Skip to main content
Log in

A new derivation of BLUPs under random-effects model

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

This paper considers predictions of vectors of parameters under a general linear model \(\mathbf{y}= \mathbf{X}{\pmb {\beta }}+ {\pmb {\varepsilon }}\) with the random coefficients \({\pmb {\beta }}\) satisfying \({\pmb {\beta }}=\mathbf{A}{\pmb {\alpha }}+ {\pmb {\gamma }}\). It utilizes a standard method of solving constrained quadratic matrix-valued function optimization problem in the Löwner partial ordering, and obtains the best linear unbiased predictor (BLUP) of given vector \(\mathbf{F}{\pmb {\alpha }}+ \mathbf{G}\varvec{\gamma } + \mathbf{H}{\pmb {\varepsilon }}\) of the unknown parameters in the model. Some special cases of the BLUPs are also presented. In particular, a general decomposition equality \(\mathbf{y}= \mathrm{BLUE}(\mathbf{X}\mathbf{A}{\pmb {\alpha }}) + \mathrm{BLUP}(\mathbf{X}{\pmb {\gamma }}) + \mathrm{BLUP}({\pmb {\varepsilon }})\) is proved under the random-effects model. A further problem on BLUPs of new observations under the random-effects model is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Harville D (1976) Extension of the Gauss-Markov theorem to include the estimation of random effects. Ann Stat 4:384–395

    Article  MATH  MathSciNet  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447

    Article  MATH  Google Scholar 

  • Jiang J (1997) A derivation of BLUP-Best linear unbiased predictor. Stat Prob Lett 32:321–324

    Article  MATH  Google Scholar 

  • Liu XQ, Rong JY, Liu XY (2008) Best linear unbiased prediction for linear combinations in general mixed linear models. J Multivar Anal 99:1503–1517

    Article  MATH  MathSciNet  Google Scholar 

  • Marsaglia G, Styan GPH (1974) Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2:269–292

    Article  MathSciNet  Google Scholar 

  • Penrose R (1955) A generalized inverse for matrices. Proc Cambridge Phil Soc 51:406–413

    Article  MATH  MathSciNet  Google Scholar 

  • Pfeffermann D (1984) On extensions of the Gauss–Markov theorem to the case of stochastic regression coefficients. J R Stat Soc Ser B 46:139–148

    MATH  MathSciNet  Google Scholar 

  • Robinson GK (1991) That BLUP is a good thing: the estimation of random effects. Stat Sci 6:15–32

    Article  MATH  Google Scholar 

  • Searle SR (1997) The matrix Handling of BLUE and BLUP in the mixed linear model. Linear Algebra Appl 264:291–311

    Article  MATH  MathSciNet  Google Scholar 

  • Tian Y (2004) More on maximal and minimal ranks of Schur complements with applications. Appl Math Comput 152:675–692

    Article  MATH  MathSciNet  Google Scholar 

  • Wu Q (1988) Several results on admissibility of linear estimate of stochastic regresssion coeffieincts and parameters (in Chinese). Acta Math Appl Sinica 11:95–106

    MATH  MathSciNet  Google Scholar 

  • Xu LW, Yu SH (2012) Admissible prediction in superpopulation models with random regression coefficients under matrix loss function. J Multivar Anal 103:68–76

    Article  MATH  MathSciNet  Google Scholar 

  • Zhan J, Chen J (1992) Admissibility of linear estimators of regression coefficients under quadratic loss. Acta Math Appl Sinica 8:237–244

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongge Tian.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11271384).

Appendix

Appendix

We need the following well-known result by Penrose (1955) on solvability and general solution of linear matrix equation.

Lemma 1

The linear matrix equation \(\mathbf{Z}\mathbf{A}= \mathbf{B}\) is consistent if and only if \(r[\mathbf{A}^{\prime }, \, \mathbf{B}^{\prime }\,] = r(\mathbf{A}^{\prime }),\) or equivalently, \(\mathbf{B}\mathbf{A}^{+}\mathbf{A}= \mathbf{B}.\) In this case, the general solution of \(\mathbf{Z}\mathbf{A}= \mathbf{B}\) can be written in the following parametric form \(\mathbf{Z}= \mathbf{B}\mathbf{A}^{+} + \mathbf{U}\mathbf{A}^{\!\perp },\) where \(\mathbf{U}\) is an arbitrary matrix.

We also need the following formulas on ranks of matrices; see, e.g., Marsaglia and Styan (1974), Tian (2004).

