Skip to main content

Advertisement

Log in

Dissecting Brazilian agriculture business cycles in high-dimensional and time-irregular span contexts

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

Business cycle analysis faces the challenge of high-dimensional databases with a time-irregular span. This study addresses these issues to estimate the Brazilian agricultural business cycle by proposing the use of an entropic test of relative information and the estimation of a generalized dynamic factor model in the context of a time-irregular span. In addition, we assess the co-movements between the estimated cycle and a wide range of weather, macroeconomic, and sectoral variables. The main results are: (i) the sharpest crises of the agricultural cycle are associated more with weather events than with Brazil’s economic crises, reinforcing that agriculture has a stabilizing role in the aggregated cycles; (ii) among all the variables analyzed, those related to weather (minimum and maximum temperature and precipitation) present the greatest commonalities with the agricultural cycle and are leading indicators; (iii) minimum temperatures and precipitation in states are essentially pro-cyclical, while maximum temperatures are pro-cyclical in typically colder states and counter-cyclical in warmer states; (iv) following the weather variables, credit variables had the highest average commonalities, with phases of expansion in the agricultural cycle leading to contractions in the indicators of arrears and defaults and in the interest rate of rural credit, with some time lag; (v) the behavior of the Brazilian economy and global demand for imports are also antecedent and pro-cyclical, but with relatively smaller commonalities; and (vi) expansions of the agricultural cycle lead to contractions in the unemployment rate of the economy. The contribution of this study is twofold: (1) its methodological innovation and (2) its application to the Brazilian agricultural business cycle, both of which are unprecedented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The steps that describe the development of the test are presented in the appendix.

  2. The asterisk indicates the TISN context

  3. The reference variable to estimate the Brazilian agricultural cycle was the agricultural component of GDP, a measure that is not disaggregated at the state level. The use of state weather data sought to capture Brazilian climate heterogeneity.

  4. To determine the periods of extreme weather events, dummies were created for events documented in the literature. The result of this qualitative dating is shown in Table 5 in Appendix.

  5. CODACE was established to produce the chronological reference for the Brazilian economic cycles. It monitors and evaluates the country’s recessive cycles, as the NBER Business Cycle Dating Committee does for the U.S.

  6. The index of time was suppressed without loss of generality.

References

  • Alessi L, Barigozzi M, Capasso M (2010) Improved penalization for determining the number of factors in approximate factor models. Stat Probab Lett 80(23–24):1806–1813

    Google Scholar 

  • Assad ED, Pinto HS, Zullo J, Ávila AMH (2004) Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil. Pesq Agrop Brasileira 39(11):1057–1064

    Google Scholar 

  • Assad ED, Pinto HS, Zullo Junior J, Marin FR, Pellegrino GQ (2008) Mudanças climáticas e a produção de grãos no Brasil: avaliação dos possíveis impactos. Technical Report 5

  • Barro RJ (1976) Rational Expectations and the Role of Monetary Policy. J Monet Econ 2 (January 1976): 1–32

  • Bacha CJC (2004) Economia e política agrícola no Brasil, 1, ed. Atlas, São Paulo

    Google Scholar 

  • Bai J, Ng S et al (2008) Large dimensional factor analysis. Found Trends® Econom 3(2):89–163

  • Bańbura M, Modugno M (2014) Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. J Appl Economet 29(1):133–160

    Google Scholar 

  • Barros GSC, Castro NR (2020) Exportações do agronegócio - faturamento e taxação cambial. Center for Advanced Studies in Applied Economics Technical report

  • Barros GSC, Castro NR, Silva AF, Fachinello AL, Gilio L (2019) Os ganhos de produção se refletiram em geração de maior renda para o agronegóbrasileiro nas últimas décadas? Revista de Economia e Agronegócio 17(2):319–388

  • Barros GSdC (2014) Agricultura e Indústria no Desenvolvimento Econômico Brasileiro. In: Buainain AM, Alves E, da Silveira JM, Navarro Z (eds) O Mundo Rural no Brasil do Século 21, 1ed edn. Embrapa, Brasília, pp 79–116

