Kernel regression estimation for continuous spatial processes. Math Methods Stat 16(4):298–317

    Article  MathSciNet  Google Scholar 

  • Daouia A, Girard S, Stupfler G (2018) Estimation of tail risk based on extreme expectiles. J R Stat Soc Ser B Stat Methodol 80(2):263–292

    Article  MathSciNet  Google Scholar 

  • Delicado P, Giraldo R, Comas C, Mateu J (2010) Statistics for spatial functional data: some recent contributions. Environmetrics 21:224–239

    Article  MathSciNet  Google Scholar 

  • Doukhan P (1994) Mixing: properties and examples. Lecture notes in statistics, vol 85. Springer, New York

  • Efron B (1991) Regression percentiles using asymmetric squared error loss. Stat Sin 1(1):93–125

    MathSciNet  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Theory and practice, Springer, New York

    MATH  Google Scholar 

  • Guo M, Härdle W (2012) Simultaneous confidence bands for expectile functions. AStA Adv Stat Anal 96(4):517–541

    Article  MathSciNet  Google Scholar 

  • Guyon X (1987) Estimation d’un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. In: Proceedings of the sixth Franco-Belgian meeting of statisticians

  • Hallin M, Lu Z, Yu K (2009) Local linear spatial quantile regression. Bernoulli 15(3):659–686

    Article  MathSciNet  Google Scholar 

  • Jenish NI, Prucha R (2009) Central limit theorems and uniform laws of large numbers for arrays of random fields. J Econom 150:86–98

    Article  MathSciNet  Google Scholar 

  • Laksaci A, Lemdani M, Ould-Saïd E (2009) A generalized \(L^1\)-approach for a kernel estimator of conditional quantile with functional regressors: consistency and asymptotic normality. Stat Probab Lett 79:1065–1073

    Article  Google Scholar 

  • Laksaci A, Rachdi M, Rahmani S (2013) Spatial modelization: local linear estimation of the conditional distribution for functional data. Spat Stat 6:1–23

    Article  Google Scholar 

  • Li J, Tran LT (2009) Nonparametric estimation of conditional expectation. J Stat Plan Inference 139:164–175

    Article  MathSciNet  Google Scholar 

  • Ling N, Vieu P (2018) Nonparametric modelling for functional data: selected survey and tracks for future. Statistics 52:934–949

    Article  MathSciNet  Google Scholar 

  • Masry E (2005) Nonparametric regression estimation for dependent functional data: asymptotic normality. Stoch Process Appl 115:155–177

    Article  MathSciNet  Google Scholar 

  • Maume-Deschamps V, Rullière D, Said K (2018) Asymptotic multivariate expectiles. arXiv:1704.07152, revised Jan 2018

  • Moore M (1988) Spatial linear processes. Commun Stat Stoch Models 4(1):45–75

    Article  MathSciNet  Google Scholar 

  • Nerini D, Monestiez P, Manté C (2010) Cokriging for spatial functional data. J Multivar Anal 101:409–418

    Article  MathSciNet  Google Scholar 

  • Quintela-del-Río A, Francisco-Fernández M (2011) Nonparametric functional data estimation applied to ozone data: prediction and extreme value analysis. Chemosphere 82(6):800–808

    Article  Google Scholar 

  • Rachdi M, Vieu P (2007) Nonparametric regression for functional data: automatic smoothing parameter selection. J Stat Plan Inference 137(9):2784–2801

    Article  MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Robinson PM (2011) Asymptotic theory for nonparametric regression with spatial data. J Econom 165:5–19

    Article  MathSciNet  Google Scholar 

  • Shang HL (2014) Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density. J Nonparametric Stat 26:599–615

    Article  MathSciNet  Google Scholar 

  • Tran LT (1990) Kernel density estimation on random fields. J Multivar Anal 34:37–53

    Article  MathSciNet  Google Scholar 

  • Tjostheim D (1978) Statistical spatial series modelling. Adv Appl Probab 10:130–154

    Article  MathSciNet  Google Scholar 

  • Zhao J, Chen Y, Zhang Y (2018) Expectile regression for analyzing heteroscedasticity in high dimension. Stat Probab Lett 137:304–311

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Editor-in-Chief, the Associate Editor and the referees for their very valuable comments and suggestions which led to a considerable improvement of the manuscript. The authors also thank and extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Research Groups Program under Grant Number R.G.P.1/64/42

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Rachdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order to keep the standard techniques in nonparametric spatial statistics, we will assume for our asymptotic results, without loss of generality, that the set of sites of observations \(I_n\) is a rectangular region. Next, we state the following two lemmas that were used by Carbon et al. (1996). These lemmas will be useful to prove the strong convergence of our estimators. Their proofs are obviously omitted.