Lemma 2

Let \(\mathbf{A}\in {\mathbb {R}}^{m \times n},\) \( \mathbf{B}\in {\mathbb {R}}^{m \times k},\) and \(\mathbf{C}\in {\mathbb {R}}^{l \times n}.\) Then

$$\begin{aligned} r[\, \mathbf{A}, \, \mathbf{B}\, ]&= r(\mathbf{A})+ r(\mathbf{E}_{\mathbf{A}}\mathbf{B})= r(\mathbf{B}) + r(\mathbf{E}_{\mathbf{B}}\mathbf{A}), \end{aligned}$$
(56)
$$\begin{aligned} r\!\left[ \begin{array}{c} \mathbf{A}\\ \mathbf{C}\end{array}\right]&= r(\mathbf{A}) + r(\mathbf{C}\mathbf{F}_{\mathbf{A}}) = r(\mathbf{C}) + r(\mathbf{A}\mathbf{F}_{\mathbf{C}}), \end{aligned}$$
(57)
$$\begin{aligned} r\!\left[ \begin{array}{c@{\quad }c} \mathbf{A}\mathbf{A}^{\prime } \ &{} \mathbf{B}\\ \mathbf{B}^{\prime } &{} \mathbf{0}\end{array} \right]&= r[\, \mathbf{A}, \, \mathbf{B}\,] + r(\mathbf{B}). \end{aligned}$$
(58)

If \({\fancyscript{R}}(\mathbf{A}_1^{\prime }) \subseteq {\fancyscript{R}}(\mathbf{B}_1^{\prime })\), \({\fancyscript{R}}(\mathbf{A}_2) \subseteq {\fancyscript{R}}(\mathbf{B}_1)\), \({\fancyscript{R}}(\mathbf{A}_2^{\prime }) \subseteq {\fancyscript{R}}(\mathbf{B}_2^{\prime })\) and \({\fancyscript{R}}(\mathbf{A}_3) \subseteq {\fancyscript{R}}(\mathbf{B}_2),\) then

$$\begin{aligned} r(\mathbf{A}_1\mathbf{B}_1^+\mathbf{A}_2)&= r\!\left[ \begin{array}{c@{\quad }c} \mathbf{B}_1 &{} \mathbf{A}_2 \\ \mathbf{A}_1 &{} \mathbf{0}\end{array} \right] - r(\mathbf{B}_1), \end{aligned}$$
(59)
$$\begin{aligned} r(\mathbf{A}_1\mathbf{B}_1^+\mathbf{A}_2\mathbf{B}_2^+\mathbf{A}_3)&= r\!\left[ \begin{array}{c@{\quad }c@{\quad }c} \mathbf{0}&{} \mathbf{B}_2 &{} \mathbf{A}_3 \\ \mathbf{B}_1 &{} \mathbf{A}_2 &{} \mathbf{0}\\ \mathbf{A}_1 &{} \mathbf{0}&{} \mathbf{0}\end{array} \right] - r(\mathbf{B}_1) - r(\mathbf{B}_2). \end{aligned}$$
(60)

Lemma 3

Let

$$\begin{aligned} f(\mathbf{Z}) = \left( \, \mathbf{Z}\mathbf{C}+ \mathbf{D}\,\right) \!\mathbf{M}\!\left( \,\mathbf{Z}\mathbf{C}+ \mathbf{D}\right) ^{\prime } - \mathbf{N}\ \ s.t. \ \ \mathbf{Z}\mathbf{A}= \mathbf{B}, \end{aligned}$$
(61)

where \(\mathbf{A}\in {{\mathbb {R}}}^{p \times q}\), \(\mathbf{B}\in {{\mathbb {R}}}^{n \times q}\), \(\mathbf{C}\in {{\mathbb {R}}}^{p\times m},\) \(\mathbf{D}\in {{\mathbb {R}}}^{n\times m},\) and \(\mathbf{N}= \mathbf{N}^{\prime } \in {{\mathbb {R}}}^{n\times n}\) are given, \(\mathbf{M}\in {{\mathbb {R}}}^{m \times m}\) is nnd, and the matrix equation \(\mathbf{Z}\mathbf{A}= \mathbf{B}\) is consistent. Then, there always exists a solution \(\mathbf{Z}_0\) of \(\mathbf{Z}_0\mathbf{A}= \mathbf{B}\) such that

$$\begin{aligned} f(\mathbf{Z}) \succcurlyeq f(\mathbf{Z}_0) \end{aligned}$$
(62)

holds for all solutions of \(\mathbf{Z}\mathbf{A}= \mathbf{B}\). In this case, the matrix \(\mathbf{Z}_0\) satisfying (62) is determined by the following consistent matrix equation

$$\begin{aligned} \mathbf{Z}_0[\,\mathbf{A}, \, \mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } \,] = [\,\mathbf{B}, \, -\mathbf{D}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } \,]. \end{aligned}$$
(63)

