Skip to main content
Log in

Box–Cox elliptical distributions with application

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We propose and study the class of Box–Cox elliptical distributions. It provides alternative distributions for modeling multivariate positive, marginally skewed and possibly heavy-tailed data. This new class of distributions has as a special case the class of log-elliptical distributions, and reduces to the Box–Cox symmetric class of distributions in the univariate setting. The parameters are interpretable in terms of quantiles and relative dispersions of the marginal distributions and of associations between pairs of variables. The relation between the scale parameters and quantiles makes the Box–Cox elliptical distributions attractive for regression modeling purposes. Applications to data on vitamin intake are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arellano-Valle RB, Branco MD, Genton MG (2006) A unified view on skewed distributions arising from selections. Can J Stat 34(4):581–601

    Article  MathSciNet  MATH  Google Scholar 

  • Birnbaum Z, Meyer PL (1953) On the effect of truncation in some or all coordinates of a multi-normal population. J Indian Soc Agric Stat 5:17–28

    Google Scholar 

  • Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Ferrari SLP, Fumes G (2017) Box–Cox symmetric distributions and applications to nutritional data. Adv Stat Anal 101:321–344

    Article  MathSciNet  MATH  Google Scholar 

  • Genz A, Bretz F (2009) Computation of multivariate normal and \(t\) probabilities. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Gómez-Sánchez-Manzano E, Gómez-Villegas MA, Marín JM (2008) Multivariate exponential power distributions as mixtures of normal distributions with Bayesian applications. Commun Stat Theory Methods 37(6):972–985

    Article  MATH  Google Scholar 

  • Gupta AK, Varga T, Bodnar T (2013) Elliptically contoured models in statistics and portfolio theory. Springer, New York

    Book  MATH  Google Scholar 

  • Ho HJ, Lin TI, Chen HY, Wang WL (2012) Some results on the truncated multivariate \(t\) distribution. J Stat Plan Inference 142:25–40

    Article  MathSciNet  MATH  Google Scholar 

  • Horrace WC (2005) Some results on the multivariate truncated normal distribution. J Multivar Anal 94:209–221

    Article  MathSciNet  MATH  Google Scholar 

  • Kan R, Robotti C (2017) On moments of folded and truncated multivariate normal distributions. J Comput Graph Stat 26(4):930–934

    Article  MathSciNet  Google Scholar 

  • Kano Y (1994) Consistency property of elliptical probability density functions. J Multivar Anal 51:139–147

    Article  MathSciNet  MATH  Google Scholar 

  • Kim H-J (2010) A class of weighted multivariate elliptical models useful for robust analysis of nonnormal and bimodal data. J Korean Stat Soc 39:83–92

    Article  MathSciNet  MATH  Google Scholar 

  • Lange KL, Little RJA, Taylor JMG (1989) Robust statistical modeling using the \(t\) distribution. J Am Stat Assoc 84(408):881–896

    MathSciNet  Google Scholar 

  • Manjunath BG, Wilhelm S (2012). Moments calculation for the double truncated multivariate normal density. Working paper arXiv:1206.5387v1

  • Marchenko YV, Genton MG (2010) Multivariate log-skew-elliptical distributions with applications to precipitation data. Environmetrics 21(3–4):318–340

    MathSciNet  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New York

    MATH  Google Scholar 

  • Quiroz AJ, Nakamura M, Pérez FJ (1996) Estimation of a multivariate Box–Cox transformation to elliptical symmetry via the empirical characteristic function. Ann Inst Stat Math 48(4):687–709

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna https://www.R-project.org/

  • Rigby RA, Stasinopoulos DM (2004) Smooth centile curves for skew and kurtotic data modelled using the Box–Cox power exponential distribution. Stat Med 23(19):3053–3076

    Article  Google Scholar 

  • Rigby RA, Stasinopoulos DM (2006) Using the Box–Cox \(t\) distribution in GAMLSS to model skewness and kurtosis. Stat Model 6(3):209–229

