Skip to main content
Log in

Spatial panel simultaneous equations models with error components

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

This paper develops limited and full information estimators for a simultaneous panel data model with spatial lags on the dependent variables and spatially autocorrelated error processes in the form of spatial autoregressive or spatial moving average processes. The spatial error components are estimated with various generalized moment procedures. Monte Carlo experiments show that the proposed estimators outperform traditional estimators and also provide results on the impact of misspecifying the error process. We illustrate the various estimators on an empirical example pertaining to competition in current and capital expenditure between French municipalities in the capital region of Ile-de-France.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Simulations and estimations are done by the authors with R program. Codes are available upon request. Data are also available upon request.

Notes

  1. In the paper, we use the abbreviations GM and GMM to, respectively, refer to the generalized moments estimator (for stochastic components) proposed by Kelejian and Prucha (1998) and the generalized method of moments estimator (for structural parameters) proposed by Lee (2007a).

  2. A list of frequently used notations is provided in Appendix A.1 for easy reference.

  3. In this paper, we assume that the system involves the same weight matrix across equations. This also seems to be the typical specification in applied works (Gebremariam et al. 2011; Jeanty et al. 2010; Lambert et al. 2014).

  4. The weight \(\omega _{ij}\) represents the proximity between cross-sectional units i and j. The notion of proximity is not limited to the geographical sense. Indeed, it can be economic, technology, or social proximity, although endogeneity issues might arise when dealing with non-geographic weight matrices.

  5. Note that since \({\textbf{A}}\) is assumed to be diagonal, the specification relates the disturbance vector in the l-th equation only to its own spatial lag. Allowing \({\textbf{A}}\) to be nondiagonal is beyond the scope of our paper.

  6. Matrices \(Q_0\) and \(Q_1\) are standard transformation matrices used in the error component literature, with the appropriate adjustments implied by our adopted ordering of the data; compared to, e.g., Baltagi (2008). They are symmetric, idempotent and orthogonal to each other. Furthermore, \(Q_0+Q_1=I_{nT}\) and \(\text {tr}(Q_{nT,h})=n(T-1)^{1-h}\).

  7. The limited GMM is obtained by considering each equation separately. This estimator is the same as the one proposed by Lee (2007b).

  8. We follow Kelejian and Prucha (1998) and compute the adjusted \(\text {RMSE}^*({\hat{\lambda }}_k) =\left[ \text {bias}^2({\hat{\lambda }}_k) + \left( {\text {IQ}({\hat{\lambda }}_k)} /{1.35}\right) ^2\right] ^{1/2}\), where median is used instead of mean for bias. \(\text {IQ}\) is the inter-quartile range and \({\hat{\lambda }}_k\) is the estimator of kth parameter \(\lambda _k\).

  9. Here, we used the comprehensive criteria proposed by Sasser (1969): \(\text {NOMAD}({\hat{\lambda }})=\frac{1}{RK}\sum _{k=1}^K\sum _{r=1}^R\left| \frac{{\hat{\lambda }}_{k,r}-\lambda _k}{\lambda _k}\right| \) where K is the number of parameters, R is the number of replications, \({\hat{\lambda }}_{k,r}\) is the estimator of kth parameter in rth replication.

  10. The results obtained with the SMA specification are available upon request.

  11. The départements are the middle-tier level of local governments in France.

  12. Note that for \(m=0\), \([\text {E}(W_{nT}y_1),\ldots ,\text {E}(W_{nT}y_{m}),{\textbf{X}}]={\textbf{X}}\) by convention.

References

  • Agrawal DR, Hoyt WH, Wilson JD (2022) Local policy choice: theory and empirics. J Econ Lit 60(4):1378–1455

  • Allers MA, Elhorst JP (2011) A simultaneous equations model of fiscal policy interactions. J Reg Sci 51(2):271–91

    Article  Google Scholar 

  • Amba MCO, Le Gallo J (2022) Specification and estimation of a periodic spatial panel autoregressive model. J Spat Econom 3(1):1–34

    Google Scholar 

  • Baltagi B (2008) Econometric analysis of panel data. Wiley, Hoboken

    Google Scholar 

  • Baltagi BH, Deng Y (2015) Ec3sls estimator for a simultaneous system of spatial autoregressive equations with random effects. Econom Rev 34(6–10):659–94

    Article  Google Scholar 

  • Baltagi BH, Egger P, Pfaffermayr M (2013) A generalized spatial panel data model with random effects. Econom Rev 32(5–6):650–85

    Article  Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, London

    Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models & applications. Taylor & Francis, London

    Google Scholar 

  • De Graaff T, Van Oort FG, Florax RJ (2012) Regional population-employment dynamics across different sectors of the economy. J Reg Sci 52(1):60–84

    Article  Google Scholar 

  • Drukker DM, Egger PH, Prucha IR (2022) Simultaneous equations models with higher-order spatial or social network interactions. Econom Theory 1–48. https://doi.org/10.1017/S026646662200007X

  • Fingleton B (2008) A generalized method of moments estimator for a spatial panel model with an endogenous spatial lag and spatial moving average errors. Spat Econ Anal 3(1):27–44

    Article  Google Scholar 

  • Fingleton B, Le Gallo J (2008) Estimating spatial models with endogenous variables, a spatial lag and spatially dependent disturbances: finite sample properties. Pap Reg Sci 87(3):319–39

    Article  Google Scholar 

  • Gebremariam GH, Gebremedhin TG, Schaeffer PV (2011) Employment, income, and migration in Appalachia: a spatial simultaneous equations approach. J Reg Sci 51(1):102–20

    Article  Google Scholar 

  • Hansen LP (1982) Large sample properties of generalized method of moments estimators. Econom J Econom Soc 50(4):1029–1054

  • Hauptmeier S, Mittermaier F, Rincke J (2012) Fiscal competition over taxes and public inputs. Reg Sci Urban Econ 42(3):407–19

