Skip to main content
Log in

Measuring systemic risk and contagion in the European financial network

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

This paper introduces a novel framework to study default dependence and systemic risk in a financial network that evolves over time. We analyse several indicators of risk, and develop a new latent space model to assess the health of key European banks before, during and after the recent financial crises. We propose a new statistical model that permits a latent space visualisation of the financial system. This provides a clear and interpretable model-based summary of the interaction data, and it gives a new perspective on the topology structure of the network. Crucially, the methodology provides a new approach to assess and understand the systemic risk associated with a financial system, and to study how debt may spread between institutions. Our dynamic framework provides an interpretable map that illustrates the default dependencies between institutions, highlighting the possible patterns of contagion and the institutions that may pose systemic threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. These are the extreme values observed across all time frames.

  2. Results available upon request.

  3. Results are available upon request.

  4. Results are available upon request.

  5. LogLoss function computes cross-entropy loss between forecasting and true values of out-of-sample. It is available in R package MLmetrics (Yan 2016).

References

  • Acemoglu D, Ozdaglar A, Tahbaz-Salehi A (2015) Systemic risk and stability in financial networks. Am Econ Rev 105(2):564–608

    Article  Google Scholar 

  • Acharya V, Drechsler I, Schnabl P (2014) A pyrrhic victory? Bank bailouts and sovereign credit risk. J Finance 69(6):2689–2739

    Article  Google Scholar 

  • Acharya V, Engle R, Richardson M (2012) Capital shortfall: a new approach to ranking and regulating systemic risks. Am Econ Rev 102(3):59–64

    Article  Google Scholar 

  • Agosto A, Ahelegbey DF, Giudici P (2020) Tree networks to assess financial contagion. Econ Model 85:349–366

    Article  Google Scholar 

  • Aiyar S (2012) From financial crisis to great recession: the role of globalized banks. Am Econ Rev 102(3):225–30

    Article  Google Scholar 

  • Allen F, Babus A, (2009) Networks in finance. The network challenge: strategy, profit, and risk in an interlinked world 367

  • Andrieu C, De Freitas N, Doucet A, Jordan MI (2003) An introduction to MCMC for machine learning. Mach Learn 50(1–2):5–43

    Article  Google Scholar 

  • Bartram SM, Brown GW, Hund JE (2007) Estimating systemic risk in the international financial system. J Financ Econ 86(3):835–869

    Article  Google Scholar 

  • Battiston S, Puliga M, Kaushik R, Tasca P, Caldarelli G (2012) Debtrank: too central to fail? Financial networks, the fed and systemic risk. Sci Rep 2:541

    Article  Google Scholar 

  • Beirne J, Fratzscher M (2013) The pricing of sovereign risk and contagion during the european sovereign debt crisis. J Int Money Finance 34:60–82

    Article  Google Scholar 

  • Benoit S, Colliard J-E, Hurlin C, Prignon C (2017) Where the risks lie: a survey on systemic risk. Rev Finance 21(1):109–152

    Article  Google Scholar 

  • Billio M, Caporin M, Frattarolo L, Pelizzon L (2018) Networks in risk spillovers: a multivariate garch perspective

  • Billio M, Getmansky M, Lo AW, Pelizzon L (2012) Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J Financ Econ 104(3):535–559

    Article  Google Scholar 

  • Birch J, Pantelous AA, Soramäki K (2016) Analysis of correlation based networks representing dax 30 stock price returns. Comput Econ 47(4):501–525

    Article  Google Scholar 

  • Brida JG, Risso WA (2010) Dynamics and structure of the 30 largest north american companies. Comput Econ 35(1):85

    Article  Google Scholar 

  • Cai J, Eidam F, Saunders A, Steffen S (2018) Syndication, interconnectedness, and systemic risk. J Financ Stabil 34:105–120

    Article  Google Scholar 

  • Chi KT, Liu J, Lau FC (2010) A network perspective of the stock market. J Empir Finance 17(4):659–667