Lemma 1

Let \(E_1,\ldots , E_r\) be r sets containing m sites each with \(dist(E_i,\ E_j)\ge \gamma \) for all \(i\ne j\) where \(1\le i, j\le r\). Assume that \(Z_1, \ldots , Z_r\) is a sequence of real-valued random variables which are measurable with respect to \(\mathscr {B}(E_1),\ldots ,\mathscr {B}(E_r)\) respectively, and that \(Z_i\) takes values in [ab]. Then, there exists a sequence of independent random variables \(Z_1^*,\ldots ,Z_r^*\) which is independent of \(Z_1, \ldots ,Z_r\) such that \(Z_i^*\) has the same distribution as \(Z_i\) and satisfies

$$\begin{aligned} \sum _{i=1}^r {\mathbb {E}}|Z_i-Z_i^*|\le 2r(b-a)s((r-1)m,m)\varphi (\gamma ). \end{aligned}$$
(6)

Lemma 2

(i) Suppose that (1) holds. Denote by \(\mathcal {L}_r(\mathcal {F})\) the class of \(\mathcal {F}-\)measurable r.v.’s X satisfying \(\Vert X\Vert _r=({\mathbb {E}}|X|^r)^{1/r}<\infty \). Suppose \(X \in \mathcal {L}_r(\mathscr {B}(E))\) and \(Y \in \mathcal {L}_r(\mathscr {B}(E'))\). Assume also that \(1\le r,\ s,\ t<\infty \) and \(r^{-1}+s^{-1}+t^{-1}=1\). Then

$$\begin{aligned} |{\mathbb {E}}[XY]-{\mathbb {E}}[X]{\mathbb {E}}[Y]|\le C\Vert X\Vert _r \Vert Y\Vert _s \{s(Card(E),Card(E'))\varphi (dist(E,E'))\}^{1/t}.\nonumber \\ \end{aligned}$$
(7)

(ii) For r.v.’s bounded with probability 1, the right-hand side of (7) can be replaced by

$$\begin{aligned} Cs(Card(E),Card(E'))\varphi (dist(E,E')). \end{aligned}$$

Proof of Theorem 1 For \(\epsilon >0\) small enough, we use the fact that the function \(G(x,\cdot )\) is an increasing function and has a strictly positive derivative in the neighbourhood of \(\xi _p(x)\), to write that

$$\begin{aligned}&\displaystyle \sum _{{n}} {\mathbb {P}}\Bigg (\Big | \widehat{\xi _p}(x)-\xi _p(x)\Big | >\epsilon \Bigg )\\&\quad \le \displaystyle \sum _{{n}} {\mathbb {P}}\Bigg (\Big |\widehat{G}(x,\xi _p(x)-\epsilon )- G(x,\xi _p(x)-\epsilon )\Big | \ge C\epsilon \Bigg ) \\&\qquad + \displaystyle \sum _{{n}} {\mathbb {P}}\Bigg (\Big | \widehat{G}(x,\xi _p(x)+\epsilon )- G(x,\xi _p(x)+\epsilon )\Big | \ge C \epsilon \Bigg ). \end{aligned}$$

So, it suffices to apply the result of the Proposition 1 to conclude the result of Theorem 1.

Proof of Proposition 1 We decompose \( \widehat{G}(x,t)-G(x,t)\) as follows

$$\begin{aligned} \widehat{G}(x,t)-G(x,t)= & {} \frac{\displaystyle \widehat{G}_{1}(x,t)}{\displaystyle \widehat{G}_{2}(x,t)}-\frac{\displaystyle G_{1}(x,t)}{\displaystyle G_{2}(x,t)} \nonumber \\= & {} \frac{\displaystyle 1}{\displaystyle \widehat{G}_{2}(x,t)}\Big [\widehat{G}_{1}(x,t)- G_{1}(x,t)\Big ] \nonumber \\&+\, \frac{\displaystyle G(x,t)}{\displaystyle \widehat{G}_{2}(x,t)}\Big [G_{2}(x,t)- \widehat{G}_{2}(x,t)\Big ]. \end{aligned}$$
(8)

Thus, Proposition 1 as well as Theorem 1’s results are direct consequences of the following intermediate results.

Lemma 3

Under the assumptions of Lemma 4 and, in addition, we assume that the assumptions (A2) and (A4) hold, then we have, as \({n} \rightarrow \infty \),

$$\begin{aligned} \sup _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]} \Big |\widehat{G}_{1}(x,t)- \mathbb {E}\Big [\widehat{G}_{1}(x,t)\Big ]\Big | =O_{a.co.}\Bigg ( \sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\Bigg ), \end{aligned}$$
(9)

and

$$\begin{aligned} \sup _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]} \Big | \widehat{G}_{2}(x,t)-\mathbb {E}\Big [\widehat{G}_{2}(x,t)\Big ] \Big | =O_{a.co.}\Bigg ( \sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\Bigg ), \end{aligned}$$

where \(O_{a.co.}(\cdot )\) denotes O almost completely.