The general expression of \(\mathbf{Z}_0\) and the corresponding \(f(\mathbf{Z}_0)\) are given by

$$\begin{aligned} \mathbf{Z}_0&= \mathop {\mathrm{argmin}}\limits _{\mathbf{Z}\mathbf{A}= \mathbf{B}}\! f(\mathbf{Z}) = [\,\mathbf{B}, \, -\mathbf{D}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } \,][\,\mathbf{A}, \, \mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } \,]^+ + \mathbf{T}[\,\mathbf{A}, \, \mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\,]^{\!\perp },\nonumber \\ \end{aligned}$$
(64)
$$\begin{aligned} f(\mathbf{Z}_0)&= \min _{\!\!\!\!\!\mathbf{Z}\mathbf{A}= \mathbf{B}}\! f(\mathbf{Z}) = \mathbf{S}\mathbf{M}\mathbf{S}^{\prime } - \mathbf{S}\mathbf{M}\mathbf{C}^{\prime }(\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime } \mathbf{A}^{\!\perp })^{+}\mathbf{C}\mathbf{M}\mathbf{S}^{\prime } - \mathbf{N}, \end{aligned}$$
(65)

and

$$\begin{aligned} f(\mathbf{Z}) - f(\mathbf{Z}_0)&= (\mathbf{Z}\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } + \mathbf{D}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })(\mathbf{A}^{\!\perp } \mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^{+}\nonumber \\&\times (\mathbf{Z}\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } + \mathbf{D}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^{\prime }, \end{aligned}$$
(66)

where \(\mathbf{S}= \mathbf{B}\mathbf{A}^{+}\mathbf{C}+ \mathbf{D},\) and \(\mathbf{T}\in {{\mathbb {R}}}^{n\times p}\) is arbitrary.

Proof of Lemma 3

Substituting the general solution \(\mathbf{Z}= \mathbf{B}\mathbf{A}^{+} + \mathbf{U}\mathbf{A}^{\!\perp }\) of \(\mathbf{Z}\mathbf{A}= \mathbf{B}\) into \(f(\mathbf{Z})\) in (61), we obtain

$$\begin{aligned} f(\mathbf{Z})&= \left( \, \mathbf{U}\mathbf{A}^{\!\perp }\mathbf{C}+ \mathbf{S}\,\right) \!\mathbf{M}\!\left( \, \mathbf{U}\mathbf{A}^{\!\perp }\mathbf{C}+ \mathbf{S}\right) ^{\prime } - \mathbf{N}. \end{aligned}$$
(67)

Under \(\mathbf{M}\succcurlyeq \mathbf{0}\), the following two results

$$\begin{aligned} \mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } \succcurlyeq \mathbf{0}\quad \mathrm{and} \quad {\fancyscript{R}}(\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp }) = {\fancyscript{R}}(\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }) = {\fancyscript{R}}(\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}) \end{aligned}$$
(68)

hold. Hence, \((\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp }) (\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^{+} \mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{S}^{\prime } = \mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{S}^{\prime }\) holds as well. In this case, it is easy to verify that (67) can be decomposed as

$$\begin{aligned}&f(\mathbf{Z}) \nonumber \\&\quad = (\mathbf{U}\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } \! + \mathbf{S}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })(\mathbf{A}^{\!\perp } \mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^{+} (\mathbf{U}\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } \! + \mathbf{S}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^{\prime } \nonumber \\&\qquad + \mathbf{S}\mathbf{M}\mathbf{S}^{\prime } - \mathbf{S}\mathbf{M}\mathbf{C}^{\prime }(\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime } \mathbf{A}^{\!\perp })^{+}\mathbf{C}\mathbf{M}\mathbf{S}^{\prime } - \mathbf{N}. \end{aligned}$$
(69)

Substituting \(\mathbf{U}\mathbf{A}^{\!\perp } = \mathbf{Z}- \mathbf{B}\mathbf{A}^{+}\) into (69) and simplifying yields

$$\begin{aligned} f(\mathbf{Z})&= (\mathbf{Z}\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } + \mathbf{D}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })(\mathbf{A}^{\!\perp } \mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^{+}(\mathbf{Z}\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } + \mathbf{D}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^{\prime } \nonumber \\&\quad + \ \mathbf{S}\mathbf{M}\mathbf{S}^{\prime } - \mathbf{S}\mathbf{M}\mathbf{C}^{\prime } (\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^+\mathbf{C}\mathbf{M}\mathbf{S}^{\prime } - \mathbf{N}. \end{aligned}$$
(70)