    Article  Google Scholar 

  • Cook DO, Spellman LJ (1996) Firm and guarantor risk, risk contagion, and the interfirm spread among insured deposits. J Financ Quant Anal 31(2):265–281

    Article  Google Scholar 

  • Das SR (2016) Matrix metrics: network-based systemic risk scoring. J Altern Invest 18(4):33–51

    Article  Google Scholar 

  • De Haas R, Van Horen N (2012) International shock transmission after the Lehman brothers collapse: evidence from syndicated lending. Am Econ Rev 102(3):231–37

    Article  Google Scholar 

  • Delpini D, Battiston S, Caldarelli G, Riccaboni M (2019) Systemic risk from investment similarities. PLoS ONE 14(5):e0217141

    Article  Google Scholar 

  • Diebold FX, Yılmaz K (2014) On the network topology of variance decompositions: measuring the connectedness of financial firms. J Econom 182(1):119–134

    Article  Google Scholar 

  • Durante D, Dunson DB, Vogelstein JT (2017) Nonparametric bayes modeling of populations of networks. J Am Stat Assoc 112(520):1516–1530

    Article  Google Scholar 

  • Edwards S (2000) Contagion. In: World Economy. Citeseer

  • Eichengreen B, Mody A, Nedeljkovic M, Sarno L (2012) How the subprime crisis went global: evidence from bank credit default swap spreads. J Int Money Finance 31(5):1299–1318

    Article  Google Scholar 

  • Elliott M, Golub B, Jackson MO (2014) Financial networks and contagion. Am Econ Rev 104(10):3115–53

    Article  Google Scholar 

  • Engle R, Jondeau E, Rockinger M (2014) Systemic risk in Europe. Rev. Finance 19(1):145–190

    Google Scholar 

  • Flavin TJ, Hurley MJ, Rousseau F (2002) Explaining stock market correlation: a gravity model approach. Manchest Schl 70(S1):87–106

    Article  Google Scholar 

  • Foglia M, Angelini E (2020) From me to you: measuring connectedness between eurozone financial institutions. Res Int Bus Finance 54:101238

    Article  Google Scholar 

  • Friel N, Rastelli R, Wyse J, Raftery AE (2016) Interlocking directorates in Irish companies using a latent space model for bipartite networks. Proc Natl Acad Sci 113(24):6629–6634

    Article  Google Scholar 

  • Friel N, Wyse J (2012) Estimating the evidence—a review. Stat Neerland 66(3):288–308

    Article  Google Scholar 

  • Giner J, Mendoza Aguilar J, Morini-Marrero S (2018) Correlation as probability: applications of Sheppard’s formula to financial assets. Quant Finance 18(5):777–787

  • Giudici P, Parisi L (2016) Corisk: measuring systemic risk through default probability contagion. DEM Working Papers Series 116, University of Pavia, Department of Economics and Management

  • Giudici P, Parisi L (2018) Corisk: credit risk contagion with correlation network models. Risks 6(3):95

    Article  Google Scholar 

  • Giudici P, Sarlin P, Spelta A (2020) The interconnected nature of financial systems: direct and common exposures. J Bank Finance 112:105149

    Article  Google Scholar 

  • Grassi R, Stefani S, Torriero A (2010) Centrality in organizational networks. Int J Intell Syst 25(3):253–265

    Article  Google Scholar 

  • Grinis I (2015) Credit risk spillovers, systemic importance and vulnerability in financial networks

  • Handcock MS, Raftery AE, Tantrum JM (2007) Model-based clustering for social networks. J R Stat Soc Ser A (Stat Soc) 170(2):301–354

    Article  Google Scholar 

  • Hasse J-B (2020a) Systemic risk: a network approach

  • Hasse J-B (2020b) SystemicR: monitoring systemic risk. R package version 0.1.0

  • Hasse J-B, Lajaunie Q (2020) Does the yield curve signal recessions? new evidence from an international panel data analysis