    Article  Google Scholar 

  • Jeanty PW, Partridge M, Irwin E (2010) Estimation of a Spatial Simultaneous Equation Model of Population Migration and Housing Price Dynamics. Regional Science and Urban Economics 40(5):343–52

    Article  Google Scholar 

  • Kapoor M, Kelejian HH, Prucha IR (2007) Panel data models with spatially correlated error components. J Econom 140(1):97–130

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (1998) A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J Real Estate Finance Econ 17(1):99–121

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (2004) Estimation of simultaneous systems of spatially interrelated cross sectional equations. J Econom 118(1):27–50

    Article  Google Scholar 

  • Lambert DM, Wan X, Florax RJGM (2014) Partial adjustment analysis of income and jobs, and growth regimes in the Appalachian region with smooth transition spatial process models. Int Reg Sci Rev 37(3):328–64

    Article  Google Scholar 

  • Le Gallo J, Fingleton B (2019) Endogeneity in spatial models. In: Fischer MM, Nijkamp P (eds) Handbook of regional science. Springer, Berlin, pp 1–29. https://doi.org/10.1007/978-3-642-36203-3_122-1

    Chapter  Google Scholar 

  • Lee L (2003) Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances. Econom Rev 22(4):307–35

    Article  Google Scholar 

  • Lee L (2007) GMM and 2sls estimation of mixed regressive, spatial autoregressive models. J Econom 137(2):489–514

    Article  Google Scholar 

  • Lee L (2007) The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models. J Econom 140(1):155–89

    Article  Google Scholar 

  • LeSage J, Pace RK (2009) Introduction to spatial econometrics, 1st edn. Chapman and Hall/CRC. https://doi.org/10.1201/9781420064254

  • Liu X (2014) Identification and efficient estimation of simultaneous equations network models. J Bus Econ Stat 32(4):516–36

    Article  Google Scholar 

  • Liu X, Saraiva P (2019) GMM estimation of spatial autoregressive models in a system of simultaneous equations with heteroskedasticity. Econom Rev 38(4):359–385

    Article  Google Scholar 

  • Sasser WE (1969) A finite-sample study of various simultaneous equation estimators... Duke University, Durham

    Google Scholar 

  • Wang W, Lee L-F, Bao Y (2018) GMM estimation of the spatial autoregressive model in a system of interrelated networks. Reg Sci Urban Econ 69:167–98

    Article  Google Scholar 

  • Yang K, Lee L (2017) Identification and QML estimation of multivariate and simultaneous equations spatial autoregressive models. J Econom 196(1):196–214

    Article  Google Scholar 

  • Yang K, Lee L (2019) Identification and estimation of spatial dynamic panel simultaneous equations models. Reg Sci Urban Econ 76(C):32–46

    Article  Google Scholar 

  • Zhang Z, Zhu P (2010) A more efficient best spatial three-stage least squares estimator for spatial autoregressive models. Ann Econ Finance 11(1):155–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius C. O. Amba.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank the two referees and the editor for their valuable comments. The usual disclaimers apply.

A Appendix

A Appendix

1.1 A.1 Notations

The following list summarizes some frequently used notations in either the text or the Appendices:

  • \(A^\top \) is the transpose operator for any \(m\times n\) matrix A.

  • \(\text {E}(A)\) is the expected value of any input \(m\times n\) random matrix A.

  • \(\text {tr}(A)=\sum _{i=1}^ma_{ii}\) is the sum of diagonal elements for any \(m\times m\) matrix A.

  • For a \(n\times m\) matrix B the vectorization is denoted \(\text {vec}(B)=\big (b_{11},\ldots ,b_{n1},\ldots ,b_{1m},\ldots ,b_{nm}\big )\)

  • If A, B and C are conformable matrices, then \(\text {vec}(ABC)= (C^\top \otimes A)\text {vec}(B)\).

  • For any vector \(\textbf{a}\) of order n and \(\forall k\in {\mathbb {N}}\), let \(\overset{k}{\bar{\textbf{a}}}=M_n^k\textbf{a}\). This means that: a) for \(k=0\), \(\overset{0}{\bar{\textbf{a}}}={\textbf{a}}\); b) for \(k=1\), \(\overset{1}{\bar{\textbf{a}}}=\bar{\textbf{a}}\); and for \(k=2\), \(\overset{2}{\bar{{\textbf{a}}}}=M\bar{{\textbf{a}}}=\bar{\bar{{\textbf{a}}}}\).

  • Let \(\upsilon _l\) and \(\upsilon _q\) be \(n\times 1\) vectors of spatial processes; \(\forall a,b\in {\mathbb {N}}\), \(\gamma ^{lq,h}_{ab} = {\overset{a}{{\bar{\upsilon }}}^{\top }_lQ_{nT,h}\overset{b}{{\bar{\upsilon }}}_q}/{\text {tr}\left( Q_{nT,h}\right) }.\)

  • For any spatial matrix \(M_n\) of order n and \(\forall a,b\in {\mathbb {N}}\), let \(\phi _{ab}=\phi _{ba}=\frac{1}{n}\text {tr}\left( M^{\top {a}}_{n}M^b_{n}\right) \). This means that \(\phi _{00}=1\) and \(\phi _{01}=\phi _{10}=0\).

