Skip to main content
Log in

Modal regression for fixed effects panel data

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

Most research on panel data focuses on mean or quantile regression, while there is not much research about regression methods based on the mode. In this paper, we propose a new model named fixed effects modal regression for panel data in which we model how the conditional mode of the response variable depends on the covariates and employ a kernel-based objective function to simplify the computation. The proposed modal regression can complement the mean and quantile regressions and provide better central tendency measure and prediction performance when the data are skewed. We present a linear dummy modal regression method and a pseudo-demodeing two-step method to estimate the proposed modal regression. The computations can be easily implemented using a modified modal–expectation–maximization algorithm. We investigate the asymptotic properties of the modal estimators under some mild regularity conditions when the number of individuals, N, and the number of time periods, T, go to infinity. The optimal bandwidths with order \((NT)^{-1/7}\) are obtained by minimizing the asymptotic weighted mean squared errors. Monte Carlo simulations and two real data analyses of a public capital productivity study and a carbon dioxide emissions study are presented to demonstrate the finite sample performance of the newly proposed modal regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Modal regression can complement mean and quantile regressions and provide some other useful information regarding the features of conditional distributions that the existing regression models might miss, especially for the skewed dataset. For example, assume Y and X satisfy \(Y=X^{T} \beta _m+\sigma (X) \xi ,\) where \(\xi \) has a density with mean 0 and mode 1, \(\beta _m\) is a vector of coefficients, \(\sigma (X)=m(X)-X^{T} \beta _m\) in which m(X) is a nonlinear function, and \(X^{T}\) denotes the transpose of X. Then, \({\mathbb {E}}(Y \mid X)=X^{T} \beta _m,\) while \({Mode}(Y \mid X)=m(X)\). The mean regression is linear, but the modal regression could be nonlinear. Similarly, it is also possible that the mean regression is nonlinear, but the modal regression is linear.

  2. Theorem 2.1 in Yao and Li (2014) indicates that Algorithm 1 will monotonically non-decrease the objective function (4), which means that MEM algorithm has the ascending property.

  3. For example, if we consider \(Y_{it}=X^T_{it}\beta +\mu _i+v_{it}\) with \(Mode(v_{it}\mid X_{it},\mu _i)=0\), applying the first-difference transformation on equation yields \(Y_{it}-Y_{it-1}=(X^T_{it}-X^T_{it-1})\beta +v_{it}-v_{it-1}\) in which we cannot guarantee \(Mode(v_{it}-v_{it-1}\mid X_{it})=0\). The same problem arises if we apply the mean difference transformation.

  4. If \(X \sim Ga(\alpha , \theta )\) and \(Y \sim Ga(\beta , \theta )\) are independently distributed with the same scale parameter, then \(X+Y\) follows \(Ga(\alpha +\beta , \theta )\) with variance \((\alpha +\beta )\theta ^2\).

  5. *: \(p<0.1\); **: \(p <0.05\); ***: \(p<0.01\).

References

  • Baltagi B (2009) A companion to econometric analysis of panel data. Wiley, Chichester

    Google Scholar 

  • Baltagi B (2013) Econometrics analysis of panel data, 5th edn. Wiley, Chichester

    Google Scholar 

  • Baltagi B, Pinnoi N (1995) Public capital stock and state productivity growth: further evidence from an error components model. Empir Econ 20:351–359

    Article  Google Scholar 

  • Botev ZI, Grotowski JF, Kroese DP (2010) Kernel density estimation via diffusion. Ann Stat 38:2916–2957

    Article  Google Scholar 

  • Canay IA (2011) A simple approach to quantile regression for panel data. Econom J 14:368–386

    Article  Google Scholar 

  • Chen YC (2018) Modal regression using kernel density estimation: a review. Wiley Interdiscip Rev Comput Stat 10:e1431

    Article  Google Scholar 

  • Chen YC, Genovese CR, Tibshirani RJ, Wasserman L (2016) Nonparametric modal regression. Ann Stat 44(2):489–514