  • Barros GSdC, Bacchi MRP, Burnquist HL (2002) Estimação de equaões de oferta de exportação de produtos agropecuários para o Brasil (1992/2000). Technical report, IPEA, Brasília

  • Barros GSdC, Castro NR (2017) Produto Interno Bruto Do Agronegócio E a Crise Brasileira. Revista de Economia e Agronegócio 15(2):156–162

  • Belloni A, Chernozhukov V (2011) High dimensional sparse econometric models: an introduction, pp 121–156

  • Belloumi M (2014) Investigating the impact of climate change on agricultural production in eastern and southern african countries, Technical report

  • Buainain AM, Alves E, da Silveira JM, Navarro Z (2013) Sete teses sobre o mundo rural. Revista de Política Agrícola XXI I(2):105–121

    Google Scholar 

  • Buckle RA, Kim K, Kirkham H, McLellan N, Sharma J (2007) A structural var business cycle model for a volatile small open economy. Econ Model (24)

  • Burnham K, Anderson D (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Burns AF, Mitchell WC (1947) Measuring business cycles

  • Castro NR, Barros GSC, Nunes AN, Gilio L, Morais ACP (2020) The Brazilian agribusiness labor market: measurement, characterization and analysis of income differentials. Rev Econ Sociol Rural 58(1):1–20

    Google Scholar 

  • Cavalcanti IF, Kousky VE (2004) Drought in brazil during summer and fall 2001 and associated atmospheric circulation features. Revista Climanálise Ano 2(01):1

  • Cepea Arroz (2012) Agromensal Cepea/Esalq - Arroz. Technical report, Cepea, Piracicaba

  • Cepea/Soja (2013) Quebra da safra marca 2012 com preços recordes, Technical report, Cepea, Piracicaba. https://www.cepea.esalq.usp.br/br/diarias-de-mercado/soja-cepea-quebra-da-safra-marca-2012-com-precos-recordes.aspx

  • Chauvet M (1998) An econometric characterization of business cycle dynamics with factor structure and regime switching. International economic review, pp 969–996

  • Chauvet M (2002) The Brazilian business and growth cycles. Rev Bras Econ 56(1):75–106

    Google Scholar 

  • Chauvet M, Morais I (2010) Predicting recessions in Brazil. In: 6th Colloquium on modern tools for business cycle analysis: the lessons from global economic crisis

  • Chen C, Lei C, Aixing D, Qian C, Hoogmoed W, Zhangab W (2011) Will higher minimum temperatures increase corn production in northeast china? an analysis of historical data over 1965–2008. Agric For Meteorol 151(12):1580–1588

    Google Scholar 

  • Cohen DS (2001) Linear data transformations used in economics, Technical Report 2001-59

  • Contré F, Goldin I (1990) Agriculture and the economic cycle: an economic and econometric analysis with special reference to Brazil. Working Paper No. 15 (15)

  • Da-Rocha JM, Restuccia D (2006) The role of agriculture in aggregate business cycles. Rev Econ Dyn 9:455–482

    Google Scholar 

  • De Melo LB, Resende Filho MA (2017) Determinantes do risco de crédito rural no brasil: Uma crítica às renegociações da dívida rural. Revista Brasileira de Economia 71(1):67–91

  • den Reijer AH (2010) Macroeconomic Forecasting using Business Cycle Leading Indicators. Universiteit Maastricht

  • Döhrn R, Meulen PAD (2015) Weather, the forgotten factor in business cycle analyses, Ruhr Economic Papers (539)

  • Doz C, Giannone D, Reichlin L (2012) A quasi-maximum likelihood approach for large, approximate dynamic factor models. Rev Econ Stat 94(4):1014–1024

    Google Scholar 

  • Estatística IBdGe (2006) Censo agropecuário - instituto brasileiro de geografia e estatística

  • Estatística IBdGe (2018a) Contas nacionais trimestrais - instituto brasileiro de geografia e estatística

  • Estatística IBdGe (2018b) Produção agrícola municipal - instituto brasileiro de geografia e estatística

  • Estrella A, Mishkin FS (1997) The predictive power of the term structure of interest rates in Europe and the united states: Implications for the European central bank. Eur Econ Rev 41(7):1375–1401