    Article  MathSciNet  Google Scholar 

  • Rousseeuw PJ, Ruts I, Tukey JW (1999) The Bagplot: a bivariate boxplot. Am Stat 53(4):382–387

    Google Scholar 

  • Stasinopoulos DM, Rigby RA, Akantziliotou C (2008). Instructions on how to use the GAMLSS package in R. London. http://www.gamlss.org

  • Tallis GM (1961) The moment generating function of the truncated multi-normal distribution. J R Stat Soc 23:223–229

    MathSciNet  MATH  Google Scholar 

  • Tallis GM (1963) Elliptical and radial truncation in normal populations. Ann Math Stat 34(3):940–944

    Article  MathSciNet  MATH  Google Scholar 

  • Tallis GM (1965) Plane truncation in normal populations. J R Stat Soc 27(2):301–307

    MathSciNet  MATH  Google Scholar 

  • Voudouris V, Gilchrist R, Rigby RA, Sedgwick J, Stasinopoulos DM (2012) Modelling skewness and kurtosis with the BCPE density in GAMLSS. J Appl Stat 39(6):1279–1293

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank José Eduardo Corrente for providing the data used in this study. Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant No. 304388-2014-9) and Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Grant No. 2012/21788-2). The first author received Ph.D. scholarships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES—and CNPq. We are thankful to the Editor, Associate Editor and the anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia L. P. Ferrari.

Appendices

Appendix A: Proof of the Theorem 1

The conditional PDF of \(W_k|{\varvec{W}}_{-k}\), \(k=1,\ldots ,p\), is given by

$$\begin{aligned} f_{W_k|{\varvec{W}}_{-k}}(w_k) = \frac{g(({\varvec{w}}-{\varvec{\mu }})'{\varvec{\varSigma }}^{-1}({\varvec{w}}-{\varvec{\mu }}))}{\int _{a_k}^{b_k} g(({\varvec{w}}-{\varvec{\mu }})'{\varvec{\varSigma }}^{-1}({\varvec{w}}-{\varvec{\mu }}))\,\mathrm{{d}}w_k},\quad w_k\in (a_k,b_k). \end{aligned}$$

From the identity \(({\varvec{w}}-{\varvec{\mu }})'{\varvec{\varSigma }}^{-1}({\varvec{w}}-{\varvec{\mu }}) = [(w_k-\mu _{k.-k})/\sigma _{k.-k}]^2+q({\varvec{w}}_{-k})\), we get the result.

Appendix B: Proof of the Theorem 2

If \({\varvec{W}}=T_{{\varvec{\lambda }},{\varvec{\mu }}}({\varvec{Y}})\sim {\text{ TE }l}_p({\varvec{\xi }},{\varvec{\varSigma }};R({\varvec{\lambda }});g)\), then its PDF is given by

$$\begin{aligned} f_{{\varvec{W}}}({\varvec{w}})=\dfrac{g(({\varvec{w}}-{\varvec{\xi }})'{\varvec{\varSigma }}^{-1}({\varvec{w}}-{\varvec{\xi }}))}{\int _{R({\varvec{\lambda }})} g(({\varvec{w}}-{\varvec{\xi }})'{\varvec{\varSigma }}^{-1}({\varvec{w}}-{\varvec{\xi }}))\,\mathrm{d}{\varvec{w}}},\quad {\varvec{w}}\in R({\varvec{\lambda }}). \end{aligned}$$
(16)