    Article  Google Scholar 

  • Eddy WF (1980) Optimum kernel estimators of the mode. Ann Stat 8(4):870–882

    Article  Google Scholar 

  • Evans P, Karras G (1994) Are government activities productive? Evidence from A Panel of U.S. States. Rev Econ Stud 76(1):1–11

    Google Scholar 

  • Fragkias M, Lobo J, Strumsky D, Seto KC (2013) Does size matter? Scaling of \({\rm CO}_2\) emissions and U.S. Urban Areas. PLOS ONE 8(6):e64727

    Article  Google Scholar 

  • Friedman JH, Fisher NI (1999) Bump hunting in high-dimensional data. Stat Comput 9:123–143

    Article  Google Scholar 

  • Galvao AF (2011) Quantile regression for dynamic panel data with fixed effects. J Econom 164(1):142–157

    Article  Google Scholar 

  • Gao Y, Li K (2013) Nonparametric estimation of fixed effects panel data models. J Nonparametric Stat 25(3):679–693

    Article  Google Scholar 

  • Henderson D, Carroll R, Li Q (2008) Nonparametric estimation and testing of fixed effects panel data models. J Econom 144(1):257–275

    Article  Google Scholar 

  • Henderson D, Ullah A (2014) Nonparametric estimation in a one-way error component model: a Monte Carlo analysis. Stat Paradigms 213–237

  • Hidalgo FJ (1992) Adaptive semiparametric estimation in the presence of autocorrelation of unknown form. J Time Ser Anal 13:47–78

    Article  Google Scholar 

  • Kemp GCR, Parente PMDC, Santos Silva JMC (2019) Dynamic vector mode regression. J Bus Econ Stat 38(3):647–661

    Article  Google Scholar 

  • Kemp GCR, Santos Silva JMC (2012) Regression towards the mode. J Econom 170(1):92–101

    Article  Google Scholar 

  • Krief JM (2017) Semi-linear mode regression. Econom J 20:149–167

    Article  Google Scholar 

  • Lamarche C (2010) Robust penalized quantile regression estimation for panel data. J Econom 157:396–408

    Article  Google Scholar 

  • Lee M (1989) Mode regression. J Econom 42:337–349

    Article  Google Scholar 

  • Lee M (1993) Quadratic model regression. J Econom 57:1–19

    Article  Google Scholar 

  • Lee S (2003) Efficient semiparametric estimation of a partially linear quantile regression model. Econom Theory 19(1):1–31

    Article  Google Scholar 

  • Lee Y, Mukherjee D, Ullah A (2019) Nonparametric estimation of the marginal effect in fixed-effect panel data models. J Multiv Anal 171:53–67

    Article  Google Scholar 

  • Li X, Huang X (2019) Linear mode regression with covariate measurement error. Can J Stat 47:262–280

    Article  Google Scholar 

  • Li J, Ray S, Lindsay BG (2007) A nonparametric statistical approach to clustering via mode inentification. J Mach Learn Res 8(8):1687–1723

    Google Scholar 

  • Lin Z, Li Q, Sun Y (2014) A consistent nonparametric test of parametric regression functional form in fixed effects panel data models. J Econom 178:167–179

    Article  Google Scholar 

  • Muller DW, Sawitzki G (1991) Excess mass estimates and tests for multimodality. J Am Stat Assoc 86:738–746

    Google Scholar 

  • Munnell AH (1990) How does public infrastructure affect regional economic performance? New Engl Econ Rev 11–33

  • Ota H, Kato K, Hara S (2019) Quantile regression approach to conditional mode estimation. Electron J Stat 13:3120–3160

    Article  Google Scholar 

  • Parzen M (1962) On estimation of a probability density function and mode. Philos Trans R Soc Lond Ser A 186:343–414

    Google Scholar 

  • Sager TW, Thisted RA (1982) Maximum likelihood estimation of isotonic modal regression. Ann Stat 10(3):690–707

    Article  Google Scholar 

  • Silverman BW (1981) Using kernel density estimates to investigate multimodality. J R Stat Soc Ser B 43:97–99