Lemma 4

Assume that assumptions (A1), (A3) and (A5) are fulfilled. We have, as \({n} \rightarrow \infty \),

$$\begin{aligned} \sup _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]} \Big |\mathbb {E}\Big [\widehat{G}_{1}(x,t)\Big ]-G_{1}(x,t)\Big | = O\Big (h_{n}^{k_\mathbf{1}}\Big ), \end{aligned}$$
(10)

and

$$\begin{aligned} \sup _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]} \Big |\mathbb {E}\Big [\widehat{G}_{2}(x,t)\Big ]-G_{2}(x,t)\Big | = O\Big (h_{n}^{k_{2}}\Big ). \end{aligned}$$

Lemma 5

Under the assumptions of Lemma 4 and, in addition, we assume that the assumptions (A2) and (A4) are satisfied, we have, as \({n} \rightarrow \infty \),

$$\begin{aligned} \displaystyle \sum _{n}{\mathbb {P}}\Bigg (\inf _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]}\Big | \widehat{G}_{2}(x,t)\Big | \le \epsilon '\Bigg )< \infty ,\quad \text{ for } \text{ certain } \quad \epsilon '>0. \end{aligned}$$
(11)

Then, in order to show the consistency of \(\widehat{\xi _p}(x)\), it suffices to show that the estimator \( \widehat{G}_{2}(x,t)\) converges almost completely, as \({n} \rightarrow \infty \).

Proof of Lemma 3. Because of the similarity between the first and the second cases we prove only the first one. To do that, we combine the arguments of Laksaci et al. (2009) in FDA to those of Tran (1990) in the spatial model (finite dimension). Indeed, the compactness of \( [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]\) allows to recover it by \(d_{n}=O\left( \widehat{n}^{1/2 \varsigma _1}\right) \) intervals whose the subset of their extremities is

$$\begin{aligned} \mathcal {T}_{n}=\left\{ t_j-l_{n},t_j+l_{n},1\le j\le d_{n}\right\} , \end{aligned}$$
(12)

with \(l_{n}=O(d_{n}^{-1})\). Next, using the monotony of \( \widehat{G}_{1}(x,\cdot )\) and \({\mathbb {E}}[ \widehat{G}_{1}(x,\cdot )]\) to conclude that

$$\begin{aligned}&\sup _{t\in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]}\left| \widehat{G}_{1}(x,t) -{\mathbb {E}}\left[ \widehat{G}_{1}(x,t)\right] \right| \\&\qquad \le \max _{1\le j\le d_{n}} \max _{z\in \{t_j-l_{n}, t_j+l_{n}\}}\left| \widehat{G}_{1}(x,z)- {\mathbb {E}}\left[ \widehat{G}_{1}(x,z)\right] \right| +Cl_{n}^{\varsigma _1}. \end{aligned}$$

Evidently, we have

$$\begin{aligned} l_{n}^{\varsigma _l}=o\left( \sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\right) . \end{aligned}$$

So, all it remains to prove is that

$$\begin{aligned} \max _{1\le j\le d_{n}}\max _{z\in \{t_j-l_{n},t_j+l_{n}\}}\left| \widehat{G}_{1}(x,z)- {\mathbb {E}}\left[ \widehat{G}_{1}(x,z)\right] \right| =O\left( \sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\right) , \; a.co. \end{aligned}$$
(13)

which requires to show that

$$\begin{aligned} \sum _{n} d_{n}\max _{1\le j\le d_{n}}\max _{z\in \{t_j-l_{n},t_j+l_{n}\}}{\mathrm {I\!P}}\left( \left| \widehat{G}_{1}(x,z)- {\mathbb {E}}\left[ \widehat{G}_{1}(x,z)\right] \right| >{\eta }\sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\right) <\infty . \end{aligned}$$

So, for all \(z=t_j\mp l_{n}\) with \(1\le j\le d_{n}\), we must evaluate the quantity

$$\begin{aligned} {\mathrm {I\!P}}\left( \left| \widehat{G}_{1}(x,z)- {\mathbb {E}}\left[ \widehat{G}_{1}(x,z)\right] \right| >{\eta }\sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\right) . \end{aligned}$$
(14)

For this aim, we use the truncation method, where we define

$$\begin{aligned} \widehat{G^{*}_1}(x,t)=\frac{1}{\widehat{n}\mathbb {E}\Big [K_\mathbf{1}(x)\Big ]} \sum _{\mathbf{i}\in I_n} K\Big (h^{-1}_{n}d(x,X_{\mathbf{i}})\Big )Y_{\mathbf{i}}^*, \end{aligned}$$

such that \(Y_{\mathbf{i}}^*= (Y_\mathbf{i}-t)\mathbb {I}_{\big \{Y_\mathbf{i}-t\le 0, \, |Y_\mathbf{i}|< \gamma _{{n}}\big \}}\) and \(K_\mathbf{i}(x)=K\Big (h^{-1}_{n}d(x,X_\mathbf{i})\Big ) \).