Let \(V:R({\varvec{\lambda }})\rightarrow R({\varvec{\lambda }})\) be the transformation defined as \(V({\varvec{w}})={\varvec{D}}_{{\varvec{\alpha }}}^{-1}({\varvec{w}}-{\varvec{\xi }})\), and let \({\varvec{U}}=V({\varvec{W}})\), with Jacobian \(J({\varvec{w}}\rightarrow {\varvec{u}})=\prod _{k=1}^{p}(1+\lambda _k \xi _k)\). The PDF of \({\varvec{U}}\) is

$$\begin{aligned} f_{{\varvec{U}}}({\varvec{u}})&= \dfrac{g({\varvec{u}}'({\varvec{D}}_{{\varvec{\alpha }}}^{-1}{\varvec{\varSigma }}{\varvec{D}}_{{\varvec{\alpha }}}^{-1})^{-1}{\varvec{u}})}{\int _{R({\varvec{\lambda }})} g({\varvec{u}}'({\varvec{D}}_{{\varvec{\alpha }}}^{-1}{\varvec{\varSigma }}{\varvec{D}}_{{\varvec{\alpha }}}^{-1})^{-1}{\varvec{u}})\,\mathrm{d}{\varvec{u}}},\quad {\varvec{u}}\in R({\varvec{\lambda }}). \end{aligned}$$

Hence, \({\varvec{U}}\sim {\text{ TE }l}_p({\varvec{0}},{\varvec{D}}_{{\varvec{\alpha }}}^{-1}{\varvec{\varSigma }}{\varvec{D}}_{{\varvec{\alpha }}}^{-1};R({\varvec{\lambda }});g)\). Because \({\varvec{U}}=V(T_{{\varvec{\lambda }},{\varvec{\mu }}}({\varvec{Y}}))=T_{{\varvec{\lambda }},{\varvec{\delta }}}({\varvec{Y}})\), where \({\varvec{\delta }}=T_{{\varvec{\lambda }},{\varvec{\mu }}}^{-1}({\varvec{\xi }})\), then from Definition 4 we have \({\varvec{Y}}=T_{{\varvec{\lambda }},{\varvec{\delta }}}^{-1}({\varvec{U}})\sim \text{ BCE }\ell _p({\varvec{\delta }},{\varvec{\lambda }},{\varvec{D}}_{{\varvec{\alpha }}}^{-1}{\varvec{\varSigma }}{\varvec{D}}_{{\varvec{\alpha }}}^{-1};g)\).

On the other hand, if \({\varvec{Y}}\sim \text{ BCE }\ell _p({\varvec{\delta }},{\varvec{\lambda }},{\varvec{D}}_{{\varvec{\alpha }}}^{-1}{\varvec{\varSigma }}{\varvec{D}}_{{\varvec{\alpha }}}^{-1};g)\), then its PDF is

$$\begin{aligned} f_{{\varvec{Y}}}({\varvec{y}}) = \dfrac{g({\varvec{w}}'({\varvec{D}}_{{\varvec{\alpha }}}^{-1}{\varvec{\varSigma }}{\varvec{D}}_{{\varvec{\alpha }}}^{-1})^{-1}{\varvec{w}})\prod _{k=1}^{p}\frac{y_k^{\lambda _k-1}}{{\delta _k}^{\lambda _k}}}{\int _{R({\varvec{\lambda }})}g({\varvec{w}}'({\varvec{D}}_{{\varvec{\alpha }}}^{-1}{\varvec{\varSigma }}{\varvec{D}}_{{\varvec{\alpha }}}^{-1})^{-1}{\varvec{w}})\,\mathrm{d}{\varvec{w}}},\quad {\varvec{w}}=T_{{\varvec{\lambda }},{\varvec{\delta }}}({\varvec{y}}),\quad {\varvec{y}}\in \mathbb {R}_{+}^p. \end{aligned}$$
(17)

Now, from the transformation \({\varvec{W}}=T_{{\varvec{\lambda }},{\varvec{\mu }}}({\varvec{Y}})\), with Jacobian \(J({\varvec{y}}\rightarrow {\varvec{w}})=\prod _{k=1}^{p}\mu _k(1+\lambda _k w_k)^{1/\lambda _k-1}\), in the PDF (17) we arrive at PDF (16).

Appendix C: Proof of Theorem 3

  1. 1.