Note that

$$\begin{aligned} (\mathbf{Z}\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } + \mathbf{D}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })(\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^{+} (\mathbf{Z}\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } + \mathbf{D}\mathbf{M}\mathbf{C}^{\prime } \mathbf{A}^{\!\perp })^{\prime } \succcurlyeq \mathbf{0}\end{aligned}$$

in (70). Hence, \(f(\mathbf{Z}) \succcurlyeq \mathbf{S}\mathbf{M}\mathbf{S}^{\prime } - \mathbf{S}\mathbf{M}\mathbf{C}^{\prime }(\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime } \mathbf{A}^{\!\perp })^+\mathbf{C}\mathbf{M}\mathbf{S}^{\prime } - \mathbf{N}\) holds for all \(\mathbf{Z}\). Under (68), it is obvious that

$$\begin{aligned}&(\mathbf{Z}\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } + \mathbf{D}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })(\mathbf{A}^{\!\perp } \mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^{+} (\mathbf{Z}\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } + \mathbf{D}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp })^{\prime } = \mathbf{0}\nonumber \\&\quad \Leftrightarrow \mathbf{Z}\mathbf{C}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp } + \mathbf{D}\mathbf{M}\mathbf{C}^{\prime }\mathbf{A}^{\!\perp }= \mathbf{0} \end{aligned}$$
(71)

holds. Since \({\fancyscript{R}}(\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{D}^{\prime }) \subseteq {\fancyscript{R}}(\mathbf{A}^{\!\perp }\mathbf{C}\mathbf{M}\mathbf{C}^{\prime })\), the linear matrix equation in (71) is always consistent. Combining it with the given consistent matrix equation \(\mathbf{Z}\mathbf{A}= \mathbf{B}\) yields (63), which is consistent again. Solving the equation yields (64). Eqs. (65) and (66) follow from (70) and (71). \(\square \)

Proof of Theorem 1

It is obvious that

$$\begin{aligned} E(\mathbf{L}\mathbf{y}) = E({\pmb {\phi }}) \Leftrightarrow \mathbf{L}\widehat{\mathbf{X}} {\pmb {\alpha }}= \mathbf{F}{\pmb {\alpha }}\quad \text{ for } \text{ all } {\pmb {\alpha }} \Leftrightarrow \mathbf{L}\widehat{\mathbf{X}} = \mathbf{F}. \end{aligned}$$

From Lemma 1, the matrix equation \(\mathbf{L}\widehat{\mathbf{X}} = \mathbf{F}\) is solvable for \(\mathbf{L}\) if and only if (10) holds. Also, note that the corresponding \(\mathbf{L}\mathbf{y}- {\pmb {\phi }}\) can be written as \(\mathbf{L}\mathbf{y}- {\pmb {\phi }}= (\mathbf{L}\widehat{\mathbf{X}} - \mathbf{F}){\pmb {\alpha }}+ ( \mathbf{L}\mathbf{X}- \mathbf{G}){\pmb {\gamma }}+ (\mathbf{L}- \mathbf{H}){\pmb {\varepsilon }}\). Hence

$$\begin{aligned} Cov(\mathbf{L}\mathbf{y}- {\pmb {\phi }})&= Cov[( \mathbf{L}\mathbf{X}- \mathbf{G}){\pmb {\gamma }}+ (\mathbf{L}- \mathbf{H}){\pmb {\varepsilon }}] \nonumber \\&= [\, \mathbf{L}\mathbf{X}- \mathbf{G}, \, \mathbf{L}- \mathbf{H}\,] {\pmb {\Sigma }}[\, \mathbf{L}\mathbf{X}- \mathbf{G}, \, \mathbf{L}- \mathbf{H}\,]^{\prime } \nonumber \\&= ( \mathbf{L}\widetilde{\mathbf{X}} - \mathbf{J}){\pmb {\Sigma }}(\mathbf{L}\widetilde{\mathbf{X}} - \mathbf{J})^{\prime } := f(\mathbf{L}). \end{aligned}$$
(72)