    Google Scholar 

  • Su L, Chen Y, Ullah A (2009) Functional coefficient estimation with both categorical and continuous data. Adv Econom 25:131–167

    Article  Google Scholar 

  • Su L, Ullah A (2006) Profile likelihood estimation of partially linear panel data models with fixed effects. Econ Lett 92(1):75–81

    Article  Google Scholar 

  • Su L, Ullah A (2011) Nonparametric and semiparametric panel econometric models: estimation and testing. In: Ullah A, Giles DEA (eds) Handbook of empirical economics and finance 455–497

  • Su L, Ullah A, Wang Y (2013) Nonparametric regression estimation with general parametric error covariance: a more efficient two-step estimator. Empir Econ 1009–1024

  • Tarter ME, Lock MD (1993) Model-free curve estimation. CRC Press, Boca Raton, p 56

    Google Scholar 

  • Yao W (2013) A note on EM algorithm for mixture models. Stat Probab Lett 83:519–526

    Article  Google Scholar 

  • Yao W, Li L (2014) A new regression model: modal linear regression. Scand J Stat 41:656–671

    Article  Google Scholar 

  • Yao W, Lindsay BG, Li R (2012) Local modal regression. J Nonparametric Stat 24(3):647–663

    Article  Google Scholar 

  • Yao W, Xiang S (2016) Nonparametric and varying coefficient modal regression. arXiv:1602.06609v1

  • Zhou H, Huang X (2016) Nonparametric modal regression in the presence of measurement error. Electron J Stat 10:3579–3620

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Ullah.

Ethics declarations

Funding

This study was not supported by any funding.

Conflict of interest

Each author declares he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We are grateful to the guest editor and three anonymous referees for their helpful suggestions and comments which have greatly improved the paper. We also thank seminar participants at the 2020 Econometric Society World Congress.

Appendices

A Appendix-Tables

See Tables 1, 2, 3, 4, 5, 6

Table 1 Monte Carlo results: DGP 1-Case 1
Table 2 Monte Carlo results: DGP 1-Case 2
Table 3 Monte Carlo results: DGP 1-Case 3
Table 4 Monte Carlo results: DGP 2-more skewed
Table 5 Monte Carlo results: DGP 2-less skewed
Table 6 The results of estimates of (17)
Table 7 The results of estimates of (18)-individual effects
Table 8 The Results of Estimates of (18)-Time Effects

B Appendix-Proofs

1.1 Proof of Theorem 2.1

Recall that \(Y_{it}={X}_{it}^T {\beta }+Z^T_{\mu ,i}\mu +{v}_{it}\). We define \(X^{*}_{it}=({X}_{it}^T, Z^T_{\mu ,i})^T\), \(\theta =(\beta ^T,\mu ^T)^T\), and \(\theta _0=(\beta _0^T,\mu _0^T)^T\), where \(\theta _{0}\) is the true parameter value. Let \(\delta _{NT}=h_0^{2}+\sqrt{\left( NTh_0^{3}\right) ^{-1}}\), then it is sufficient to show that for any given \(\eta ,\) there exists a large number constant a such that

$$\begin{aligned} P\left\{ \sup _{\Vert c\Vert =a} Q_{N T}\left( \theta _{0}+\delta _{NT} c\right) <Q_{N T}\left( \theta _{0}\right) \right\} \ge 1-\eta , \end{aligned}$$
(A.1)

where \(\Vert \cdot \Vert \) represents the Euclidean distance, and \(\theta _{0}\) is the true parameter value.