  • Hasse J-B, Lajaunie Q, Lajaunie MQ (2021) Package EWS

  • He B-J, Zhao D-X, Zhu J, Darko A, Gou Z-H (2018) Promoting and implementing urban sustainability in china: an integration of sustainable initiatives at different urban scales. Habit Int 82:83–93

    Article  Google Scholar 

  • Hledik J, Rastelli R (2018) A dynamic network model to measure exposure diversification in the Austrian interbank market. arXiv preprint arXiv:1804.01367

  • Hoff PD, Raftery AE, Handcock MS (2002) Latent space approaches to social network analysis. J Am Stat Assoc 97(460):1090–1098

    Article  Google Scholar 

  • Hué S, Lucotte Y, Tokpavi S (2019) Measuring network systemic risk contributions: a leave-one-out approach. J Econ Dyn Control 100:86–114

    Article  Google Scholar 

  • Hyndman R, Koehler AB, Ord JK, Snyder RD (2008) Forecasting with exponential smoothing: the state space approach. Springer, Berlin

    Book  Google Scholar 

  • Hyndman RJ, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, Petropoulos F, Razbash S, Wang E (2020) Package ‘forecast’. https://cran.r-project.org/web/packages/forecast/forecast.pdf

  • Ibragimov R, Jaffee D, Walden J (2011) Diversification disasters. J Financ Econ 99(2):333–348

    Article  Google Scholar 

  • Jiang B, Rigobon R, Dahleh MA (2020) Contingent linear financial networks. Tech. rep, National Bureau of Economic Research

  • Jin X, De Simone FN (2020) Monetary policy and systemic risk-taking in the euro area investment fund industry: a structural factor-augmented vector autoregression analysis. J Financ Stab 49:100749

    Article  Google Scholar 

  • Kenett DY, Huang X, Vodenska I, Havlin S, Stanley HE (2015) Partial correlation analysis: applications for financial markets. Quant Finance 15(4):569–578

    Article  Google Scholar 

  • Lesnoff M, Lancelot R, Lancelot MR, Suggests M (2010) Package ‘aod’. Maran, N., Crispim, B., Iahnn, S., Araújo, R., Grisolia, A., & Oliveira, K.(2016). Depth and well type related to groundwater microbiological contamination 13(10):1036

  • Mantegna RN, Stanley HE (1999) Introduction to econophysics: correlations and complexity in finance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Matesanz D, Ortega GJ (2014) Network analysis of exchange data: interdependence drives crisis contagion. Qual Quant 48(4):1835–1851

    Article  Google Scholar 

  • Møller J, Pettitt AN, Reeves R, Berthelsen KK (2006) An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 93(2):451–458

    Article  Google Scholar 

  • Murray I, Ghahramani Z, MacKay D (2012) Mcmc for doubly-intractable distributions. arXiv preprint arXiv:1206.6848

  • Naceur SB, Candelon B, Lajaunie Q (2019) Taming financial development to reduce crises. Emerg Mark Rev 40:100618

    Article  Google Scholar 

  • Nolde N, Zhang J (2020) Conditional extremes in asymmetric financial markets. J Bus Econ Stat 38(1):201–213

    Article  Google Scholar 

  • Pais A, Stork PA (2011) Contagion risk in the Australian banking and property sectors. J Bank Finance 35(3):681–697

    Article  Google Scholar 

  • Poledna S, Martinez-Jaramillo S, Caccioli F, Thurner S (2021) Quantification of systemic risk from overlapping portfolios in the financial system. J Financ Stab 52:100808

    Article  Google Scholar 

  • Pourkhanali A, Kim J-M, Tafakori L, Fard FA (2016) Measuring systemic risk using vine-copula. Econ Model 53:63–74