    Google Scholar 

  • Forni M, Hallin M, Lippi M, Reichlin L (2000) The generalized dynamic-factor model: identification and estimation. Rev Econ Stat 82(4):540–554

    Google Scholar 

  • Forni M, Hallin M, Lippi M, Reichlin L (2001) Coincident and leading indicators for the euro area. Econ J 111(471):C62–C85

    Google Scholar 

  • Forni M, Hallin M, Lippi M, Reichlin L (2004) The generalized dynamic factor model consistency and rates. J Econom 119(2):231–255

    Google Scholar 

  • Forni M, Hallin M, Lippi M, Reichlin L (2005) The generalized dynamic factor model: one-sided estimation and forecasting. J Am Stat Assoc 100(471):830–840

    Google Scholar 

  • Forni M, Lippi M (2001) The generalized dynamic factor model: representation theory. Economet Theor 17(6):1113–1141

    Google Scholar 

  • Gallic E, Vermandel G (2020) Weather shocks. Eur. Econ. Rev. (124)

  • Garcia JR (2014) Trabalho rural: tendências em face das transformações em curso. In: Buainain AM, Alves E, da Silveira JM, Navarro Z (eds) O mundo rural no Brasil do século 21: A formação de um novo padrão agrário e agrícola, Embrapa, Brasília, chap 2, pp 559–590

  • Gasques J, Bastos E, Valdes C, Bacci MRP (2014) Produtividade da agricultura: resultados para o Brasil e estados selecionados. Revista de Política Agrícola, pp 87–98

  • Gasques JG, Bacchi MRP, Bastos ET (2017) Impactos do crédito rural sobre variáveis do agronegócio. Revista de Política Agrícola XXV I(4):132–140

    Google Scholar 

  • Gasques JG, Bastos ET, Bacchi MRP (2008) Produtividade e fontes de crescimento da agricultura Brasilieria. In: De Negri JA, Kubota LC (eds) Políticas de Incentivo à Inovação Tecnológica, IPEA, Brasília, chap 11

  • Gasques JG, de Rezende GC, Verde CMV, Salerno MS, da Conceição JCPR, Carvalho JCdS (2004) Desempenho e crescimento do agronegocio no Brasil. Technical report, IPEA, Brasília

  • Geweke J (1977) The dynamic factor analysis of economic time series, Latent variables in socio-economic models

  • Golan A, Maasoumi E (2008) Information theoretic and entropy methods: an overview. Economet Rev 27(4–6):317–328

    Google Scholar 

  • Goodwin GC, Payne RL (1977) Dynamic system identification: experiment design and data analysis, vol 136. Academic Press, New York

  • Grimm AM, Ferraz SE, Gomes J (1998) Precipitation anomalies in southern brazil associated with el niño and la niña events. J Clim 11(11):2863–2880

    Google Scholar 

  • Hamilton JD (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica: J Econom Soc pp 357–384

  • Hansen AH (1932) The business cycle and its relation to agriculture. J Farm Econ (14)

  • Harding D, Pagan A (2002) Dissecting the cycle: a methodological investigation. J Monet Econ 49(2):365–381

    Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370

    Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10

    Google Scholar 

  • Jacobs J (2012) Econometric business cycle research. Springer

  • Jacobs JP, Otter PW (2008) Determining the number of factors and lag order in dynamic factor models: a minimum entropy approach. Econom Rev 27(4–6):385–397

    Google Scholar 

  • Kanczuk F (2004) Real interest rates and Brazilian business cycles. Rev Econ Dyn 7:436–455

    Google Scholar 

  • Kim C-J, Nelson CR (1998) Business cycle turning points, a new coincident index, and tests of duration dependence based on a dynamic factor model with regime switching. Rev Econ Stat 80(2):188–201

    Google Scholar 

  • Kim M-J, Yoo J-S (1995) New index of coincident indicators: a multivariate Markov switching factor model approach. J Monet Econ 36(3):607–630

    Google Scholar 

  • Kydland FE, Prescott EC (1982) Time to build and aggregate fluctuations. Econometrica 50: 1345–1370

  • Lucas RE Jr (1975) An equilibrium model of the business cycle. J Political Econ 83(6):1113–1144