Applying the Taylor expansion, it follows

$$\begin{aligned}&Q_{N T}\left( \theta _{0}+\delta _{NT} c\right) -Q_{N T}\left( \theta _{0}\right) \nonumber \\&\quad =\frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1} \left[ \phi \left( \frac{v_{it}-\delta _{NT} c^{T} X^*_{i t}}{h_0} \right) -\phi \left( \frac{v_{it}}{h_0} \right) \right] \nonumber \\&\quad = \frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1}\left[ -\phi ^{(1)} \left( \frac{v_{it}}{h_0} \right) \left( \frac{\delta _{NT} c^{T} X^*_{i t}}{h_0} \right) +\frac{1}{2}\phi ^{(2)} \left( \frac{v_{it}}{h_0} \right) \left( \frac{\delta _{NT} c^{T} X^*_{i t}}{h_0} \right) ^{2} \right. \nonumber \\&\left. \qquad -\frac{1}{6}\phi ^{(3)} \left( \frac{v^*_{it}}{h_0} \right) \left( \frac{\delta _{NT} c^{T} X^*_{i t}}{h_0} \right) ^{3} \right] , \end{aligned}$$
(A.2)

where \(v^*_{it}\) is between \(v_{it}\) and \(v_{it}-\delta _{NT} c^{T} X^*_{i t}\). Based on the result \(T_{N T}={\mathbb {E}}\left( T_{N T}\right) +O_{p}(\sqrt{{\text {Var}}\left( T_{N T}\right) }),\) we consider each part of above Taylor expansion.

For the first part, which is \(I_1=\frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1}\left( -\phi ^{(1)} \left( \frac{v_{it}}{h_0} \right) \left( \frac{\delta _{NT} c^{T} X^*_{i t}}{h_0} \right) \right) \), we can calculate it directly to achieve

$$\begin{aligned} {\mathbb {E}} \left( I_1 \right) =&\frac{-\delta _{NT}}{h^2_0} \iint \phi ^{(1)} \left( \frac{v}{h_0} \right) f_{v}(v \mid X^*) \left( c^{T} X^* \right) dv d F(X^*) \nonumber \\ =&O_p\left( \delta _{NT} a h^2_0 \right) . \end{aligned}$$
(A.3)

Meanwhile, we know that

$$\begin{aligned} {\mathbb {E}} \left( I_1 \right) ^2 =&\frac{\delta ^2_{NT}}{NTh^4_0} \iint \phi ^{(1)2} \left( \frac{v}{h_0} \right) f_{v}(v \mid X^*) \left( {c^{T} X^*}\right) ^2 dv dF(X^*) \nonumber \\ =&O_p\left( \delta ^2_{NT} a^2 (NTh^3_0)^{-1} \right) . \end{aligned}$$
(A.4)

Combing (A.3) and (A.4) obtains

$$\begin{aligned} I_1=O_p\left( \delta _{NT} a h^2_0 \right) +O_p\left( \sqrt{\delta ^2_{NT} a^2 (NTh^3_0)^{-1}} \right) =O_p\left( \delta ^2_{NT} a \right) . \end{aligned}$$
(A.5)

For the second part, which is \(I_2=\frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1}\left( \frac{1}{2}\phi ^{(2)} \left( \frac{v_{it}}{h_0} \right) \left( \frac{\delta _{NT} c^{T} X^*_{i t}}{h_0} \right) ^{2} \right) \), we can prove

$$\begin{aligned} {\mathbb {E}} \left( I_2 \right) =&\frac{\delta ^2_{NT}}{2h^3_0} \iint \phi ^{(2)} \left( \frac{v}{h_0} \right) f_{v}(v \mid X^*) \left( {c^{T} X^*}\right) ^2 dv dF(X^*)\nonumber \\ =&O_p\left( \delta ^2_{NT} a^2 \right) , \end{aligned}$$
(A.6)

which indicates that the second part will dominate the first part when we choose a big enough.

For the third part, which is \(I_3=\frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1}\left( -\frac{1}{6}\phi ^{(3)} \left( \frac{v^*_{it}}{h_0} \right) \left( \frac{\delta _{NT} c^{T} X^*_{i t}}{h_0} \right) ^{3} \right) \), as \(v^*_{it}\) is between \(v_{it}\) and \(v_{it}-\delta _{NT} c^{T} X^*_{i t}\), after some direct calculations we can obtain

$$\begin{aligned} {\mathbb {E}} \left( I_3 \right) \approx&\frac{-\delta ^3_{NT}}{6h^4_0} \iint \phi ^{(3)} \left( \frac{v}{h_0} \right) f_{v}(v \mid X^*) \left( {c^{T} X^*}\right) ^3 dv F(X^*) \nonumber \\ =&O_p\left( \delta ^3_{NT} \right) , \end{aligned}$$
(A.7)

which indicates that the second part dominates the third part with the assumption \(NTh^5_0 \rightarrow \infty \).