    From \({\varvec{T}}={\varvec{D_\alpha Y}}\), with Jacobian \(J({\varvec{y}}\rightarrow {\varvec{t}})=\prod _{k=1}^{p}\alpha _k^{-1}\), in (6), we get the PDF of \({\varvec{T}}\) as

    $$\begin{aligned} f_{{\varvec{T}}}({\varvec{t}}) = \dfrac{g({\varvec{w}}'{\varvec{\varSigma }}^{-1}{\varvec{w}})\prod _{k=1}^{p}\frac{t_k^{\lambda _k-1}}{(\alpha _k\mu _k)^{\lambda _k}}}{\int _{R({\varvec{\lambda }})}g({\varvec{w}}'{\varvec{\varSigma }}^{-1}{\varvec{w}})\,\mathrm{d}{\varvec{w}}},\quad {\varvec{t}}\in \mathbb {R}_{+}^p, \end{aligned}$$

    where \({\varvec{w}}{=}T_{{\varvec{\lambda }},{\varvec{\mu }}}({\varvec{D}}_{{\varvec{\alpha }}}^{-1}{\varvec{t}}){=}T_{{\varvec{\lambda }},{\varvec{D_\alpha \mu }}}({\varvec{t}})\). Hence, \({\varvec{T}}={\varvec{D_{\alpha }Y}}\sim \text{ BCE }\ell _p({\varvec{D_\alpha \mu }},{\varvec{\lambda }},{\varvec{\varSigma }};g)\).

  2. 2.

    Note that the PDF of \({\varvec{Y}}\), given in (6), can be expressed as

    $$\begin{aligned} f_{{\varvec{Y}}}({\varvec{y}})=\dfrac{g({\varvec{v}}'({\varvec{D_\beta \varSigma D_\beta }})^{-1}{\varvec{v}})\prod _{k=1}^{p}\frac{|\beta _k|y_k^{\lambda _k-1}}{\mu _k^{\lambda _k}}}{\int _{R({\varvec{D}}_{{\varvec{\beta }}}^{-1}{\varvec{\lambda }})}g({\varvec{v}}'({\varvec{D_\beta \varSigma D_\beta }})^{-1}{\varvec{v}})\,\mathrm{d}{\varvec{v}}},\quad {\varvec{y}}\in \mathbb {R}_{+}^p, \end{aligned}$$

    where \({\varvec{v}}={\varvec{D_\beta }}T_{{\varvec{\lambda }},{\varvec{\mu }}}({\varvec{y}})\) has its kth component given by

    $$\begin{aligned} v_k= {\left\{ \begin{array}{ll} \dfrac{[(y_k/\mu _k)^{\beta _k}]^{\lambda _k/\beta _k}-1}{\lambda _k/\beta _k}, &{}\quad \lambda _k\ne 0,\\ \quad \,\,\,\,\log (y_k/\mu _k)^{\beta _k}, &{}\quad \lambda _k=0, \end{array}\right. } \end{aligned}$$

    for \(k=1,\ldots ,p\). From \(U_k=(Y_k/\mu _k)^{\beta _k}\), \(k=1,\ldots ,p\), with Jacobian \(J({\varvec{y}}\rightarrow {\varvec{u}})=\prod _{k=1}^{p}\mu _k \beta _k^{-1}u_k^{1/\beta _k-1}\), we arrive at the desired result.

  3. 3.

    Plugging \({\varvec{\lambda }}={\varvec{1}}\) in (6) we have that the PDF of \({\varvec{Y}}\) is

    $$\begin{aligned} f_{{\varvec{Y}}}({\varvec{y}})=\dfrac{g(({\varvec{y}}-{\varvec{\mu }})'({\varvec{D_{\mu }\varSigma D_{\mu }}})^{-1}({\varvec{y}}-{\varvec{\mu }}))\prod _{k=1}^{p}\frac{1}{\mu _k}}{\int _{R({\varvec{1}})}g({\varvec{w}}'{\varvec{\varSigma }}^{-1}{\varvec{w}})\,\mathrm{d}{\varvec{w}}},\quad {\varvec{y}}\in \mathbb {R}_{+}^p. \end{aligned}$$

    From the change of variables \({\varvec{w}}={\varvec{D}}_{{\varvec{\mu }}}^{-1}({\varvec{y}}-{\varvec{\mu }})\) we arrive at the desired result.