So, the claimed quantity (14) is a consequence of the following three quantities:

$$\begin{aligned}&{\mathrm {I\!P}}\left( \left| \widehat{G^{*}_1}(x,t)- \widehat{G}_1(x,t)\right| >{\eta }\sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\right) , \end{aligned}$$
(15)
$$\begin{aligned}&\Big |{\mathbb {E}}[\widehat{G^{*}_1}(x,t)]- {\mathbb {E}}[\widehat{G}_1(x,t)]\Big |=o\left( \sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\right) , \end{aligned}$$
(16)

and

$$\begin{aligned} {\mathrm {I\!P}}\left( \left| \widehat{G^{*}_1}(x,t) -{\mathbb {E}}\big [\widehat{G^{*}_1}(x,t)\right| >{\eta }\sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\right) . \end{aligned}$$
(17)
  • Concerning the quantity (15). The Markov’s inequality permits to write that,

    $$\begin{aligned} {\mathrm {I\!P}}\Big (\Big |\widehat{G^{*}_1}(x,t)- \widehat{G}_1(x,t)\Big |> \epsilon _0\left( \sqrt{\frac{\log \widehat{n}}{\widehat{n}\,\phi _x(h_{n})}}\right) \Big )\le & {} \sum _{\mathbf{i}\in I_n} {\mathrm {I\!P}}\Big (Y_{\mathbf{i}}>\gamma _{{n}}\Big ) \\\le & {} \widehat{n}\gamma _{{n}}^{-q}{\mathbb {E}}\Big [Y^q\Big ]. \end{aligned}$$

    It follows that

    $$\begin{aligned} {\mathrm {I\!P}}\left( \left| \widehat{G^{*}_1}(x,t)-\widehat{G}_1(x,t)\right| >{\eta }\sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\right) \le C \widehat{n}\gamma _{{n}}^{-q}. \end{aligned}$$
    (18)
  • For the quantity (16). The main tool of this part is the Hölder’s inequality. Indeed, put \(\displaystyle \alpha =\frac{q}{2}\) then for \( \beta \) such that

    $$ \frac{1}{\alpha }+\frac{1}{\beta }=1$$

    we have

    $$\begin{aligned}&\Big |{\mathbb {E}}[\widehat{G^{*}_1}(x,t)]- {\mathbb {E}}[\widehat{G}_1(x,t)]\Big |\\&\quad \le \frac{C}{ \mathbb {E}\Big [K_\mathbf{1}(x)\Big ]}{\mathbb {E}}\Big [\big |Y^-\big |\mathbb {I}_{\big \{Y\ge \gamma _{{n}}\big \}}K\Big (h^{-1}_{n}d(x,X)\Big )\Big ]\\&\quad \le \frac{\gamma _{{n}}^{-1}}{\mathbb {E}\Big [K_\mathbf{1}(x)\Big ]} {\mathbb {E}}^{1/\alpha }\Big [\big |Y^{2\alpha }\big |\Big ] {\mathbb {E}}^{1/\beta }\Big [K^{\beta }\Big (h^{-1}_{n}d(x,X_1)\Big )\Big ]\\&\quad \le \frac{C\gamma _{{n}}^{-1}}{\mathbb {E}\Big [K_\mathbf{1}(x)\Big ]} {\mathbb {E}}^{1/\beta }\Big [K_\mathbf{1}^{\beta }(x)\Big ].\end{aligned}$$

    We deduce that

    $$\begin{aligned} \Big |{\mathbb {E}}[\widehat{G^{*}_1}(x,t)]- {\mathbb {E}}[\widehat{G}_1(x,t)]\Big |\le C\gamma _{{n}}^{-1}\phi _x^{(1-\beta )/\beta }(h_{n}). \end{aligned}$$
    (19)
  • About the quantity (17). We use the spatial blocks decomposition which was used by Tran (1990). Indeed, we write

    $$\begin{aligned} \widehat{G^{*}_1}(x,t) -{\mathbb {E}}[\widehat{G^{*}_1}(x,t)]= {1\over \widehat{n}\mathbb {E}\Big [K_\mathbf{1}(x)\Big ]}\sum _{\mathbf{i}\in I_n} K_{\mathbf{i}}(x) Y^*_{\mathbf{i}}-{\mathbb {E}}\Big [K_\mathbf{1}(x)Y^*_{\mathbf{i}}\Big ], \end{aligned}$$

    where \( \displaystyle \Lambda _{\mathbf{i}}=K_{\mathbf{i}}(x) Y^*_{\mathbf{i}}-{\mathbb {E}}\Big [K_\mathbf{1}(x)Y^*_{\mathbf{i}}\Big ]. \) The spatial blocks decomposition of this sum are defined, for an arbitrary integer sequence \((p_{n})\) by taking