  • Let \(A=[a_{ij}]\) and \(B=[b_{ij}]\) be \(n\times n\) nonstochastic matrices with zero diagonals. Let \(\epsilon _1\), \(\epsilon _2\), \(\epsilon _3\) and \(\epsilon _4\) be \(n\times 1\) vectors of independent, centered random variables. Let \(\Sigma _{lq}=\text {E}(\epsilon _l\epsilon _q^\top )\) for \(l,q=1,2,3,4\). Then, \(\text {E}(\epsilon _1^\top A\epsilon _2\epsilon _3^\top B\epsilon _4)=\text {tr}(\Sigma _{13}A\Sigma _{24}B^\top ) + \text {tr}(\Sigma _{14}A\Sigma _{23}B)\). See Liu and Saraiva (2019)

  • Let \(A=[a_{ij}]\) be a \(n\times n\) nonstochastic matrix with zero diagonals and \(\textbf{c}=[c_{1},\ldots ,c_L]\) be a \(n\times 1\) nonstochastic vector. Let \(\epsilon _1\), \(\epsilon _2\) and \(\epsilon _3\) be \(n\times 1\) vectors of independents, centered random variables. Then, \(\text {E}(\epsilon _1^\top A\epsilon _2\epsilon _3^\top \textbf{c}) = 0\)

  • \(\text {diag}(A_n)=\text {diag}(a_{11},a_{22},\ldots ,a_{nn})\) is a diagonal \(n\times n\) matrix from a square matrix A of order n.

  • \(\text {diag}_{h=1}^p(A_{n,h})\equiv \text {diag}_{h}(A_{n,h})= \text {diag}(A_{n,1},\ldots ,A_{n,p})\) is a block diagonal \(np\times np\) matrix.

  • \(I_n\) is an identity matrix of order n.

  • \(\iota _n\) is a \(n\times 1\) vector of ones with \(n\in \mathbb {N}^*\).

  • \(\Lambda _\lambda =\text {diag}_l(\Lambda _{nT}(\lambda _l))\), where \(\Lambda _{nT}(\lambda _l)=I_{T}\otimes \Lambda _n(\lambda _l)\); with \(\Lambda _n(\lambda _l)=(I_{n}-\lambda _l W_{n})^{-1}\) for SAR case or \(\Lambda _n(\lambda _l)=(I_{n}+\lambda _l W_{n})\) for SMA case.

1.2 A.2 Simultaneous moment functions

1.2.1 A.2.1 Proof of Equation (14)

Such that \(\overset{a}{{\bar{\epsilon }}} = \underset{a\text { times}}{\underbrace{M_{nT}\dots M_{nT}}}\epsilon =M_{nT}^a\epsilon \), \(M_{nT} Q_{nT,h}=(I_T\otimes M_n)(Q_{T,h}\otimes I_n)=Q_{nT,h} M_{nT}\) and \(Q_{nT,h}\Sigma _{lq}=\sigma _{h_{lq}}Q_{nT,h}\) for \(h=0,1\), one can write

$$\begin{aligned}{} & {} \text {E}\left( \overset{a}{{\bar{\epsilon }}_l^{\top }}Q_{nT,h}\overset{b}{{\bar{\epsilon }}_q}\right) = \text{ E }\left[ \text {tr}(\epsilon ^{\top }_lM_{nT}^{\top a}Q_{nT,h}M_{nT}^b\epsilon _q)\right] = \sigma _{h_{lq}}{\text {tr}\left( M_n^{\top a}M_n^b\right) }\text {tr}\left( Q_{T,h}\right) \\{} & {} \quad = \sigma _{h_{lq}}\phi _{ab}\text {tr}\left( Q_{nT,h}\right) \end{aligned}$$

1.2.2 A.2.2 Proof of Equation (15)

Since, \(\overset{a}{{\overline{\epsilon }}}_l=\overset{a}{{\overline{\upsilon }}_l}-\lambda _l\overset{a+1}{\overline{\upsilon }_l}\),

$$\begin{aligned}{} & {} \overset{a}{{\overline{\epsilon }}_l^{\top }}Q_{nT,h}\overset{b}{{\overline{\epsilon }}_q}= \overset{a}{{\overline{\upsilon }}_l}^{\top } Q_{nT,h} \overset{b}{{\overline{\upsilon }}_q} - \lambda _l\overset{a+1}{\overline{\upsilon }_l}^{\top } Q_{nT,h} \overset{b}{{\overline{\upsilon }}_q} - \lambda _q\overset{a}{{\overline{\upsilon }}_l}^{\top } Q_{nT,h} \overset{b}{\overline{{\bar{\upsilon }}}_q} \\{} & {} \quad +\, \lambda _l\lambda _q\overset{a+1}{\overline{\upsilon }_l}^{\top } Q_{nT,h} \overset{b+1}{\overline{\upsilon }_q} \end{aligned}$$

Such that \(\overset{a}{{\overline{\upsilon }}}^{\top }_l Q_{nT,h} \overset{b}{{\overline{\upsilon }}}_q=\text {tr}(Q_{nT,h})\gamma ^{lq,h}_{ab}\) we finally get,

$$\begin{aligned} \overset{a}{{\bar{\epsilon }}_l^{\top }}Q_{nT,h}\overset{b}{{\bar{\epsilon }}_q} =\text {tr}(Q_{h})(\gamma _{ab}^{lq,h} - \lambda _l\gamma _{a+1,b}^{lq,h} - \lambda _q\gamma _{a,b+1}^{lq,h} + \lambda _l\lambda _q\gamma _{a+1,b+1}^{lq,h}) \end{aligned}$$

1.2.3 A.2.3 Proof of Equation (20)

Since, for all \(a\in \mathbb {N}\), \(\overset{a}{{\overline{\upsilon }}}_l=\overset{a}{{\overline{\epsilon }}_l}+\lambda _l\overset{a+1}{\overline{\epsilon }_l}\)

$$\begin{aligned}{} & {} \overset{a}{{\overline{\upsilon }}_l^{\top }}Q_{nT,h}\overset{b}{{\overline{\upsilon }}_q} = \overset{a}{{\overline{\epsilon }}_l}^{\top }Q_{nT,h}\overset{b}{{\overline{\epsilon }}_q} + \lambda _l\overset{a+1}{{{\overline{\epsilon }}}_l}^{\top }Q_{nT,h}\overset{b}{{\overline{\epsilon }}_q} + \lambda _q\overset{a}{{\overline{\epsilon }}_l}^{\top }Q_{nT,h}\overset{b+1}{{{\overline{\epsilon }}}_q} \\{} & {} \quad +\, \lambda _l\lambda _q\overset{a+1}{{{\overline{\epsilon }}}_l}^{\top }Q_{nT,h}\overset{b+1}{\overline{\epsilon }_q} \end{aligned}$$