    Article  Google Scholar 

  • Qi, X., D. R. C. K. F. E. S. A. W. Q. W. Y. T. W., Zhang C (2013) Terrorist networks, network energy and node removal: a new measure of centrality based on Laplacian energy

  • Raftery AE, Niu X, Hoff PD, Yeung KY (2012) Fast inference for the latent space network model using a case-control approximate likelihood. J Comput Graph Stat 21(4):901–919

    Article  Google Scholar 

  • Rastelli R (2021) lpm4i repository. https://github.com/riccardorastelli/lpm4i

  • Rastelli R, Friel N, Raftery AE (2016) Properties of latent variable network models. Netw Sci 4(4):407–432

    Article  Google Scholar 

  • Rastelli R, Maire F, Friel N (2018) Computationally efficient inference for latent position network models. arXiv preprint arXiv:1804.02274

  • Sander H, Kleimeier S (2003) Contagion and causality: an empirical investigation of four Asian crisis episodes. J Int Financ Mark Inst Money 13(2):171–186

    Article  Google Scholar 

  • Scardoni G, Laudanna C (2012) Centralities based analysis of complex networks. New Front Graph Theory 2012:323–348

    Google Scholar 

  • Schweitzer F, Fagiolo G, Sornette D, Vega-Redondo F, Vespignani A, White DR (2009) Economic networks: the new challenges. Science 325(5939):422–425

    Article  Google Scholar 

  • Sebestyén T, Iloskics Z (2020) Do economic shocks spread randomly? A topological study of the global contagion network. PLoS ONE 15(9):e0238626

    Article  Google Scholar 

  • Selover DD (2004) International co-movements and business cycle transmission between Korea and Japan. J Jpn Int Econ 18(1):57–83

    Article  Google Scholar 

  • Shortreed S, Handcock MS, Hoff P (2006) Positional estimation within a latent space model for networks. Methodology 2(1):24–33

    Article  Google Scholar 

  • Tobias A, Brunnermeier MK (2016) Covar. Am Econ Rev 106(7):1705

    Article  Google Scholar 

  • Tumminello M, Lillo F, Mantegna RN (2010) Correlation, hierarchies, and networks in financial markets. J Econ Behav Organ 75(1):40–58

    Article  Google Scholar 

  • Wagner W (2010) Diversification at financial institutions and systemic crises. J Financ Intermed 19(3):373–386

    Article  Google Scholar 

  • Wang G-J, Xie C, Stanley HE (2018) Correlation structure and evolution of world stock markets: evidence from Pearson and partial correlation-based networks. Comput Econ 51(3):607–635

    Article  Google Scholar 

  • Wen F, Yang X, Zhou W-X (2019) Tail dependence networks of global stock markets. Int J Finance Econ 24(1):558–567

    Article  Google Scholar 

  • Winkler G (2012) Image analysis, random fields and Markov chain Monte Carlo methods: a mathematical introduction, vol 27. Springer, Berlin

    Google Scholar 

  • Xu G, Gao W (2019) Financial risk contagion in stock markets: causality and measurement aspects. Sustainability 11(5):1402

    Article  Google Scholar 

  • Yan Y (2016) Mlmetrics: machine learning evaluation metrics. R package version 1(1):1

    Google Scholar 

  • Zheng Z, Podobnik B, Feng L, Li B (2012) Changes in cross-correlations as an indicator for systemic risk. Sci Rep 2(1):1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laleh Tafakori.