    $$\begin{aligned} U(1,{n},\mathbf{j})= & {} \sum _{{\mathop {k=1,\ldots ,N}\limits ^{i_k=2j_kp_{n}+1}}}^{2j_kp_{n}+p_{n}}\Lambda _{\mathbf {i}},\\ U(2,{n},\mathbf{j})= & {} \displaystyle \sum _{{\mathop {k=1,\ldots ,N-1}\limits ^{i_k=2j_kp_{n}+1}}}^{2j_kp_{n}+p_{n}} \quad \displaystyle \sum _{i_N=2j_Np_{n}+p_{n}+1}^{(j_N+1)p_{n}}\Lambda _{\mathbf {i}},\\ U(3,{n},\mathbf{j})= & {} \displaystyle \sum _{{\mathop {k=1,\ldots ,N-2}\limits ^{i_k=2j_kp_{n}+1}}}^{2j_kp_{n}+p_{n}} \quad \displaystyle \sum _{i_{N-1}=2j_{N-1}p_{n}+p_{n}+1}^{2(j_{N-1}+1)p_{n}} \quad \displaystyle \sum _{i_N=2j_Np_{n}+1}^{2j_Np_{n}+p_{n}}\Lambda _{\mathbf {i}},\\ U(4,{n},\mathbf{j})= & {} \displaystyle \sum _{{\mathop {k=1,\ldots ,N-2}\limits ^{i_k=2j_kp_{n}+1}}}^{2j_kp_{n}} \quad \displaystyle \sum _{i_{N-1}=2j_{N-1}p_{n}+p_{n}+1}^{2(j_{N-1}+1)p_{n}}\quad \displaystyle \sum _{i_N=2j_Np_{n}+p_{n}+1}^{2(j_N+1)p_{n}}\Lambda _{\mathbf {i}}, \end{aligned}$$
    $$\vdots $$

    The last term is

    $$\begin{aligned} U(2^N,{n},\mathbf{j})= & {} \sum _{{\mathop {k=1,\ldots ,N}\limits ^{i_k=2j_kp_{n}+p_{n}+1}}}^{2(j_k+1)p_{n}} \Lambda _{\mathbf {i}}. \end{aligned}$$

    Finally, we get

    $$\begin{aligned} \widehat{G^{*}_1}(x,t) -{\mathbb {E}}[\widehat{G^{*}_1}(x,t)]=\frac{1}{\widehat{n}\mathbb {E}\Big [K_\mathbf{1}(x)\Big ]}\displaystyle \sum _{i=1}^{2^N}T(n,i), \end{aligned}$$
    (20)

    with \(\displaystyle T(n,i)=\sum _{\mathbf {j}\in \mathcal {J}}U(i,n,\mathbf {j})\); \(\displaystyle \mathcal {J}=\big \{0,\ldots ,r_1-1\big \}\times \cdots \times \big \{0,\ldots ,r_N-1\big \}\) and \(\displaystyle r_{{ i}} =2 n_{{ i}}\big /p_{n}\) for \(i = 1, \ldots ,N\).

Furthermore, from (20) we get, for all \(\eta >0\)

$$\begin{aligned} {\mathrm {I\!P}}\left( \Big |\widehat{G^{*}_1}(x,t) -{\mathbb {E}}[\widehat{G^{*}_1}(x,t)]\Big |\ge \eta \right) \le 2^{N}\max _{i=1,\ldots , 2^N}{\mathrm {I\!P}}\Big ( T(n,i)\ge \eta \widehat{n}\mathbb {E}\big [K_\mathbf{1}(x)\big ]\Big ). \end{aligned}$$

Now, the claimed result is based on the evaluation of the quantities

$$\begin{aligned} \displaystyle {\mathrm {I\!P}}\Big ( T(n,i)\ge \eta \widehat{n}\mathbb {E}\big [K_\mathbf{1}(x)\big ]\Big ),\; \hbox { for all } i=1,\ldots , 2^N . \end{aligned}$$

Once again, we only treated the case \(i=1\). The other cases are similar. Indeed, the main step of the proof is the application of Lemma 1 on the random variables \(U(1,n,\mathbf {j})\) for \(\mathbf {j}\in \mathcal {J}\). Precisely, we enumerate these variables in the arbitrary way \(Z_1,\ldots , Z_M\) with \(M=\prod _{k=1}^N r_k=2^{-N}\widehat{n}p_{n}^{-N}\le \widehat{n}p_{n}^{-N}\) where for each \(Z_{{j}}\), there exists certain \(\mathbf {j}\) in \(\mathcal {J}\) such that

$$\begin{aligned} Z_{{j}}=\sum _{\mathbf {i}\in I(1,n,\mathbf {j})}\Lambda _{\mathbf {i}}, \end{aligned}$$

where \(\displaystyle I(1,n,\mathbf {j})=\Big \{\mathbf {i}:2j_{k}p_{n}+1\le i_k\le 2j_{k}p_{n}+p_{n} \hbox { for } k=1,\ldots ,N\Big \}.\)

Clearly the sets \(\displaystyle I(1,n,\mathbf {j})\) contain \(p_{n}^N \) sites and are far apart by distant of \(p_{n} \) at least. Moreover, under Assumption (A4), we have

$$\begin{aligned} K\Big (h^{-1}_{n}d(x,X_{\mathbf{i}})\Big )Y_{\mathbf{i}}^*\displaystyle \le C \gamma _{{n}}. \end{aligned}$$