Based on these, we can choose a bigger enough such that the second term dominates the other two terms with probability \(1-\eta \). Because the second term is negative, thus \(P\left\{ \sup _{\Vert c\Vert =a} Q_{N T}\left( \theta _{0}+\delta _{T} c\right) <Q_{N T}\left( \theta _{0}\right) \right\} \ge 1-\eta \) holds. Hence, with the probability approaching 1, there exists a local maximizer \(\hat{\theta }\) such that

$$\begin{aligned} \Vert \hat{\theta }-\theta _0 \Vert = O_p(h_0^{2}+\sqrt{\left( NTh_0^{3}\right) ^{-1}}). \end{aligned}$$
(A.8)

\(\square \)

1.2 Proof of Theorem 2.2

Recall that

$$\begin{aligned} Q_{NT}({\beta }, {\mu })=\frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1}\phi \left( \frac{{Y}_{it}-{X}_{it}^T {\beta }-Z^T_{\mu ,i}{\mu }}{h_0} \right) . \end{aligned}$$

Because \((\hat{\beta }, \hat{\mu })\) maximize \(Q_{NT}({\beta }, {\mu })\), we can take the derivative of \(Q_{NT}({\beta }, {\mu })\) respect to \(\beta \) and \(\mu \) to obtain

$$\begin{aligned} \frac{\partial Q_{NT}({\beta }, {\mu })}{\partial \beta } \Bigg |_{(\beta =\hat{\beta }, \mu =\hat{\mu })}=-\frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1}\phi ^{(1)} \left( \frac{{Y}_{it}-{X}_{it}^T \hat{\beta }-Z^T_{\mu ,i}\hat{\mu }}{h_0} \right) \left( \frac{{X}_{it}}{h_0} \right) =0. \nonumber \\ \end{aligned}$$
(A.9)
$$\begin{aligned} \frac{\partial Q_{NT}({\beta }, {\mu })}{\partial \mu } \Bigg |_{(\beta =\hat{\beta }, \mu =\hat{\mu })}=-\frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1}\phi ^{(1)} \left( \frac{{Y}_{it}-{X}_{it}^T \hat{\beta }-Z^T_{\mu ,i}\hat{\mu }}{h_0} \right) \left( \frac{Z_{\mu ,i}}{h_0} \right) =0. \nonumber \\ \end{aligned}$$
(A.10)

By applying Taylor expansion for (A.9) and (A.10), we can achieve

$$\begin{aligned}&\frac{1}{NTh^2_0}\sum ^N_{i=1}\sum ^T_{t=1} \left[ -{\phi ^{(1)} \left( \frac{v_{it}}{h_0} \right) X_{it}+\phi ^{(2)} \left( \frac{v_{it}}{h_0} \right) X_{it} \{ -X^T_{it}(\hat{\beta }-\beta _0)h^{-1}_0-Z^T_{\mu ,i}(\hat{\mu }-\mu _0)h_0^{-1}\}}\right. \nonumber \\&\quad \left. {+\frac{1}{2}\phi ^{(3)} \left( \frac{v^*_{it}}{h_0} \right) X_{it} \{ -X^T_{it}(\hat{\beta }-\beta _0)h^{-1}_0-Z^T_{\mu ,i}(\hat{\mu }-\mu _0)h_0^{-1}\}^2} \right] +o_p(\hat{\beta }-\beta _0)=0. \end{aligned}$$
(A.11)
$$\begin{aligned}&\frac{1}{NTh^2_0}\sum ^N_{i=1}\sum ^T_{t=1} \left[ -{\phi ^{(1)} \left( \frac{v_{it}}{h_0} \right) Z_{\mu ,i}+\phi ^{(2)} \left( \frac{v_{it}}{h_0} \right) Z_{\mu ,i} \{ -X^T_{it}(\hat{\beta }-\beta _0)h^{-1}_0-Z^T_{\mu ,i}(\hat{\mu }-\mu _0)h_0^{-1}\}}\right. \nonumber \\&\quad \left. {+\frac{1}{2}\phi ^{(3)} \left( \frac{v^*_{it}}{h_0} \right) Z_{\mu ,i} \{ -X^T_{it}(\hat{\beta }-\beta _0)h^{-1}_0-Z^T_{\mu ,i}(\hat{\mu }-\mu _0)h_0^{-1}\}^2 } \right] +o_p(\hat{\mu }-\mu _0)=0, \end{aligned}$$
(A.12)