Ethics declarations

Conflict of interest

None of the authors has any conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix A: Proof of Proposition 1

Proof

We wish to study the density \(\pi \left( y_i^{(t)} \big | \mathbf{y }_{-(i,t)}, \mathbf{Z }, \mathbf{X } \right) \), up to a proportionality constant that does not depend on \(y_i^{(t)}\):

$$\begin{aligned} \begin{aligned} \pi \left( y_i^{(t)} \big | \mathbf{y }_{-(i,t)}, \mathbf{Z }, \mathbf{X } \right)&= \frac{ \pi \left( \mathbf{y } \big | \mathbf{Z }, \mathbf{X } \right) }{ \pi \left( \mathbf{y }_{-(i,t)} \big | \mathbf{Z }, \mathbf{X } \right) } \propto f\left( \mathbf{y } \big | \mathbf{Z }, \mathbf{X } \right) \\&\propto \exp \left\{ - \frac{1}{2}\sum _{t=1}^{T} \sum _{i=1}^N \sum _{\begin{array}{c} j=1 \\ j\ne i \end{array}}^N x_{ij}^{(t)} \eta _{ij}^{(t)} \left( y_i^{(t)} - y_j^{(t)} \right) ^2\right\} \\&\propto \exp \left\{ - \frac{1}{2} \sum _{\begin{array}{c} j=1 \\ j\ne i \end{array}}^N x_{ij}^{(t)} \eta _{ij}^{(t)} \left( y_i^{(t)} - y_j^{(t)} \right) ^2\right\} \\&\propto \exp \left\{ - \frac{1}{2}\left[ {\mathcal {A}}_{i}^{(t)} \left( y_i^{(t)}\right) ^2 - 2{\mathcal {B}}_{i}^{(t)} y_i^{(t)} \right] \right\} \end{aligned} \end{aligned}$$
(16)

where

$$\begin{aligned} {\mathcal {A}}_{i}^{(t)}= & {} \sum _{\begin{array}{c} j=1 \\ j\ne i \end{array}}^N x_{ij}^{(t)} \eta _{ij}^{(t)}, \\ {\mathcal {B}}_{i}^{(t)}= & {} \sum _{\begin{array}{c} j=1 \\ j\ne i \end{array}}^N x_{ij}^{(t)} \eta _{ij}^{(t)} y_j^{(t)}. \end{aligned}$$

Then:

$$\begin{aligned} \begin{aligned} \pi \left( y_i^{(t)} \big | \mathbf{y }_{-(i,t)}, \mathbf{Z }, \mathbf{X } \right)&\propto \exp \left\{ - \frac{1}{2}\left[ {\mathcal {A}}_{i}^{(t)} \left( y_i^{(t)}\right) ^2 - 2{\mathcal {B}}_{i}^{(t)} y_i^{(t)} \right] \right\} \\&\propto \exp \left\{ - \frac{{\mathcal {A}}_{i}^{(t)}}{2}\left[ \left( y_i^{(t)}\right) ^2 - 2\frac{{\mathcal {B}}_{i}^{(t)}}{{\mathcal {A}}_{i}^{(t)}} y_i^{(t)} + \left( \frac{{\mathcal {B}}_{i}^{(t)}}{{\mathcal {A}}_{i}^{(t)}}\right) ^2 \right] \right\} \\&\propto \exp \left\{ - \frac{{\mathcal {A}}_{i}^{(t)}}{2}\left[ y_i^{(t)} - \frac{{\mathcal {B}}_{i}^{(t)}}{{\mathcal {A}}_{i}^{(t)}} \right] ^2 \right\} \\ \end{aligned} \end{aligned}$$
(17)

which is proportional to a Gaussian density with the following mean and variance:

$$\begin{aligned} \mu _i^{(t)} = \frac{{\mathcal {B}}_{i}^{(t)}}{{\mathcal {A}}_{i}^{(t)}}, \quad \quad \quad \nu _i^{(t)} = \frac{1}{{\mathcal {A}}_{i}^{(t)}}. \end{aligned}$$

\(\square \)

Appendix B: Summary of default probabilities by bank

See Tables 16 and 17.

Table 16 Summary of default probabilities by bank
Table 17 Summary of Default Probabilities by country

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tafakori, L., Pourkhanali, A. & Rastelli, R. Measuring systemic risk and contagion in the European financial network. Empir Econ 63, 345–389 (2022). https://doi.org/10.1007/s00181-021-02135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-021-02135-y

Keywords

Navigation