Appendix D: Proof of Theorem 4

Plugging \({\varvec{\varSigma }}_{12}={\varvec{0}}\) in (8), and then making the change of variables \({\varvec{s}}=T({\varvec{w}}_2)={\varvec{\varSigma }}_{22}^{-1/2}{\varvec{w}}_2\), the marginal PDF of \({\varvec{Y}}_1\) is

$$\begin{aligned} f_{{\varvec{Y}}_1}({\varvec{y}}_1)&=\dfrac{\bigr \{\int _{R({\varvec{\lambda _2}})}g({\varvec{w}}_1'{\varvec{\varSigma }}_{11}^{-1}{\varvec{w}}_1+{\varvec{w}}_2'{\varvec{\varSigma }}_{22}^{-1}{\varvec{w}}_2)\,\mathrm{d}{\varvec{w}}_2\bigl \}\prod _{k=1}^{r}\frac{y_k^{\lambda _k-1}}{\mu _k^{\lambda _k}}}{\int _{R({\varvec{\lambda }}_1)}\bigl \{\int _{R({\varvec{\lambda }}_2)}g({\varvec{w}}_1'{\varvec{\varSigma }}_{11}^{-1}{\varvec{w}}_1+{\varvec{w}}_2'{\varvec{\varSigma }}_{22}^{-1}{\varvec{w}}_2)\,\mathrm{d}{\varvec{w}}_2\bigl \}\,\mathrm{d}{\varvec{w}}_1}\\&=\dfrac{g_1({\varvec{w}}_1'{\varvec{\varSigma }}_{11}^{-1}{\varvec{w}}_1)\prod _{k=1}^{r}\frac{y_k^{\lambda _k-1}}{\mu _k^{\lambda _k}}}{\int _{R({\varvec{\lambda }}_1)}g_1({\varvec{w}}_1'{\varvec{\varSigma }}_{11}^{-1}{\varvec{w}}_1)\,\mathrm{d}{\varvec{w}}_1},\quad {\varvec{w}}_1=T_{{\varvec{\lambda }}_1,{\varvec{\mu }}_1}({\varvec{y}}_1),\quad {\varvec{y}}_1\in \mathbb {R}_{+}^r. \end{aligned}$$

Note that \(g_{1}(u) = \int _{T(R({\varvec{\lambda _2}}))}g(u + {\varvec{s}}'{\varvec{s}})\,\mathrm{d}{\varvec{s}} \le \int _{\mathbb {R}^{p-r}}g(u+{\varvec{s}}'{\varvec{s}})\,\mathrm{{d}}{\varvec{s}}=h_1(u)\), \(u\ge 0\), where \(h_1\) is such that \(\int _{0}^{\infty }t^{r-1}h_1(t^2)\,\text {d}t<\infty \) (Fang et al. 1990, Sec. 2.2). This completes the proof.

Appendix E: Proof of Theorem 5

Because \({\varvec{Y}}\sim \text{ LE }\ell _p({\varvec{\mu }},{\varvec{\varSigma }};g)\), with \(g(u)\propto \int _{0}^{\infty }t^{p/2}\exp (-ut/2)\,\mathrm{d}H(t)\), \(u\ge 0\), then \({\varvec{X}}=T_{{\varvec{0}},{\varvec{\mu }}}({\varvec{Y}})\sim \text{ E }\ell _p({\varvec{0}},{\varvec{\varSigma }};g)\). Thus, \({\varvec{X}}_1=T_{{\varvec{0}},{\varvec{\mu }}_1}({\varvec{Y}}_1)\sim \text{ E }\ell _p({\varvec{0}},{\varvec{\varSigma }}_{11};g)\) (Kano 1994). Hence, \({\varvec{Y}}_1\sim \text{ LE }\ell _r({\varvec{\mu }}_1,{\varvec{\varSigma }}_{11};g)\).