Thus, (11) is equivalent to finding a solution \(\mathbf{L}_0\) of \(\mathbf{L}_0\widehat{\mathbf{X}} = \mathbf{F}\) such that

$$\begin{aligned} f(\mathbf{L}) \succcurlyeq f(\mathbf{L}_0) \ \ \text{ s.t. } \ \ \mathbf{L}\widehat{\mathbf{X}} = \mathbf{F} \end{aligned}$$
(73)

holds in the Löwner partial ordering. Since \({\pmb {\Sigma }}\succcurlyeq \mathbf{0}\), (72) is special case of (61). From Lemma 3, there always exists a solution \(\mathbf{L}_0\) of \(\mathbf{L}_0\widehat{\mathbf{X}} = \mathbf{F}\) such that \(f(\mathbf{L}) \succcurlyeq f(\mathbf{L}_0)\) holds for all solutions of \(\mathbf{L}\widehat{\mathbf{X}} = \mathbf{F}\), and the \(\mathbf{L}_0\) is determined by the matrix equation \(\mathbf{L}_0[\,\widehat{\mathbf{X}}, \, \widetilde{\mathbf{X}}{\pmb {\Sigma }}\widetilde{\mathbf{X}}^{\prime }\widehat{\mathbf{X}}^{\!\perp } \,] = [\,\mathbf{F}, \, \mathbf{J}{\pmb {\Sigma }}\widetilde{\mathbf{X}}^{\prime }\widehat{\mathbf{X}}^{\!\perp } \,]\), or equivalently,

$$\begin{aligned} \mathbf{L}_0[\,\widehat{\mathbf{X}}, \, \mathbf{V}\widehat{\mathbf{X}}^{\!\perp } \,] = [\,\mathbf{F}, \, (\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)\widehat{\mathbf{X}}^{\!\perp } \,], \end{aligned}$$
(74)

establishing the matrix equation in (11), where \(\widetilde{\mathbf{X}}{\pmb {\Sigma }}\widetilde{\mathbf{X}}^{\prime } = \mathbf{V}\) and \(\mathbf{J}{\pmb {\Sigma }}\widetilde{\mathbf{X}}^{\prime } = \mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2\). This equation is always consistent, and the general solution of the equation is given in (12).

Taking covariance operation of (12) yields (13). Also from (6) and (12), the covariance matrix between \(\mathrm{BLUP}({\pmb {\phi }})\) and \({\pmb {\phi }}\) is

$$\begin{aligned}&Cov\{\,\mathrm{BLUP}({\pmb {\phi }}), \, {\pmb {\phi }}\,\}\\&\quad = Cov\!\left\{ ([\,\mathbf{F}, \, (\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^{+} + \mathbf{U}\mathbf{W}^{\!\perp })\mathbf{y}, \,\mathbf{G}{\pmb {\gamma }}+ \mathbf{H}{\pmb {\varepsilon }}\right\} \\&\quad = ([\,\mathbf{F}, \, (\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^{+} + \mathbf{U}\mathbf{W}^{\!\perp }) Cov\left( [\, \mathbf{X}, \,\mathbf{I}_n]\left[ \! \begin{array}{c} {\pmb {\gamma }}\\ {\pmb {\varepsilon }}\end{array} \!\right] , \, \left[ \! \begin{array}{c} {\pmb {\gamma }}\\ {\pmb {\varepsilon }}\end{array} \!\right] \right) [\,\mathbf{G}, \ \mathbf{H}\,]^{\prime }\\&\quad = [\,\mathbf{F}, \, (\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^+(\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)^{\prime } \ \ \ \text{(by } \text{(1)--(4)) }, \end{aligned}$$

establishing (14). Further by (65),

$$\begin{aligned}&Cov({\pmb {\phi }}- \mathbf{L}_0\mathbf{y})\\&\quad = (\mathbf{F}\widehat{\mathbf{X}}^{+}\widetilde{\mathbf{X}} - \mathbf{J})\left( {\pmb {\Sigma }}-{\pmb {\Sigma }}\widetilde{\mathbf{X}}^{\prime } (\widehat{\mathbf{X}}^{\!\perp }\widetilde{\mathbf{X}}{\pmb {\Sigma }}\widetilde{\mathbf{X}}^{\prime }\widehat{\mathbf{X}}^{\!\perp })^{+} \widetilde{\mathbf{X}}{\pmb {\Sigma }}\right) (\mathbf{F}\widehat{\mathbf{X}}^{+}\widetilde{\mathbf{X}} - \mathbf{J})^{\prime }\\&\quad = (\mathbf{F}\widehat{\mathbf{X}}^{+}\widetilde{\mathbf{X}} - \mathbf{J}) \left( {\pmb {\Sigma }}-\left[ \!\begin{array}{c}\mathbf{V}_1\\ \mathbf{V}_2 \end{array}\!\right] (\widehat{\mathbf{X}}^{\!\perp }\mathbf{V}\widehat{\mathbf{X}}^{\!\perp })^{+} [\,\mathbf{V}^{\prime }_1, \, \mathbf{V}^{\prime }_2 \,] \right) (\mathbf{F}\widehat{\mathbf{X}}^{+}\widetilde{\mathbf{X}} - \mathbf{J})^{\prime }, \end{aligned}$$