Therefore, the Lemma 1 gives M independent random variables \(Z_1^*,\ldots ,Z_M^*\) which are identically distributed as \(Z_j\) for \(j=1,\ldots , M\) and such that

$$\begin{aligned} \sum _{j=1}^r {\mathbb {E}}\big |Z_{\mathbf {j}}-Z_{\mathbf {j}}^{*}\big |\le 2C \gamma _{{n}} Mp_{n}^N\psi \Big ((M-1)p_{n}^N,p_{n}^N\Big )\varphi (p_{n}). \end{aligned}$$
(21)

Therefore, we have

$$\begin{aligned} {\mathrm {I\!P}}\Big (T(n,i)\ge \eta \widehat{n}\mathbb {E}\big [K_\mathbf{1}(x)\big ]\Big )\le B_1(n)+B_2(n), \end{aligned}$$

where

$$\begin{aligned} \displaystyle B_1(n)={\mathrm {I\!P}}\Bigg (\Big |\sum _{j=1}^MZ_{\mathbf {j}}^{*}\Big |\ge \frac{M\eta \widehat{n}\mathbb {E}\big [K_\mathbf{1}(x)\big ]}{2M}\Bigg ), \end{aligned}$$

and

$$\begin{aligned} B_2(n)={\mathrm {I\!P}}\Bigg (\sum _{j=1}^M\big |Z_{\mathbf {j}}-Z_{\mathbf {j}}^{*}\big |\ge \frac{\eta \widehat{n}\mathbb {E}\big [K_\mathbf{1}(x)\big ]}{2}\Bigg ). \end{aligned}$$

Firstly, the asymptotic evaluation of the term \(B_2(n)\) is based on the Markov inequality and (21), which allow to write that

$$\begin{aligned} B_2(n)\le 2M\gamma _{{n}}p_{n}^N\Big (\eta \widehat{n}\mathbb {E}\big [K_\mathbf{1}(x)\big ]\Big )^{-1}\psi \Big ((M-1)p_{n}^N,p_{n}^N\Big )\varphi (p_{n}). \end{aligned}$$

Next, by using the facts that

$$\begin{aligned}&\mathbb {E}\big [K_\mathbf{1}(x)\big ]\le C \phi _x(h_{n}),\\&\displaystyle \widehat{n}=2^NMp_{n}^N, \end{aligned}$$

and

$$\begin{aligned} \psi \Big ((M-1)p_{n}^N,p_{n}^N\Big )\le p_{n}^N, \end{aligned}$$

we get for \(\eta =\displaystyle \eta _0\sqrt{\frac{\log \widehat{n}}{\widehat{n}\, \phi _x(h_{n})}}\), that

$$\begin{aligned} \displaystyle B_2(n)\le \widehat{n} \gamma _{{n}} p_{n}^N\Big ( \log \widehat{n}\Big )^{-1/2}\Big (\widehat{n}\phi _x(h_{n})\Big )^{-1/2}\varphi (p_{n}). \end{aligned}$$

So, for the particular choice of \(p_{n}= C\,\Bigg (\displaystyle \frac{\widehat{n}\phi _x(h_{n})}{\log \widehat{n}\gamma _{{n}}^2}\Bigg )^{1/2N}\), we get

$$\begin{aligned} B_2 (n)\le \widehat{n}^{1-\delta /2N}\gamma _{\mathbf{n}}^{\delta /N}\phi _x^{-\delta /2N}(h_{n})\log ^{\delta /2N} \widehat{n} <\infty . \end{aligned}$$
(22)

Secondly, the asymptotic evaluation of the \(B_1(n)\) is based on the Bernstein inequality. This last allows to write that

$$\begin{aligned} B_1 (n)\le 2\exp \left( -\frac{\Big (\eta \widehat{n}\mathbb {E}\big [K_\mathbf{1}(x)\big ]\Big )^2}{ M\, var\big [Z_1^{*}\big ]+C \eta \gamma _{{n}}p_{n}^N\, \widehat{n}\, \mathbb {E}\big [K_\mathbf{1}(x)\big ] }\right) . \end{aligned}$$
(23)

Now, the rest of the proof is based on the asymptotic evaluation of the variance term

$$\begin{aligned} \, var\big [Z_1^{*}\big ]= \, var\left[ \sum _{\mathbf {i}\in I(1,n,\mathbf {1})}\Lambda _{\mathbf {i}}\right] \, +\sum _{\mathbf {i}\ne \mathbf {j}\in I(1,n,\mathbf {1})}\Big |\, cov(\Lambda _{\mathbf {i}},\Lambda _{\mathbf {j}})\Big |. \end{aligned}$$

To do that we evaluate separately the variance and the covariance terms under Assumption (A2). Indeed, on one hand, under the first part of Assumption (A2), we have

$$\begin{aligned} \, var\Big [\Lambda _{\mathbf{i}}\Big ]\le & {} C\; {\mathbb {E}}\Big [K^2_{\mathbf{i}} Y^{*2}_{\mathbf{i}}\Big ] \le C\; {\mathbb {E}}\Big [K^2_{\mathbf{i}} Y^{2}_{\mathbf{i}}\Big ]\\\le & {} C\;{\mathbb {E}}\Big [K^2_{\mathbf{i}} {\mathbb {E}}\Big [Y^{2}_{\mathbf{i}}\big |X_{\mathbf{i}}\Big ] \Big ] \le C\phi _x(h_{n}). \end{aligned}$$