Using (14), the expectation gives,

$$\begin{aligned} \text {E}\left[ \frac{\overset{a}{{\bar{\upsilon }}_l^{\top }}Q_{nT,h}\overset{b}{{\bar{\upsilon }}_q}}{\text {tr}\left( Q_{nT,h}\right) }\right] =\text {E}\left[ \gamma _{ab}^{lq,h}\right] = \sigma _{h_{lq}}\left[ \phi _{ab} + \lambda _l\phi _{a+1,b} + \lambda _q\phi _{a,b+1} + \lambda _l\lambda _q\phi _{a+1,b+1} \right] \end{aligned}$$

1.3 A.3 Derivation of \(\Omega _{\textbf{g}}\) in (52)

Since \(\Omega _{\textbf{g},11}=\text {E}\left( \textbf{g}_{1}\textbf{g}^\top _{1}\right) \) has a typical element \(\begin{bmatrix}\text {E}\left( \textbf{g}_{1,l}\textbf{g}^\top _{1,q}\right) \end{bmatrix}\) and such that

$$\begin{aligned}\text {E}\left( \textbf{g}_{1,l}\textbf{g}^\top _{1,q}\right) =\sum _h\sigma _{h_{lq}}{\textbf{H}}^\top \Lambda _{nT}(\lambda _l) Q_{nT,h}\Lambda ^\top _{nT}(\lambda _q){\textbf{H}}\end{aligned}$$

, then,

$$\begin{aligned}\begin{aligned}&\Omega _{\textbf{g},11} =\sum _{h}\left[ \sigma _{h_{lq}}\textbf{H}^\top \Lambda _{nT}(\lambda _l) Q_{nT,h}\Lambda _{nT}^\top (\lambda _q)\textbf{H}\right] \\&\quad =\sum _h\Sigma _h\otimes (\textbf{H}^\top \Lambda _{nT}(\lambda _l) Q_{nT,h}\Lambda _{nT}^\top (\lambda _q)\textbf{H}) \end{aligned} \end{aligned}$$

\(\Omega _{\textbf{g},22}=\text {E}\left( \textbf{g}_{2}\textbf{g}^\top _{2}\right) \) has a typical element \(\begin{bmatrix}\text {E}\left( \textbf{g}_{2,lq}\textbf{g}^\top _{2,kt}\right) \end{bmatrix}\) for \(l,q,k,t=1,\ldots ,L\); since

$$\begin{aligned}{} & {} \text {E}\left( \textbf{g}_{2,lq}\textbf{g}^\top _{2,kt}\right) =\text {E}\left( \epsilon _l^\top \Xi _{nT,r}\epsilon _q\epsilon _k^\top \Xi _{nT,s}\epsilon _t\right) \\{} & {} \quad =\sum _h\sum _{h'}\begin{bmatrix} \sigma _{h_{lk}}\sigma _{h_{qt}}\text {tr} \left( Q_{h}\Xi _{nT,r}Q_{h'}\Xi _{nT,s}^\top \right) + \sigma _{h_{lt}}\sigma _{h_{qk}}\text {tr} \left( Q_{h}\Xi _{nT,r}Q_{h'}\Xi _{nT,s}\right) \end{bmatrix} \end{aligned}$$

and such that, \(Q_{nT,h}=Q_{T,h}\otimes I_n\) for \(h=0,1\) with \(Q_{T,h}Q_{T,h'}=0\) if \(h\ne h'\) and \(\Xi _{nT,r}=I_T\otimes \Xi _{n,r}\) for \(r,s=1,\ldots ,p\), we have,

$$\begin{aligned} \begin{aligned} \text {E}\left( \textbf{g}_{2,lq}\textbf{g}^\top _{2,kt}\right)&=\sum _h\text {tr}(Q_{T,h}) \left[ \sigma _{h_{lk}}\sigma _{h_{qt}} \text {tr}(\Xi _{n,r}\Xi _{n,s}^\top ) + \sigma _{h_{lt}}\sigma _{h_{qk}}\text {tr}(\Xi _{n,r}\Xi _{n,s})\right] \\&=\sum _h\text {tr}\left( Q_{T,h}\right) \left( \sigma _{h_{lk}}\sigma _{h_{qt}}\Upsilon _1 + \sigma _{h_{lt}}\sigma _{h_{qk}}\Upsilon _2\right) \end{aligned}\end{aligned}$$

where,

$$\begin{aligned} \Upsilon _1= \begin{bmatrix}\text {tr}(\Xi _{n,1}\Xi _{n,1}^\top )&{}\quad \cdots &{}\quad \text {tr}(\Xi _{n,1}\Xi _{n,p}^\top )\\ \vdots &{}\quad \ddots &{}\quad \vdots \\ \text {tr}(\Xi _{n,p}\Xi _{n,1}^\top )&{}\quad \cdots &{}\quad \text {tr}(\Xi _{n,p}\Xi _{n,p}^\top )\end{bmatrix} \text { and } \Upsilon _2= \begin{bmatrix}\text {tr}\left( \Xi _{n,1}\Xi _{n,1}\right) &{}\quad \cdots &{}\quad \text {tr}\left( \Xi _{n,1}\Xi _{n,p}\right) \\ \vdots &{}\quad \ddots &{}\quad \vdots \\ \text {tr}\left( \Xi _{n,p}\Xi _{n,1}\right) &{}\quad \cdots &{}\quad \text {tr}\left( \Xi _{n,p}\Xi _{n,p}\right) \end{bmatrix} \end{aligned}$$