establishing (16).\(\square \)

Proof of Corollary 1

Note that from (12) that

$$\begin{aligned}{}[\mathbf{F}, \, (\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^{+} = [\,\mathbf{F}, \, \mathbf{0}\,]\mathbf{W}^+ + [\,\mathbf{0}, \, \mathbf{G}\mathbf{V}_1\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^+ + [\mathbf{0}, \, \mathbf{H}\mathbf{V}_2\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^{+}. \end{aligned}$$

Hence (12) can be rewritten as the sum

$$\begin{aligned} \mathrm{BLUP}({\pmb {\phi }})&= \left( [\,\mathbf{F}, \, \mathbf{0}\,]\mathbf{W}^+ + \mathbf{U}_1\mathbf{W}^{\!\perp } \right) \mathbf{y}+ \left( [\,\mathbf{0}, \, \mathbf{G}\mathbf{V}_1\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^+ + \mathbf{U}_2\mathbf{W}^{\!\perp } \right) \mathbf{y}\\&+ \left( [\,\mathbf{0}, \, \mathbf{H}\mathbf{V}_2\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^+ + \mathbf{U}_3\mathbf{W}^{\!\perp } \right) \mathbf{y}\\&= \mathrm{BLUE}(\mathbf{F}{\pmb {\alpha }}) + \mathrm{BLUP}(\mathbf{G}{\pmb {\gamma }}) + \mathrm{BLUP}(\mathbf{H}{\pmb {\varepsilon }}), \end{aligned}$$

establishing (17). We obtain from (12) that the covariance matrix between \(\mathrm{BLUE}(\mathbf{F}{\pmb {\alpha }})\) and \( \mathrm{BLUP}(\mathbf{G}{\pmb {\gamma }}+ \mathbf{H}{\pmb {\varepsilon }})\) is

$$\begin{aligned}&Cov\{\, \mathrm{BLUE}(\mathbf{F}{\pmb {\alpha }}), \, \mathrm{BLUP}(\mathbf{G}{\pmb {\gamma }}+ \mathbf{H}{\pmb {\varepsilon }}) \,\} \nonumber \\&\quad = Cov\left\{ \, ([\,\mathbf{F}, \, \mathbf{0}\,]\mathbf{W}^+ + \mathbf{U}_1\mathbf{W}^{\!\perp })\mathbf{y}, \ ([\,\mathbf{0}, \, (\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^+ + \mathbf{U}_2\mathbf{W}^{\!\perp })\mathbf{y}\right\} \nonumber \\&\quad = [\,\mathbf{F}, \, \mathbf{0}\,]\mathbf{W}^+ \mathbf{V}([\,\mathbf{0}, \, (\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^+)^{\prime }. \end{aligned}$$
(75)