    Google Scholar 

  • Long JB Jr, Plosser CI (1983) Real business cycles. J Political Econ 91(1):39–69

    Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1):1

    Google Scholar 

  • Louzis DP, Vouldis AO, Metaxas VL (2012) Macroeconomic and bank-specific determinants of non-performing loans in Greece: a comparative study of mortgage, business and consumer loan portfolios. J Bank Financ 1012–1027

  • Male R (2011) Developing country business cycles: characterizing the cycle. Emerg Mark Financ Trade 47(2):20–39

    Google Scholar 

  • Marengo JA, Espinoza J (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36(3):1033–1050

    Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Oyama MD, Sampaio de Oliveira G, De Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516

    Google Scholar 

  • Marengo JA, Tomasella J, Soares WR, Alves LM, Nobre CA (2012) Extreme climatic events in the amazon basin. Theoret Appl Climatol 107(1–2):73–85

    Google Scholar 

  • Marin FR, Nassif DSP (2013) Mudanças climáticas e a cana-de-açúcar no Brasil: Fisiologia, conjuntura e cenário futuro. Revista Brasileira de Engenharia Agrícola e Ambiental 17:232–239

    Google Scholar 

  • Marquetti A, Silveira FG, da Silva PRN (1991) Agricultura: Quebras de safra significam elevações de preço, importações e pacotes agrícolas. Indicadores Econômicos FEE 19(3)

  • Meggers BJ (1994) Archeological evidence for the impact of mega-nino events on amazonia during the past two millennia. Clim Change 28(4):321–338

    Google Scholar 

  • Mendelsohn R, Nordhaus W, Shaw D (1996) Climate impacts on aggregate farm value: accounting for adaptation. Agric For Meteorol 80(1):55–66

    Google Scholar 

  • Millner A, Dietz S (2015) Adaptation to climate change and economic growth in developing countries. Environ Dev Econ 20(3):380–406

    Google Scholar 

  • Minella A (2003) Monetary policy and inflation in Brazil (1975–2000): a var estimation. Rev Bras Econ 57(3):605–635

    Google Scholar 

  • Mohapatra S, Majhi B (2015) An evolutionary approach for load balancing in cloud computing. Handbook of Research on Securing Cloud-Based Databases with Biometric Applications, IGI Global, pp 433–463

  • Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci 104(50):19680–19685

    Google Scholar 

  • Muirhead RJ (1982) Aspects of multivariate statistical analysis

  • Neumeyer PA, Perri F (2005) Business cycles in emerging economies: the role of interest rates. J Monet Econ 52(2):345–380

    Google Scholar 

  • Nordhaus WD (1993) Reflections on the economics of climate change. J Econ Perspect 7(4):11–25

    Google Scholar 

  • Omar JHD (2008) Taxa de juros: comportamento, determinação e implicações para a economia brasileira. Revista de Economia Contemporânea 12(3):463–490

  • Pellegrino GQ, Assad ED, Marin FR (2007) Mudanças Climáticas Globais e a Agricultura no Brasil. Multiciência 8

  • Pezza AB, Rashid HA, Simmonds I (2012) Climate links and recent extremes in antarctic sea ice, high-latitude cyclones, southern annular mode and enso. Clim Dyn 38(1–2):57–73

    Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111(9):3268–3273

    Google Scholar 

  • Rothschild M, Chamberlain G (1982) Arbitrage, factor structure, and mean-variance analysis on large asset markets

  • Sargent TJ, Sims CA et al (1977) Business cycle modeling without pretending to have too much a priori economic theory. New Methods Bus Cycle Res 1:145–168

    Google Scholar 

  • Sartori MdGB (2003) A dinâmica do clima do Rio Grande do Sul: indução empírica e conhecimento científico. Terra Livre 1(20):27–49

  • Shumway RH, Stoffer DS (1982) An approach to time series smoothing and forecasting using the em algorithm. J Time Ser Anal 3(4):253–264

    Google Scholar 

  • Singels A, Jones M, Marin F, Ruane A, Thorburn P (2014) Predicting climate change impacts on sugarcane production at sites in Australia, Brazil and South Africa using the canegro model. Sugar Tech 16:347–355