are \(p\times p\) matrix of constants. Hence,

$$\begin{aligned}\begin{aligned} \Omega _{\textbf{g},22}=\begin{bmatrix}\text {E}\left( \textbf{g}_{2,lq}\textbf{g}^\top _{2,kt}\right) \end{bmatrix}&=\sum _h\text {tr}\left( Q_{T,h}\right) \left[ \sigma _{h_{lk}}\sigma _{h_{qt}}\Upsilon _1 + \sigma _{h_{lt}}\sigma _{h_{qk}}\Upsilon _2\right] \\&=\sum _h\text {tr}\left( Q_{T,h}\right) \left\{ \left[ \sigma _{h_{lk}}\sigma _{h_{qt}}\Upsilon _1\right] + \left[ \sigma _{h_{lt}}\sigma _{h_{qk}}\Upsilon _2\right] \right\} \\&=\sum _h\text {tr}\left( Q_{T,h}\right) \left( \Psi _{1,h}\otimes \Upsilon _1 + \Psi _{2,h}\otimes \Upsilon _2\right) \end{aligned} \end{aligned}$$

where, with the following matrix construction plan: \(\Psi _{row}({t,q})=[\circ \overset{t}{\rightarrow }\circ \; \circ \overset{t,q}{\rightarrow \rightarrow }\ ]\) and \(\Psi _{column}({l,k})=[\circ \overset{k}{\rightarrow }\circ \; \circ \overset{l,k}{\rightarrow \rightarrow }]\), the matrices \(\Psi _{1,h}\) \(\Psi _{2,h}\) have the following forms:

$$\begin{aligned} \Psi _{1,h}=\begin{bmatrix}\sigma _{h_{lk}}\sigma _{h_{qt}}\end{bmatrix} =\begin{bmatrix} \sigma _{h_{11}}\sigma _{h_{11}}&{}\quad \cdots &{}\quad \sigma _{h_{11}}\sigma _{h_{1L}} &{}\quad \sigma _{h_{11}}\sigma _{h_{21}}&{}\quad \cdots \cdots &{}\quad \sigma _{h_{11}}\sigma _{h_{LL}} \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \sigma _{h_{1L}}\sigma _{h_{11}}&{}\quad \cdots &{}\quad \sigma _{h_{1L}}\sigma _{h_{1L}} &{}\quad \sigma _{h_{1L}}\sigma _{h_{21}}&{}\quad \cdots \cdots &{}\quad \sigma _{h_{1L}}\sigma _{h_{LL}}\\ \sigma _{h_{21}}\sigma _{h_{11}}&{}\quad \cdots &{}\quad \sigma _{h_{21}}\sigma _{h_{1L}} &{}\quad \sigma _{h_{21}}\sigma _{h_{21}}&{}\quad \cdots \cdots &{}\quad \sigma _{h_{21}}\sigma _{h_{LL}} \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \sigma _{h_{LL}}\sigma _{h_{11}}&{}\quad \cdots &{}\quad \sigma _{h_{LL}}\sigma _{h_{1L}}&{}\quad \sigma _{h_{LL}}\sigma _{h_{21}}&{}\quad \cdots \cdots &{}\quad \sigma _{h_{LL}}\sigma _{h_{LL}} \end{bmatrix} \end{aligned}$$

and

$$\begin{aligned} \Psi _{2,h}=\begin{bmatrix}\sigma _{h_{lt}}\sigma _{h_{qk}}\end{bmatrix} =\begin{bmatrix} \sigma _{h_{11}}\sigma _{h_{11}}&{}\quad \cdots &{}\quad \sigma _{h_{1L}}\sigma _{h_{11}} &{}\quad \sigma _{h_{11}}\sigma _{h_{21}}&{}\quad \cdots \cdots &{}\quad \sigma _{h_{1L}}\sigma _{h_{L1}} \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \sigma _{h_{11}}\sigma _{h_{1L}}&{}\quad \cdots &{}\quad \sigma _{h_{1L}}\sigma _{h_{1L}} &{}\quad \sigma _{h_{11}}\sigma _{h_{2L}}&{}\quad \cdots \cdots &{}\quad \sigma _{h_{1L}}\sigma _{h_{LL}}\\ \sigma _{h_{21}}\sigma _{h_{11}}&{}\quad \cdots &{}\quad \sigma _{h_{2L}}\sigma _{h_{11}} &{}\quad \sigma _{h_{21}}\sigma _{h_{21}}&{}\quad \cdots \cdots &{}\quad \sigma _{h_{2L}}\sigma _{h_{L1}} \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \sigma _{h_{L1}}\sigma _{h_{1L}}&{}\quad \cdots &{}\quad \sigma _{h_{LL}}\sigma _{h_{1L}} &{}\quad \sigma _{h_{L1}}\sigma _{h_{2L}}&{}\quad \cdots \cdots &{}\quad \sigma _{h_{LL}}\sigma _{h_{LL}} \end{bmatrix} \end{aligned}$$

1.4 A.4 Identification

The identification of the spatial panel simultaneous equations model (1) relies on the two-step strategy initially adopted in Yang and Lee (2017), and Liu and Saraiva (2019). The first-step consists in the identification of the “pseudo” reduced form parameters and the second-step recovers the structural parameters from the pseudo” reduced form parameters.