Appendix F: Proof of Theorem 6

The conditional PDF of \({\varvec{Y}}_1|{\varvec{Y}}_2\) is given by

$$\begin{aligned} f_{{\varvec{Y}}_1|{\varvec{Y}}_2}({\varvec{y}}_1)=\frac{g({\varvec{w}}'{\varvec{\varSigma }}^{-1}{\varvec{w}})\prod _{k=1}^{r}\frac{y_k^{\lambda _k-1}}{\mu _k^{\lambda _k}}}{\int _{R({\varvec{\lambda }}_1)}g({\varvec{w}}'{\varvec{\varSigma }}^{-1}{\varvec{w}})\,\mathrm{{d}}{\varvec{{\varvec{w}}_1}}},\quad {\varvec{w}}_1=T_{{\varvec{\lambda }}_1,{\varvec{\mu }}_1}({\varvec{y}}_1),\quad {\varvec{y}}_1\in \mathbb {R}_{+}^r. \end{aligned}$$
(18)

Because \({\varvec{w}}'{\varvec{\varSigma }}^{-1}{\varvec{w}}={\varvec{u}}_1' \bigl ({\varvec{D}}_{{\varvec{\alpha }}({\varvec{w}}_2)}^{-1}{\varvec{\varSigma }}_{11\cdot 2}{\varvec{D}}_{{\varvec{\alpha }}({\varvec{w}}_2)}^{-1}\bigr )^{-1}{\varvec{u}}_1+q({\varvec{w}}_2)\), where \({\varvec{u}}_1={\varvec{D}}_{{\varvec{\alpha }}({\varvec{w}}_2)}^{-1} ({\varvec{w}}_1-{\varvec{\mu }}_1({\varvec{w}}_2))=T_{{\varvec{\lambda }}_1,{\varvec{\delta }}_1}({\varvec{y}}_1)\), (18) can be expressed as

$$\begin{aligned} f_{{\varvec{Y}}_1|{\varvec{Y}}_2}({\varvec{y}}_1) = \frac{g_{q({\varvec{w}}_2)}\bigl ({\varvec{u}}_1'\bigl ({\varvec{D}}_{{\varvec{\alpha }}({\varvec{w}}_2)}^{-1}{\varvec{\varSigma }}_{11\cdot 2}{\varvec{D}}_{{\varvec{\alpha }}({\varvec{w}}_2)}^{-1}\bigr )^{-1}{\varvec{u}}_1\bigr )\prod _{k=1}^{r}\frac{y_k^{\lambda _k-1}}{\mu _k^{\lambda _k}(1+\lambda _k\mu _{1k}({\varvec{w}}_2))}}{\int _{R({\varvec{\lambda }}_1)}g_{q({\varvec{w}}_2)}\bigl ({\varvec{u}}_1'\bigl ({\varvec{D}}_{{\varvec{\alpha }}({\varvec{w}}_2)}^{-1}{\varvec{\varSigma }}_{11\cdot 2}{\varvec{D}}_{{\varvec{\alpha }}({\varvec{w}}_2)}^{-1}\bigr )^{-1}{\varvec{u}}_1\bigr )\,\mathrm{{d}}{{\varvec{u}}_1}},\quad {\varvec{y}}_1\in \mathbb {R}_{+}^p, \end{aligned}$$

where \({\varvec{u}}_1=T_{{\varvec{\lambda }}_1,{\varvec{\delta }}_1}({\varvec{y}}_1)\). Since \(\prod _{k=1}^{r}\mu _k^{\lambda _k}(1+\lambda _k\mu _{1k}({\varvec{w}}_2)) = \prod _{k=1}^{r}{\delta _k}^{\lambda _k}\) the proof is complete.