    Google Scholar 

  • Solomou S, Weike WU (1999) Weather effects on European agricultural output, 1850–1913. Eur Rev Econ Hist 3:351–373

    Google Scholar 

  • Solomou S, Weike WU (2002) Macroeconomic effects of weather shocks. Clim Res (20)

  • Song S, Bickel PJ (2011) Large vector auto regressions. arXiv preprint arXiv:1106.3915

  • Staduto JAR, Shikida PFA, Bacha CJC (2004) Alteração na composição da mão-de-obra assalariada na agropecuária brasileira. Revista de Economia Agrícola 51(2)

  • Stock JH, Watson M (2011) Dynamic factor models. Oxford University Press

  • Stock JH, Watson MW (2014) Estimating turning points using large data sets. J Econ 178:368–381

    Google Scholar 

  • Van Nieuwenhuyze C (2005) A generalized dynamic factor model for the Belgian economy. J Bus Cycle Measur Anal 2:213–247

    Google Scholar 

  • Vasconcellos FC, Cavalcanti IF (2010) Extreme precipitation over southeastern brazil in the austral summer and relations with the southern hemisphere annular mode. Atmos Sci Lett 11(1):21–26

    Google Scholar 

  • Watson MW, Engle RF (1983) Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models. J Econom 23(3):385–400

    Google Scholar 

  • Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513

    Google Scholar 

  • Xavier AC, King CW, Scanlon BR (2015) Daily gridded meteorological variables in Brazil. Int J Climatol

  • Young TY, Calvert TW (1974) Classification, estimation and pattern recognition. North-Holland

  • Zeng N, Yoon J-H, Marengo JA, Subramaniam A, Nobre CA, Mariotti A, Neelin JD (2008) Causes and impacts of the 2005 amazon drought. Environ Res Lett 3(1):014002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Rennó Castro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Entropy relative information

First, as den Reijer (2010) presented, we can define \( f_{1}(\tilde{x}):\tilde{x}\sim \textit{N}_{N}(0,\Gamma ), \text {with } \Gamma = C \Lambda C^{'} \) as the density function of an N-dimensional data vector xFootnote 6 such that \( f_{1}(x):x \sim \textit{N}_{N}(0,\Lambda ) \) and \(f_{2}(\tilde{x}):\tilde{x}\sim \textit{N}_{N}(0,I)\), such that \(f_{2}(x): x \sim \textit{N}_{N}(0,I)\), where \(x = C^{'}\tilde{x}\). The Kullback-Leibler numbers are defined as (3):

$$\begin{aligned} G_{1} = E_{f_{1}}\left( \log \left( \frac{f_{1}(x)}{f_{2}(x)} \right) \right) \text {and} G_{2} = E_{f_{2}}\left( \log \left( \frac{f_{2}(x)}{f_{1}(x)}\right) \right) \end{aligned}$$
(3)

where \(G=G_{1}+G_{2}\) is the measure of information used to discriminate between the two density functions, with \(G=0\) when \(f_{1}(x)=f_{2}(x)\) and \(G=\infty \) when we have perfect discrimination (Golan and Maasoumi 2008; Young and Calvert 1974; Burnham and Anderson 2002). Note that \(tr(\Lambda )=tr(\Gamma )=N\). We have \(G_{1}=-\log \det (\Lambda )\) and \(G_{2}=\log \det (\Lambda )+ \frac{1}{2}(tr(\Lambda ^{-1})-N)\), and thus, \( 2G_{2} = 2\log \det (\Lambda ) + (tr(\Lambda ^{-1})-N), 2G_{1} = -2\log \det (\Lambda ) \) and then, (4):

$$\begin{aligned} 2G= & {} tr(\Lambda ^{-1})-N = tr(\Lambda ^{-1})+tr(\Lambda )= \sum _{j=1}^{N} \frac{(1-\lambda _{j}^{2})}{\lambda _{j}} \end{aligned}$$
(4)