1.4.1 A.4.1 Identification of the pseudo reduced form parameters

Let \(\Theta _0\), \(\Delta _0\), \({\textbf{B}}_0\) and \({\textbf{A}}_0\) be the matrices of the true parameters in the DGP. When \(\Theta _0\) is non singular, the pseudo reduced form of model (62) is

$$\begin{aligned} \textbf{Y}= \overline{\textbf{Y}}\Phi _0+ \textbf{X}\Pi _0+ \textbf{V} \end{aligned}$$
(62)

where \(\Phi _0=\Delta _0(I_{L}-\Theta _0)^{-1}\), \(\Pi _0={\textbf{B}}_0(I_{L}-\Theta _0)^{-1}\) and \(\textbf{V}=\textbf{U}(I_{L}-\Theta _0)^{-1}\). With \(\Phi _0=[\varphi _{lq,0}]\) and \(\Pi _0=[\pi _{1,0},...,\pi _{L,0}]\), under the GMM framework, the q-th equation in model (62) is given by

$$\begin{aligned} y_q = \sum _{l=1}^L\varphi _{lq,0}W_{nT}y_l+ {\textbf{X}}\pi _{q,0}+ v_q \end{aligned}$$
(63)

where

$$\begin{aligned} W_{nT}y_l = {\textbf{R}}_l(\Pi _0^\top \otimes I_{nT}){\textbf{x}} +{\textbf{R}}_l{\textbf{v}} \end{aligned}$$
(64)

with \({\textbf{R}}_l=(i_{L,l}^\top \otimes W_{nT})(I_{nTL}-\Phi _0^\top \otimes W_{nT})^{-1}\), \({\textbf{x}}=\text {vec}({\textbf{X}})\), \({\textbf{v}}=\text {vec}({\textbf{V}})\) and \(i_{L,l}\) be the l-th vector of an identity matrix \(I_L\). We note that \(\text {E}(W_{nT}y_l)={\textbf{R}}_l(\Pi _0^\top \otimes I_{nT}){\textbf{x}}\) since \(\text {E}({\textbf{R}}_l{\textbf{v}})=0\). Now, the residual function

$$\begin{aligned} \text {v}_q(\rho _q) = y_q - \sum _{l=1}^L\varphi _{lq}W_{nT}y_l- {\textbf{X}}\pi _{q} \end{aligned}$$
(65)

for the q-th equation can be rewritten as

$$\begin{aligned} \text {v}_q(\rho _q) = d_q(\rho _q)+ \text {v}_q + \sum _{l=1}^L(\varphi _{lq,0}-\varphi _{lq}){\textbf{R}}_q{\textbf{v}} \end{aligned}$$
(66)

where \(\rho _{q}=(\varphi _{1q},\ldots ,\varphi _{Lq},\pi _{q}^\top )^\top \) and \(d_q(\rho _q)=[\text {E}(W_{nT}y_1),\ldots ,\text {E}(W_{nT}y_L),{\textbf{X}}](\rho _{q,0}-\rho _{q})\). The pseudo reduced form parameters in model (62) can be identified by the moment conditions proposed in the Sect. (4.3.1) on the main text. Then, the linear and quadratic moment functions can be written as

$$\begin{aligned} {\textbf{f}}_{1,l}\equiv & {} {\textbf{f}}_{1,l}(\rho _l) = \textbf{H}^\top \text {v}_l(\rho _l), \\ \textbf{f}_{2,lq}\equiv \textbf{f}_{2,lq}(\rho _l,\rho _q)= & {} \text {v}_q^\top (\rho _q) \Xi ^{lq}_{nT,r} \text {v}_l(\rho _l) \quad \text { for }\quad r=1,\ldots ,p; l,q=1,\ldots ,L\\= & {} \text {v}_q^\top (\rho _q) (\Lambda _{nT}^{-1}({\hat{\lambda }}_q))^{\top }\Xi _{nT,r}\Lambda _{nT}^{-1}({\hat{\lambda }}_l) \text {v}_l(\rho _l) \end{aligned}$$

Let \(\textbf{f}({\rho })=\begin{bmatrix}\textbf{f}^\top _{1}({\rho })&\textbf{f}^\top _{2}({\rho })\end{bmatrix}^\top \) where \(\rho =(\rho _1,\ldots ,\rho _L)\), \(\textbf{f}_{1}({\rho })=\begin{bmatrix}\textbf{f}_{1,1}^\top&\quad \cdots&\quad \textbf{f}_{1,L}^\top \end{bmatrix}^\top \) and \(\textbf{f}_{2}({\rho })=\begin{bmatrix}\textbf{f}_{2,11}^\top&\quad \cdots&\quad \textbf{f}_{2,1L}^\top&\quad \textbf{f}_{2,21}^\top&\quad \cdots&\quad \cdots&\quad \textbf{f}_{2,LL}^\top \end{bmatrix}^\top \). The identification of \(\rho _0\) by means of the moment conditions \(\text {E}[{\textbf{f}}(\rho _0)] =0\), requires that the moment equations \(\lim _{n\rightarrow \infty }(nT)^{-1}\text {E}[{\textbf{f}}(\rho _0)] =0\) have a unique solution at \(\rho =\rho _0\) (see Hansen 1982). From (66), it follows that

$$\begin{aligned} \begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{nT}\text {E}[{\textbf{f}}_{1,l}(\rho _l)]&= \lim _{n\rightarrow \infty }\frac{1}{nT}\textbf{H}^\top \text {v}_l(\rho _l)\\&= \lim _{n\rightarrow \infty }\frac{1}{nT}\textbf{H}^\top d_l(\rho _l) \\&= \lim _{n\rightarrow \infty }\frac{1}{nT}\textbf{H}^\top [\text {E}(W_{nT}y_1),\ldots ,\text {E}(W_{nT}y_L),{\textbf{X}}](\rho _{l,0}-\rho _{l}) \\ \end{aligned} \end{aligned}$$

for \(l=1,\ldots ,L\). The linear moment equations, \(\lim _{n\rightarrow \infty }\frac{1}{nT}\text{ E }[{\textbf{f}}_{1,l}(\rho _l)]=0\), have a unique solution at \(\rho _l=\rho _{l,0}\) if \(\textbf{H}^\top [\text {E}(W_{nT}y_1),\ldots ,\text {E}(W_{nT}y_L),{\textbf{X}}]\) has full column rank for n sufficiently large. A necessary condition for this rank condition is that \(\text {rank}[\text {E}(W_{nT}y_1),\ldots ,\text {E}(W_{nT}y_L),{\textbf{X}}]=k+L\) and \(\text {rank}(\textbf{H})\ge k+L\) for n sufficiently large.