Applying (60) to (75) and simplifying, we obtain

$$\begin{aligned}&r(Cov\{\,{\mathrm{BLUE}}(\mathbf{F}{\pmb {\alpha }}), \, {\mathrm{BLUP}}(\mathbf{G}{\pmb {\gamma }}+ \mathbf{H}{\pmb {\varepsilon }})\,\})\\&\quad = r\!\left( [\,\mathbf{F}, \, \mathbf{0}\,]\mathbf{W}^+ \mathbf{V}([\,\mathbf{0}, \, (\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)\widehat{\mathbf{X}}^{\!\perp } \,]\mathbf{W}^+)^{\prime } \right) \\&\quad = r\!\left[ \begin{array}{c@{\quad }c@{\quad }c} \mathbf{0}&{} \left[ \begin{array}{c} \widehat{\mathbf{X}}^{\prime }\\ \widehat{\mathbf{X}}^{\!\perp }\mathbf{V}\end{array} \right] &{} \left[ \!\begin{array}{c} \mathbf{0}\\ \widehat{\mathbf{X}}^{\!\perp }(\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)^{\prime } \end{array} \right] \\ {[}\,\widehat{\mathbf{X}}, \, \mathbf{V}\widehat{\mathbf{X}}^{\!\perp }\,] &{} \mathbf{V}&{} \mathbf{0}\\ {[}\,\mathbf{F}, \, \mathbf{0}\,] &{} \mathbf{0}&{} \mathbf{0}\end{array} \right] - 2r(\mathbf{W})\\&\quad = r\!\left[ \begin{array}{c@{\quad }c@{\quad }c} \left[ \begin{array}{c@{\quad }c} \mathbf{0}&{} \mathbf{0}\\ \mathbf{0}&{} -\widehat{\mathbf{X}}^{\!\perp }\mathbf{V}\widehat{\mathbf{X}}^{\!\perp } \end{array} \right] &{} \left[ \begin{array}{c} \widehat{\mathbf{X}}^{\prime } \\ \mathbf{0}\end{array} \right] &{} \left[ \begin{array}{c} \mathbf{0}\\ \widehat{\mathbf{X}}^{\!\perp }(\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)^{\prime } \end{array} \right] \\ {[}\,\widehat{\mathbf{X}}, \, \mathbf{0}\,] &{} \mathbf{V}&{} \mathbf{0}\\ {[}\,\mathbf{F}, \, \mathbf{0}\,] &{} \mathbf{0}&{} \mathbf{0}\end{array}\right] - 2r[\,\widehat{\mathbf{X}}, \, \mathbf{V}\,]\\&\quad = r\!\left[ \begin{array}{c@{\quad }c} \mathbf{0}&{} \widehat{\mathbf{X}}^{\prime } \\ \widehat{\mathbf{X}} &{} \mathbf{V}\\ \mathbf{F}&{} \mathbf{0}\end{array} \right] + r[\, \widehat{\mathbf{X}}^{\!\perp }\mathbf{V}\widehat{\mathbf{X}}^{\!\perp }, \, \widehat{\mathbf{X}}^{\!\perp }(\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)^{\prime } \,] - 2r[\,\widehat{\mathbf{X}}, \, \mathbf{V}\,]\\&\quad = r\!\left[ \begin{array}{c} \widehat{\mathbf{X}} \\ \mathbf{F}\end{array} \right] + r\left[ \begin{array}{c} \widehat{\mathbf{X}}^{\prime } \\ \mathbf{V}\end{array} \right] + r[\, \widehat{\mathbf{X}}, \, \mathbf{V}\widehat{\mathbf{X}}^{\!\perp }, \, (\mathbf{G}\mathbf{V}_1 + \mathbf{H}\mathbf{V}_2)^{\prime } \,] \\&\qquad - \ r(\widehat{\mathbf{X}}) - 2r[\,\widehat{\mathbf{X}}, \, \mathbf{V}\,] \ \ \ \text{(by } \text{(58)) }\\&\quad = r[\, \widehat{\mathbf{X}}, \, \mathbf{V}\widehat{\mathbf{X}}^{\!\perp }, \, \mathbf{V}_1^{\prime } \mathbf{G}^{\prime } +\mathbf{V}_2^{\prime }\mathbf{H}^{\prime } \,] - r[\,\widehat{\mathbf{X}}, \, \mathbf{V}\,] \\&\quad = r[\, \widehat{\mathbf{X}}, \, \mathbf{V}, \, \mathbf{V}_1^{\prime } \mathbf{G}^{\prime } +\mathbf{V}_2^{\prime }\mathbf{H}^{\prime } \,] - r[\,\widehat{\mathbf{X}}, \, \mathbf{V}\,] \ \ \text{(by } \text{ Theorem } \text{1(a)) }\\&\quad = r[\, \widehat{\mathbf{X}}, \, \mathbf{V}, \, \mathbf{0}\,] - r[\,\widehat{\mathbf{X}}, \, \mathbf{V}\,] \ \ \ \text{(by } \text{(5)) },\\&\quad = 0, \end{aligned}$$

which implies that \(Cov\{\,\mathrm{BLUE}(\mathbf{F}{\pmb {\alpha }}), \, \mathrm{BLUP}(\mathbf{G}{\pmb {\gamma }}+ \mathbf{H}{\pmb {\varepsilon }})\,\}\) is a zero matrix, establishing (18). Equation (19) follows from (17) and (18). \(\square \)