Therefore, G is small (not discriminating) if the eigenvalues \(\lambda _{j}\) are close to 1 but become large (discriminating) for “small” eigenvalues. In a Gaussian case, alternative measures of entropy and information can be used. For this purpose, we define \(x_{t}\) as an N-dimensional vector of observed data at time \(t=1,...,T\) normalized and normally distributed with zero mean and variance, so that \(x\sim N(0,\Gamma )\) with \(E(x_{t}x_{t}^{'})=\Gamma \), \(tr(\Gamma )=N\). Entropy as a measure of disorder for a stationary, normally distributed vector can be defined as in Golan and Maasoumi (2008): \( 2\mathbb {E}_{x}=cN+\log \det (\Gamma ) \), with \(c=\log (2\pi )+1\approx 2.84\), where \(2\mathbb {E}_{x,max}=cN\) when \(\Gamma =I_{N}\) (Golan and Maasoumi 2008; Goodwin and Payne 1977). Therefore, the information or negentropy is defined as (5):

$$\begin{aligned} 2Inf_{x}=2(\mathbb {E}_{x,max}-\mathbb {E}_{x})=-\log \det (\Gamma ) \ge 0 \end{aligned}$$
(5)

If \(\Gamma =I_{N}\), we have a zero value. Considering all the details, we can then define the relative information (RI) as in (6).

$$\begin{aligned} RI_{(N,t)}= & {} \frac{2\mathbb {E}_{x,max}-\mathbb {E}_{x(N)}}{2\mathbb {E}_{x,max}} \nonumber \\= & {} \frac{2Inf_{x}}{2\mathbb {E}_{x,max}} \nonumber \\= & {} \frac{2Inf_{x}}{cN} \end{aligned}$$
(6)

Note that if \(\mathbb {E}_{x(N)}=\mathbb {E}_{x,max}\), then \(RI_{N}=0\) and \(\mathbb {E}_{x(N)}=0 \Rightarrow RI_{N}=1\).

1.2 Entropic relative information measure in factor model context

This subsection explores the link between \(RI_{N}\) and factor models (static or dynamic). First, we should consider \(x_{it}=(x_{1t},...,x_{nt})^{'} \) with \( n \in N,t \in T\) as a stationary N-dimensional vector process with zero mean driven by k factors, as in (7).

$$\begin{aligned} x_{it}= & {} \chi _{it}+\xi _{it} = \sum _{j=1}^{N}b_{ij}(L)u_{jt}+\xi _{it}\nonumber \\= & {} B_{N}F_{t}+\epsilon _{t}, x_{it}\in \mathbb {R}^{N}, F_{t}\sim \textit{N}_{k}(0,I_{k}), \epsilon _{t}\sim \textit{N}_{k}(0,\Psi _{11}) \end{aligned}$$
(7)

where \(\chi _{it}\) is the common component, \(\xi _{it}\) is the idiosyncratic component, \(b-{ij}(L)=B_{N}=B_{0}^{n}+B_{1}^{n}L+...+B_{s}^{n}L^{s}\) represents the (dynamic) loadings of order s, \(u_{ij}, \) with \( j=1,...,q;t=1,...,T\) are common shocks of mutually orthogonal white noise processes with unit variance. The variance between the first N elements of \(x_{it}\) is equal to \(\Gamma (N)=B_{N}B_{N}^{'}+\Psi _{11}\) as demonstrated in Bai and Ng (2008).

When we add variable \(x_{N+1,t}\), we obtain (8).

$$\begin{aligned} {x_{it}\atopwithdelims ()x_{N+1,t}}={B_{N}\atopwithdelims ()b_{N+1}}F_{t}+{\epsilon _{t} \atopwithdelims ()\epsilon _{N+1,t}} \end{aligned}$$
(8)

with covariance \( \Gamma (N+1) =\left( \begin{array}{cc}\Gamma (N) &{} \Gamma _{12} \\ \Gamma _{21}&{} \Gamma _{1} \\ \end{array} \right) \), where \(\Gamma _{12}=B_{N}b_{N+1}^{'}+\Psi _{12}\) and \(\Psi _{12}=E(\epsilon _{t}\epsilon _{N+1,t})\).