However, if the rank condition fails (i.e., \([\text {E}(W_{nT}y_1),\ldots ,\text {E}(W_{nT}y_L),{\textbf{X}}]\) does not have full column rank), identification of the model may still be feasible through the quadratic moment conditions. Suppose for some \(m=\{0,1,\ldots ,L-1\}\), \(\text {E}(W_{nT}y_l)\) and \([\text {E}(W_{nT}y_1),\ldots ,\text {E}(W_{nT}y_{m}),{\textbf{X}}]\) are linearly dependentFootnote 12 such that \(\text {E}(W_{nT}y_l)=\sum _{q=1}^{m}c_{1,ql}\text {E}(W_{nT}y_q)+{\textbf{X}} c_{2,l}\) for \(l=m+1,\ldots ,L\), where \((c_{1,1l},\ldots ,c_{1,m l},c_{2,l}^\top )\in {\mathbb {R}}^{k+m}\) is a vector of constants. This allows to write

$$\begin{aligned}{} & {} d_q(\rho _q)=\sum _{j=1}^{m}\text {E}(W_{nT}y_j)\left[ \varphi _{jq,0}-\varphi _{jq}+\sum _{l=m+1}^Lc_{1,jl}(\varphi _{lq,0}-\varphi _{lq})\right] \\{} & {} \quad +\,{\textbf{X}}\left[ \pi _{q,0}-\pi _{q} + \sum _{l=m+1}^Lc_{2,l}(\varphi _{lq,0}-\varphi _{lq})\right] \end{aligned}$$

and thus, \(\lim _{n\rightarrow \infty }\frac{1}{nT}\text{ E }[{\textbf{f}}_{1,l}(\rho _l)]=0\) entails that:

$$\begin{aligned} \begin{aligned} \varphi _{jq}&= \varphi _{jq,0}+\sum _{l=m+1}^Lc_{1,jl}(\varphi _{lq,0}-\varphi _{lq})\\ \pi _{q}&= \pi _{q,0} + \sum _{l=m+1}^Lc_{2,l}(\varphi _{lq,0}-\varphi _{lq}) \end{aligned} \end{aligned}$$
(67)

for \(j=1,\ldots ,m\) and \(q=1,\ldots ,L\), provided that \(\textbf{H}^\top [\text {E}(W_{nT}y_1),\ldots ,\text {E}(W_{nT}y_m),{\textbf{X}}]\) has full column rank for large enough n. Therefore, \((\varphi _{1q,0},\ldots ,\varphi _{mq,0},\pi _{q,0}^\top )\) can be identified if \(\varphi _{lq,0}\) (for \(l=m+1,\ldots ,L\)) can be identified from the quadratic moment conditions. With \(\rho _q\) given by (67), we have

$$\begin{aligned} \begin{aligned} \text {E}(\textbf{f}_{2,lq})&= \sum _{s=1}^L(\varphi _{sl,0}-\varphi _{sl})\text {tr}\left[ (\Lambda _{nT}^{-1}({\hat{\lambda }}_q))\top \Xi _{nT,r}\Lambda _{nT}^{-1}({\hat{\lambda }}_l){\textbf{R}}_l\text{ E }({\textbf{v}}{\textbf{v}}_q^\top ) \right] \\&\quad + \sum _{j=1}^L(\varphi _{jl,0}-\varphi _{jl})\text {tr}\left[ (\Lambda _{nT}^{-1}({\hat{\lambda }}_q))^{\top }\Xi _{nT,r}\Lambda _{nT}^{-1}({\hat{\lambda }}_l)\text {E}({\textbf{v}}_l{\textbf{v}}^\top ){\textbf{R}}_q^\top \right] \\&\quad +\sum _{s=1}^L\sum _{j=1}^L (\varphi _{sl,0}-\varphi _{sl})(\varphi _{jl,0}-\varphi _{jl})\text {tr}\\&\quad \left[ (\Lambda _{nT}^{-1}({\hat{\lambda }}_q))^{\top }\Xi _{nT,r}\Lambda _{nT}^{-1}({\hat{\lambda }}_l){\textbf{R}}_l\text{ E }({\textbf{v}}{\textbf{v}}^\top ){\textbf{R}}_q^\top \right] \end{aligned} \end{aligned}$$

where \(\text{ E }({\textbf{v}}{\textbf{v}}^\top )=\sum _{h=0}^1(I_L-\Theta _0)^{-1}({\hat{\Lambda }}_{\lambda }^{-1})^{\top }(\Sigma _h\otimes Q_{nT,h}){\hat{\Lambda }}^{-1}_{\lambda }(I_L-\Theta _0^\top )^{-1}\) and \(\text {E}({\textbf{v}}{\textbf{v}}_q^\top )= \text{ E }({\textbf{v}}{\textbf{v}}^\top )(i_{L,q}\otimes I_{nT})\). Thus, at \(\Phi _0\), the quadratic moment equations, \(\lim _{n\rightarrow \infty }\frac{1}{nT}\text{ E }[{\textbf{f}}_{2,lq}(\rho _l,\rho _q)]=0\) for \(l,q=1,\ldots ,L\), have a unique solution, if the equations