Proof of Corollary 2

It is easy to verify by the definition of Moore–Penrose inverse that if \({\fancyscript{R}}(\mathbf{A}) \cap {\fancyscript{R}}(\mathbf{B}) = \{\mathbf{0}\}\), then \([\, \mathbf{A}, \, \mathbf{B}\,]^+ \!= \!{\left[ \!\begin{array}{c} \mathbf{A}^{+}- \mathbf{A}^{+}\mathbf{B}(\mathbf{A}^{\!\perp }\mathbf{B})^+ \\ (\mathbf{A}^{\!\perp }\mathbf{B})^+ \end{array}\!\right] }\!\). From this formula and Theorem 1(a), we obtain

$$\begin{aligned}&\displaystyle \mathbf{W}^+ = [\, \widehat{\mathbf{X}}, \, \mathbf{V}\widehat{\mathbf{X}}^{\!\perp }\,]^+ \! = \!\left[ \!\begin{array}{c} \widehat{\mathbf{X}}^{+} - \widehat{\mathbf{X}}^{+}\mathbf{V}\widehat{\mathbf{X}}^{\!\perp } (\widehat{\mathbf{X}}^{\!\perp }\mathbf{V}\widehat{\mathbf{X}}^{\!\perp })^+\\ (\widehat{\mathbf{X}}^{\!\perp }\mathbf{V}\widehat{\mathbf{X}}^{\!\perp })^+ \end{array}\!\right] \!, \end{aligned}$$
(76)
$$\begin{aligned}&\displaystyle [\mathbf{0}, \, \mathbf{I}_n]\mathbf{W}^+\mathbf{V}\mathbf{W}^+[\mathbf{0}, \, \mathbf{I}_n]^{\prime } = (\widehat{\mathbf{X}}^{\!\perp }\mathbf{V}\widehat{\mathbf{X}}^{\!\perp })^+. \end{aligned}$$
(77)

Results in (a)–(g) follow directly from Theorem 1, Corollary 1, (76), and (77). We also obtain from (12), (76), and (77) that

$$\begin{aligned} Cov\{\,\mathrm{BLUP}(\mathbf{X}{\pmb {\gamma }}), \, \mathrm{BLUP}({\pmb {\varepsilon }}) \,\} = \mathbf{X}\mathbf{V}_1(\widehat{\mathbf{X}}^{\!\perp }\mathbf{V}\widehat{\mathbf{X}}^{\!\perp })^+\mathbf{V}_2^{\prime }. \end{aligned}$$

Applying (59) to the right-hand side of this formula, and simplifying by (56) and (57) yields

$$\begin{aligned}&r(Cov\{\,\mathrm{BLUP}(\mathbf{X}{\pmb {\gamma }}), \, \mathrm{BLUP}({\pmb {\varepsilon }})\,\}) = r\!\left( \mathbf{X}\mathbf{V}_1(\widehat{\mathbf{X}}^{\!\perp } \mathbf{V}\widehat{\mathbf{X}}^{\!\perp })^+\mathbf{V}_2^{\prime } \right) \\&\quad = r\!\left[ \begin{array}{c@{\quad }c} \widehat{\mathbf{X}}^{\!\perp } \mathbf{V}\widehat{\mathbf{X}}^{\!\perp } &{} \widehat{\mathbf{X}}^{\!\perp }\mathbf{V}_2^{\prime }\\ \mathbf{X}\mathbf{V}_1\widehat{\mathbf{X}}^{\!\perp } &{}\mathbf{0}\end{array} \right] - r(\widehat{\mathbf{X}}^{\!\perp }\mathbf{V}\widehat{\mathbf{X}}^{\!\perp }) = r\!\left[ \begin{array}{c@{\quad }c@{\quad }c} \mathbf{V}&{} \widehat{\mathbf{X}} &{} \mathbf{V}_2^{\prime }\\ \widehat{\mathbf{X}}^{\prime } &{}\mathbf{0}&{}\mathbf{0}\\ \mathbf{X}\mathbf{V}_1 &{}\mathbf{0}&{}\mathbf{0}\end{array}\right] - r\!\left[ \begin{array}{c@{\quad }c} \mathbf{V}&{} \widehat{\mathbf{X}}\\ \widehat{\mathbf{X}}^{\prime } &{} \mathbf{0}\end{array}\right] \!, \end{aligned}$$

establishing (45). Setting the right-hand side of (45) equal to zero leads to the equivalence of (i), (ii), and (iii) in (h).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y. A new derivation of BLUPs under random-effects model. Metrika 78, 905–918 (2015). https://doi.org/10.1007/s00184-015-0533-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-015-0533-0

Keywords

Mathematics Subject Classification

Navigation