Because \(x_{it}\) is normalized, we have \(b_{N+1}b_{N+1}^{'}+\sigma _{N+1}^{2}=1\), with \(\sigma _{N+1}^{2}=E(\epsilon _{N+1,t}^{2})\). Using the rule of determinants for partitioned matrices, we obtain \(\det (\Gamma (N+1))= \det (\Gamma (N))(1-a_{N+1})\), where \(a_{N+1}=b_{N+1}B_{N}^{'}+\Psi _{12})\Gamma (N)^{-1}(B_{N}b_{N+1}^{'}+\Psi _{12})\) and \(0\le (1-a_{N+1})\le 1\). Considering these results:

$$\begin{aligned}{} & {} RI_{(N,t)}= \frac{-logdet(\Gamma (N))}{cN}\\{} & {} RI_{(N+1,t)}= \frac{-logdet(\Gamma (N+1))}{c(N+1)} = \frac{-logdet(\Gamma (N)+(1-a_{N+1}))}{c(N+1)}, \end{aligned}$$

The relationship between \(RI_{(N+1,t)}\) and \(RI_{(N,t)}\) is expressed in (9):

$$\begin{aligned} RI_{(N+1,t)}=RI_{(N,t)}- \frac{1}{N+1}\left( \frac{\log (1-a_{N+1})}{c}+RI_{(N,t)}\right) \end{aligned}$$
(9)

Therefore, relative information is added only if \(RI_{N+1,t}>RI_{(N,t)}\) or if \(-log(1-a_{N+1})>cRI_{(N,t)} \Rightarrow E(x_{N+1,t} x_{N,t}^{'})=(b_{N+1}B_{N}^{'}+\Psi _{12} \ne 0)\). The last condition was used to apply a formal statistical test. From Eq. 9, we have that \(RI_{(N+1,t)}=RI_{(N,t)}\) if \(a_{N+1}=1-\exp {(-cRI_{(N,t)})}\). Whenever \(RI_{(N,t)}\) is close to zero, \(RI_{(N+1,t)}\) increases for relatively small values of \(a_{N+1}\). When it is close to one, \(a_{N+1}\) should be close to one to allow \(x_{N+1,t}\) to add relative information.

We can simplify Eq. 9 considering \(\Gamma (N)=C\Lambda C^{'}\) and the linear transformation \(\tilde{x}_{t}=U^{'}\Lambda ^{-\frac{1}{2}}C^{'}x_{t}\) and \(\tilde{x}_{N+1,t}=\upsilon ^{-1}x_{N+1,t}\), where U orthogonal and \(\upsilon ^{2}=1\) obtained by singular value decomposition with \(\Lambda ^{-\frac{1}{2}}C^{'}\Gamma =U\Sigma \upsilon \) where \(\Sigma =(\phi ,0,...,0)^{'}\), from which we also have \(\Gamma _{12}=0 \Rightarrow \Sigma =0\). Therefore, we have (10)

$$\begin{aligned} {\tilde{x}_{N,t} \atopwithdelims ()\tilde{x}_{(N+1,t)}} = \textit{N}_{N} \left( {0 \atopwithdelims ()0}, \tilde{\Gamma }(N+1)\right) \end{aligned}$$
(10)

where \( {\Gamma }(N+1) =\left( \begin{array}{cc} I(N) &{} \Sigma \\ \Sigma &{} 1 \\ \end{array}\right) \), \( det(\tilde{\Gamma }(N+1))=det(I_{N})(1-\phi _{1}^{2})\Rightarrow RI_{(N+1,t)}= \frac{-\log (1-\phi _{1}^{2})}{c(N+1)}\), and \(\phi _{1} \in [0,1]\) is the coefficient of the canonical correlation. Because \(RI_{(N,t)}=0\) from the hypothesis in Eq. 9 so that there is a gain in relative information, we have \(\tilde{RI}_{(N+1,t)}= \frac{-log(1-\phi _{1}^{2})}{c(N+1)}\).

Table 5 Chronology of Brazilian extreme climate events
Table 6 Description—database sources

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maranhão, A.N., Castro, N.R. Dissecting Brazilian agriculture business cycles in high-dimensional and time-irregular span contexts. Empir Econ 65, 1543–1578 (2023). https://doi.org/10.1007/s00181-023-02391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-023-02391-0

Navigation