$$\begin{aligned} \begin{aligned}&\lim _{n\rightarrow \infty }\frac{1}{nT} \left[ \sum _{s=1}^L(\varphi _{sl,0}-\varphi _{sl})\text {tr}\left[ (\Lambda _{nT}^{-1}({\hat{\lambda }}_q))^{\top }\Xi _{nT,r}\Lambda _{nT}^{-1}({\hat{\lambda }}_l){\textbf{R}}_l\text {E}({\textbf{v}}{\textbf{v}}_q^\top ) \right] \right] \\&\quad +\lim _{n\rightarrow \infty }\frac{1}{nT} \left[ \sum _{j=1}^L(\varphi _{jl,0}-\varphi _{jl})\text {tr}\left[ (\Lambda _{nT}^{-1}({\hat{\lambda }}_q))^{\top }\Xi _{nT,r}\Lambda _{nT}^{-1}({\hat{\lambda }}_l)\text {E}({\textbf{v}}_l{\textbf{v}}^\top ){\textbf{R}}_q^\top \right] \right] \\&\quad +\lim _{n\rightarrow \infty }\frac{1}{nT} \left[ \sum _{s=1}^L\sum _{j=1}^L (\varphi _{sl,0}-\varphi _{sl})(\varphi _{jl,0}-\varphi _{jl})\text {tr}\right. \\&\quad \left. \left[ (\Lambda _{nT}^{-1}({\hat{\lambda }}_q))^{\top }\Xi _{nT,r}\Lambda _{nT}^{-1}({\hat{\lambda }}_l){\textbf{R}}_l\text{ E }({\textbf{v}}{\textbf{v}}^\top ){\textbf{R}}_q^\top \right] \right] =0 \end{aligned}\qquad \quad \end{aligned}$$
(68)

for \(r=1,\ldots ,p\) and \(l,q=1,\ldots ,L\). The following assumption provides sufficient conditions for the identification of the pseudo reduced form parameters.

Assumption 9

At least one of the following conditions holds:

(a) \(\lim _{n\rightarrow \infty }\frac{1}{nT}\textbf{H}^\top [\text {E}(W_{nT}y_1),\ldots ,\text {E}(W_{nT}y_L),{\textbf{X}}]\) exists and has full column rank.

(b) \(\lim _{n\rightarrow \infty }\frac{1}{nT}\textbf{H}^\top [\text {E}(W_{nT}y_1),\ldots ,\text {E}(W_{nT}y_m),{\textbf{X}}]\) exists and has full column rank for some \(0 \le m \le L-1\). Equation (67) for \(r=1,\ldots ,p\) and \(l,q=1,\ldots ,L\), have a unique solution at \(\Phi _0\).

1.4.2 A.4.2 Identification of the structural parameters

Having identified the “pseudo” reduced form parameters \(\Phi _0\) and \(\Pi _0\) from the linear and quadratic moment conditions, we can proceed on the identification of the structural parameters \({\textbf{C}}_0=[(I_L-\Theta _0)^\top ,-\Delta _0^\top ,-{\textbf{B}}_0^\top ]^\top \) through the linear restrictions \(\Phi _0=\Delta _0(I_{L}-\Theta _0)^{-1}\) and \(\Pi _0={\textbf{B}}_0(I_{L}-\Theta _0)^{-1}\) in a similar way to the classical linear simultaneous equations model. Given \(D_l\) restrictions on \({\textbf{c}}_{l,0}\) such that \({\textbf{D}}_l{\textbf{c}}_{l,0}\)=0, where \({\textbf{D}}_l\) and \({\textbf{c}}_{l,0}\) are, respectively, \(D_l\times (k+2L)\) matrix of known constants and the l-th column of \({\textbf{C}}_0\), the rank and order conditions for \({\textbf{c}}_{l,0}\) to be identified are as follow: (i) - the sufficient and necessary rank condition is \(rank({\textbf{D}}_l{\textbf{C}}) = L-1\); (ii) - the necessary order condition is \(D_l\ge L-1\), for \(l=1,\ldots ,L\).

Assumption 10

The following conditions holds for \(l=1,\ldots ,L\), \({\textbf{D}}_l{\textbf{c}}_{l,0}=0\) for some \(D_l\times (k+2L)\) constant matrix \(D_l\) with \(rank({\textbf{D}}_l{\textbf{C}}) = L-1\).

1.5 A.5 Tables

See Tables 1, 2, 3, 4, 5, 6, 7, 8, 9.

Table 1 SEC estimation: change in spatial coefficient \(\lambda _2\), for \(T=8\), \(n=30\) in the SAR case
Table 2 SEC estimation: change in the number of neighbors, for \(T=8\), \(n=30\) in the SAR case
Table 3 SEC estimation: change in covariance design \(\Sigma _h\), for \(T=8\), \(n=30\) in the SAR case
Table 4 Estimation results for the structural parameters for \(T=8\), \(n=30\), \(\lambda _1=3\lambda _2=0.6\), \(d_1\), \(J=2\) and \(\Lambda _{sar}\)
Table 5 Estimation results for the structural parameters for \(T=8\), \(n=30\), \(\lambda =0.2\), \(d_1\), \(J=2\) and \(\Lambda _{sar}\)
Table 6 Estimation results for the structural parameters for \(T=8\), \(n=30\), \(\lambda _1=3\lambda _2=0.6\), \(d_2\), \(J=2\) and \(\Lambda _{sar}\)
Table 7 Estimation results for the structural parameters for \(T=8\), \(n=30\), \(\lambda _1=3\lambda _2=0.6\), \(d_2\), \(J=6\) and \(\Lambda _{sar}\)
Table 8 Estimation results for the simultaneous panel data model (Current expenditure)
Table 9 Estimates for the simultaneous panel data model (Capital expenditure)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amba, M.C.O., Mbratana, T. & Le Gallo, J. Spatial panel simultaneous equations models with error components. Empir Econ 65, 1149–1196 (2023). https://doi.org/10.1007/s00181-023-02368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-023-02368-z

Keywords

JEL Classification

Navigation