It follows that

$$\begin{aligned} \sum _{\mathbf {i}\in I(1,n,\mathbf {1})} \, var\Big [ \Lambda _{\mathbf {i}}\Big ]=O\Big (p_{n}^N\phi _x(h_{n})\Big ). \end{aligned}$$

Concerning the covariance term, we use the second part of Assumption (A2), for all \(\mathbf {i}\not =\mathbf {j}\)

$$\begin{aligned} \, cov(\Lambda _{\mathbf {i}},\Lambda _{\mathbf {j}})\le & {} C\;{\mathbb {E}}\Big [K_{\mathbf{i}} |Y^{*}_{\mathbf{i}} |K_{\mathbf{j}} |Y^{*}_{\mathbf{j}}|\Big ]\le C\;{\mathbb {E}}\Big [K_{\mathbf{i}} K_{\mathbf{j}} |Y_{\mathbf{i}} Y_{\mathbf{j}}|\Big ]\\\le & {} C\; {\mathbb {E}}\Big [K_{\mathbf{i}} K_{\mathbf{j}} {\mathbb {E}}\Big [|Y_{\mathbf{i}} Y_{\mathbf{j}}||X_{\mathbf{i}} X_{\mathbf{j}} \Big ]\Big ]\le C\;{\mathbb {E}}\Big [K_{\mathbf{i}} K_{\mathbf{j}} \Big ]\le C\;\phi _x^{(a+1)/a}(h_{n}). \end{aligned}$$

Furthermore, since \({\mathbb {E}}\Big [Y^{p}_{\mathbf{i}}|X_{\mathbf{i}}\Big ]<\infty \) then, for all \(\mathbf {i}\not =\mathbf {j}\)

$$\begin{aligned} \, cov(\Lambda _{\mathbf {i}},\Lambda _{\mathbf {j}})\le & {} \Vert \Lambda _{\mathbf {i}}\Vert ^{2}_p\varphi ^{1-2/p}(\Vert \mathbf {i}-\mathbf {j}\Vert ) \le C\; \Vert K_{\mathbf{i}} Y^{*}_{\mathbf{i}}\Vert ^{2}_p\varphi ^{1-2/p}(\Vert \mathbf {i}-\mathbf {j}\Vert )\\\le & {} C\; \Vert K_{\mathbf{i}} Y_{\mathbf{i}}\Vert ^{2}_p\varphi ^{1-2/p}(\Vert \mathbf {i}-\mathbf {j}\Vert )\le C\; \Vert K_{\mathbf{i}} \Vert ^{2}_p\varphi ^{1-2/p}(\Vert \mathbf {i}-\mathbf {j}\Vert )\\\le & {} C\;\phi _x^{2/p}(h_{n})\varphi ^{1-2/p}(\Vert \mathbf {i}-\mathbf {j}\Vert )).\end{aligned}$$

Now, we use the same technique as in Masry (2005). The letter is based on the following decomposition

$$\begin{aligned}&\displaystyle \sum _{\mathbf {i}\ne \mathbf {j}\in I(1,n,\mathbf {1})}\Big |\, cov(\Lambda _{\mathbf {i}},\Lambda _{\mathbf {j}})\Big |\\\le & {} \displaystyle \sum _{\left\{ \mathbf {i},\mathbf {j}\in I(1,n,\mathbf {1})\,\Big \Vert \mathbf {i}-\mathbf {j}\Big \Vert \le c_{n}\right\} }\Big |\, cov(\Lambda _{\mathbf {i}},\Lambda _{\mathbf {j}})\Big | +\displaystyle \sum _{\left\{ \mathbf {i},\mathbf {j}\in I(1,n,\mathbf {1})\,\Big \Vert \mathbf {i}-\mathbf {j}\Big \Vert > c_{n}\right\} }\Big |\, cov(\Lambda _{\mathbf {i}},\Lambda _{\mathbf {j}})\Big |\\\le & {} C\; p_{n}^N\phi _x(h_{n})\Big (c_{n}^{N}\phi _x(h_{n})^{1/a} \displaystyle +c_{n}^{-Na}\phi _x^{2/p-1}(h_{n})\sum _{\mathbf {i}:\Vert \mathbf {i}\Vert \ge c_{n}}\Big \Vert \mathbf {i}\Big \Vert ^{Na}\varphi ^{1-2/p}\Big (\Big \Vert \mathbf {i}\Big \Vert \Big )\Big ), \end{aligned}$$

where \((c_{{n}})\) is an arbitrary sequence of real numbers which tends to \(+\infty \). In particular, for \(c_{{n}}= \phi _x(h_{n})^{2/Np(a+1)-1/Na}\) we have

$$\begin{aligned} \sum _{\mathbf {i}\ne \mathbf {j}\in I(1,n,\mathbf {1})}\Big |\, cov(\Lambda _{\mathbf {i}},\Lambda _{\mathbf {j}})\Big | \le Cp_{n}^N\phi _x(h_{n}). \end{aligned}$$