Appendix G: Proof of Theorem 7

\({\varvec{Y}}_1\) and \({\varvec{Y}}_2\) are independent if, and only if, the PDF of \({\varvec{Y}}\sim \text{ BCE }\ell _p({\varvec{\mu }},{\varvec{\lambda }},{\varvec{\varSigma }};g)\) given in (6) is such that \(f_{{\varvec{Y}}}({\varvec{y}})=f_{{\varvec{Y}}_1}({\varvec{y}}_1)f_{{\varvec{Y}}_2}({\varvec{y}}_2)\). This condition is satisfied if, and only if, \({\varvec{\varSigma }}_{12}={\varvec{0}}\) and the DGF g satisfies the functional equation \(g(u+v)=g(u)g(v)\), with \(u\ge 0\)  and  \(v\ge 0\), for which \(g(u)=\exp (-ku)\), for some \(k\ge 0\), is a solution (Gupta et al. 2013, Sec. 1.3). From \(\int _{0}^{\infty }t^{p-1}\exp (-kt^2)\,\text {d}t=2^{p/2-1}\varGamma (p/2)\), we find that \(k=1/2\). Hence, \({\varvec{Y}}_1\) and \({\varvec{Y}}_2\) are independent if, and only if, \({\varvec{\varSigma }}_{12}={\varvec{0}}\) and \({\varvec{Y}}\sim \text{ BCN }_p({\varvec{\mu }},{\varvec{\lambda }},{\varvec{\varSigma }})\).

Appendix H: Proof of Theorem 8

From (6) we have

$$\begin{aligned} {\text{ E }}\biggl (\prod _{k=1}^{p}Y_k^{h_k}\biggr ) = \dfrac{\int _{\mathbb {R}_{+}^p} g({\varvec{w}}'{\varvec{\varSigma }}^{-1}{\varvec{w}}) \prod _{k=1}^{p}\frac{y_k^{\lambda _k+h_k-1}}{\mu _k^{\lambda _k}}\,\mathrm{d}{\varvec{y}}}{\int _{R({\varvec{\lambda }})}g({\varvec{w}}'{\varvec{\varSigma }}^{-1}{\varvec{w}})\,\mathrm{d}{\varvec{w}}}, \end{aligned}$$

where \({\varvec{w}}=T_{{\varvec{\lambda }},{\varvec{\mu }}}({\varvec{y}})\). By making the change of variables \({\varvec{u}} ={\varvec{D}}_{{\varvec{\mu }}}^{-1}{\varvec{y}}\) we arrive at the desired result.

Appendix I: Marginal PDF of \(Y_k\)

The function \(g_{{{\varvec{\varUpsilon }}_k}}\) given in (10) can be defined in \(\mathbb {R}\). Hence, we can define a random variable \(U_k\in \mathbb {R}\) from the PDF

$$\begin{aligned} f_{U_k}(u_k)=c_k g_{{{\varvec{\varUpsilon }}_k}}(u_k),\quad u_k\in \mathbb {R}, \end{aligned}$$

where \(c_k^{-1} = \int _{-\infty }^{\infty }g_{{{\varvec{\varUpsilon }}_k}}(t)\,\mathrm{d}t\). The CDF of \(U_k\) is given by (11). We now define \(S_k\in I(\lambda _k\sqrt{\sigma _{kk}})\) as a random variable \(U_k\) truncated on \(I(\lambda _k\sqrt{\sigma _{kk}})\). The PDF of \(S_k\) is given by

$$\begin{aligned} f_{S_k}(s_k) = \frac{g_{{{\varvec{\varUpsilon }}_k}}(s_k)}{\int _{I(\lambda _k\sqrt{\sigma _{kk}})}g_{{{\varvec{\varUpsilon }}_k}}(s_k)\,\mathrm{d}s_k},\quad s_k\in I(\lambda _k\sqrt{\sigma _{kk}}). \end{aligned}$$
(19)

From the transformation \(S_k=\sigma _{kk}^{-1/2}T_{\lambda _k,\mu _k}(Y_k)\), with Jacobian \(J(s_k\rightarrow y_k)=\sigma _{kk}^{-1/2}\mu _{k}^{-\lambda _k}y_k^{\lambda _k-1}\), we arrive at the PDF of \(Y_k\) given in (9).