We deduce that

$$\begin{aligned} \, var\Big [\sum _{\mathbf {i}\in I(1,n,\mathbf {1})}\Lambda _{\mathbf {i}}\Big ]=O\Big (p_{n}^N\phi _x(h_{n})\Big ). \end{aligned}$$

Finally, we replace \( var\Big [Z_1^{*}\Big ]=O\Big (p_{n}^N\phi _x(h_{n})\Big )\) in (23) to show that

$$\begin{aligned} B_1 (n)\le \exp \Big (-C(\eta _0)\log \widehat{n} \Big ). \end{aligned}$$
(24)

We combine equations (14), (19), (22) and (24) together with Assumption (H5) to conclude that

$$\begin{aligned} \sum _{n} d_{n}\max _{1\le j\le d_{n}}\max _{z\in \{t_j-l_{n},t_j+l_{n}\}}{\mathrm {I\!P}}\left( \left| \widehat{G}_{1}(x,z)- {\mathbb {E}}\left[ \widehat{G}_{1}(x,z)\right] \right| >{\eta }\sqrt{\frac{\log \widehat{n}}{\widehat{n}\phi _{x}(h_{n})}}\right) <\infty , \end{aligned}$$

which complete the proof of this lemma.

Proof of Lemma 4 Again, we only prove the first result and the second one can be obtained by the same manner. the proof is based on the stationarity of the process, which allows to write that

$$\begin{aligned} \mathbb {E}\Big [\widehat{G}_{1}(x,t)\Big ]-G_{1}(x,t) = \frac{\displaystyle 1}{\displaystyle \mathbb {E}\Big [K_\mathbf{1}(x)\Big ]} \Big \{\mathbb {E}\Big [K_\mathbf{1}(x)\Big (G_{1}({X_{1}},t)-G_{1}(x,t)\Big )\Big ]\Big \}. \end{aligned}$$

Now, by Assumption (A4), we get

$$\begin{aligned} \mathbb {E}\Big [K_\mathbf{1}(x)\Big (G_{1}(X_{1},t)-G_{1}(x,t)\Big )\Big ]= & {} \displaystyle \mathbb {E}\Big [K_\mathbf{1}(x)\Big (G_{1}(X,t)-G_{1}(x,t)\Big )\mathbb {I}_{B(x,h_{n})}\Big ]. \end{aligned}$$

Furthermore, Assumption (A3) allows to get

$$\begin{aligned}&\sup _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]} \Big |\mathbb {E}\Big [\widehat{G}_{1}(x,t)\Big ]-G_{1}(x,t)\Big |\\&\quad = \sup _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]} \frac{\displaystyle 1}{\displaystyle \mathbb {E}\Big [K_\mathbf{1}(x)\Big ]}\Big |\mathbb {E}\Big [K_\mathbf{1}(x)\Big (G_{1}(X_{1},t)-G_{1}(x,t)\Big )\mathbb {I}_{B(x,h_{n})}\Big ]\Big | \\&\quad \le \displaystyle C\; h_{n}^{k_{ 1}}, \end{aligned}$$

which easily implies that

$$\begin{aligned} \sup _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]} \Big |\mathbb {E}\Big [\widehat{G}_{1}(x,t)\Big ]-G_{1}(x,t)\Big | = O\Big (h_{n}^{k_{ 1}}\Big ). \end{aligned}$$
(25)

Proof of Lemma 5. Observe that

$$\begin{aligned}&{\mathrm {I\!P}}\left( \inf _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]}\Big | \widehat{G}_{2}(x,t)\Big | \le \frac{1}{2}\inf _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]}G_2(x,t)\right) \\&\le {\mathrm {I\!P}}\left( \sup _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]}\Big | \widehat{G}_{2}(x,t)\!-\!G_{2}(x,t)\Big | \!>\! \frac{1}{2}\inf _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]}G_2(x,t)\!\right) . \end{aligned}$$

By applying Lemma 3’s result for \(\displaystyle \epsilon _0=\frac{1}{2}\inf _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]}G_2(x,t)>0,\) we obtain

$$\begin{aligned} \displaystyle \sum _{n\ge 1}{\mathrm {I\!P}}\left( \inf _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]}\Big | \widehat{G}_{2}(x,t)\Big | \le \frac{1}{2}\inf _{t \in [\xi _p(x)-\epsilon _0, \, \xi _p(x)+\epsilon _0]} G_2(x,t)\right) < \infty , \end{aligned}$$

hence this lemma’s proof is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachdi, M., Laksaci, A. & Al-Kandari, N.M. Expectile regression for spatial functional data analysis (sFDA). Metrika 85, 627–655 (2022). https://doi.org/10.1007/s00184-021-00846-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-021-00846-x

Keywords

Navigation