Appendix J: Proof of Theorem 9

Because \({\varvec{Y}}\sim \text{ BCE }\ell _p({\varvec{\mu }},{\varvec{\lambda }},{\varvec{\varSigma }};g)\), the PDF of \(Y_k\), \(k=1,\ldots ,p\), is given by (9), where \(S_k=\sigma _{kk}^{-1/2}T_{\lambda _k,\mu _k}(Y_k)\) has PDF given in (19). The CDF of \(S_k\) is

$$\begin{aligned} F_{S_k}(s_k) = {\left\{ \begin{array}{ll} \,\,\,\,\dfrac{F_{U_k}(s_k)-F_{U_k}(-1/{\lambda _k\sqrt{\sigma _{kk}})}}{1-F_{U_k}(-1/{\lambda _k\sqrt{\sigma _{kk}})}}, &{}\quad \lambda _k > 0,\\ \dfrac{1 - F_{U_k}(-1/{\lambda _k\sqrt{\sigma _{kk}})}+F_{U_k}(s_k)}{F_{U_k}(-1/{\lambda _k\sqrt{\sigma _{kk}})}}, &{}\quad \lambda _k<0,\\ \quad \quad \quad \quad \,\, F_{U_k}(s_k), &{}\quad \lambda _k = 0, \end{array}\right. } \end{aligned}$$
(20)

from which we have that the \(\alpha \)-quantile \(y_{k,\alpha }\) of \(Y_k\), \(\alpha \in (0,1)\), is such that \({\text{ P }}(Y_k\le y_{k,\alpha })=\alpha \), or equivalently \({\text{ P }}[S_k \le \sigma _{kk}^{-1/2}T_{\lambda _k,\mu _k}(y_{k,\alpha })]=\alpha \). Hence,

$$\begin{aligned} y_{k,\alpha } = {\left\{ \begin{array}{ll} \mu _k (1+\lambda _k\sqrt{\sigma _{kk}} s_{k,\alpha })^{1/\lambda _k}, &{}\quad \lambda _k\ne 0,\\ \quad \,\,\mu _k\exp (\sqrt{\sigma _{kk}}s_{k,\alpha }), &{}\quad \lambda _k=0, \end{array}\right. } \end{aligned}$$

where \(s_{k,\alpha }\) is such that \(F_{S_k}(s_{k,\alpha })=\alpha \), with \(F_{S_k}\) given in (20). Therefore, \(s_{k,\alpha }\) is given by

$$\begin{aligned} s_{k,\alpha } = {\left\{ \begin{array}{ll} F_{U_k}^{-1}(\alpha + (1-\alpha )F_{U_k}(-1/{\lambda _k\sqrt{\sigma _{kk}}})), &{} \quad \lambda _k>0, \\ F_{U_k}^{-1}((1+\alpha )F_{U_k}(-1/{\lambda _k\sqrt{\sigma _{kk}}}) - 1), &{}\quad \lambda _k<0, \\ \quad \quad \quad \quad \quad \quad F_{U_k}^{-1}(\alpha ), &{}\quad \lambda _k = 0, \end{array}\right. } \end{aligned}$$

where \(F_{U_k}\) is the CDF given in (11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morán-Vásquez, R.A., Ferrari, S.L.P. Box–Cox elliptical distributions with application. Metrika 82, 547–571 (2019). https://doi.org/10.1007/s00184-018-0682-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-0682-z

Keywords

Navigation