where \(v^*_{it}\) is between \(v_{it}\) and \({v}_{it}-{X}_{it}^T (\hat{\beta }-\beta _0)-Z^T_{\mu ,i}(\hat{\mu }-\mu _0)\).

We focus on (A.12) firstly. Considering \(-\frac{1}{NTh^2_0}\sum ^N_{i=1}\sum ^T_{t=1} \left( \phi ^{(1)}\left( \frac{v_{it}}{h_0} \right) Z_{\mu ,i} \right) \), we get

$$\begin{aligned}&{\mathbb {E}} \left( -\frac{1}{NTh^2_0}\sum ^N_{i=1}\sum ^T_{t=1} \left( \phi ^{(1)}\left( \frac{v_{it}}{h_0} \right) Z_{\mu ,i} \right) \right) \nonumber \\&\quad = \frac{-1}{h^2_0} \iint \phi ^{(1)} \left( \frac{v}{h_0} \right) f_{v}(v \mid X, Z) Z \ dv d F(X) \nonumber \\&\quad = \frac{1}{h_0} \iint \phi \left( \tau \right) \tau f_{v}(\tau h_0 \mid X, Z) Z \ d\tau d F(X) \nonumber \\&\quad = \frac{h^2_0}{2} {\mathbb {E}} \left( Z f^{(3)}_{v}(0 \mid X, Z) \right) . \end{aligned}$$
(A.13)

Considering \(\frac{1}{NTh^3_0}\sum ^N_{i=1}\sum ^T_{t=1} \left( \phi ^{(2)}\left( \frac{v_{it}}{h_0} \right) \left( Z_{\mu ,i} X^{T}_{it} \right) \right) \), we achieve

$$\begin{aligned}&{\mathbb {E}} \left( \frac{1}{NTh^3_0}\sum ^N_{i=1}\sum ^T_{t=1}\left( \phi ^{(2)}\left( \frac{v_{it}}{h_0} \right) Z_{\mu ,i}X^{T}_{it} \right) \right) \nonumber \\&\quad = \frac{1}{h^3_0} \iint \phi ^{(2)} \left( \frac{v}{h_0} \right) f_{v}(v \mid X, Z) \left( ZX^{T}\right) dv d F(X) \nonumber \\&\quad = \frac{1}{h^2_0} \iint \phi \left( \tau \right) (\tau ^2-1) f_{v}(\tau h_0 \mid X, Z) \left( ZX^{T} \right) d\tau d F(X)\nonumber \\&\quad = {\mathbb {E}} \left( ZX^{T} f^{(2)}_{v}(0 \mid X, Z) \right) . \end{aligned}$$
(A.14)

Considering \(\frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1} \left( \phi ^{(2)}\left( \frac{v_{it}}{h_0} \right) \left( \frac{Z_{\mu ,i}}{h_0}\frac{Z^{T}_{\mu ,i}}{h_0} \right) \right) \), we can obtain

$$\begin{aligned}&{\mathbb {E}} \left( \frac{1}{NTh^3_0}\sum ^N_{i=1}\sum ^T_{t=1}\phi ^{(2)}\left( \frac{v_{it}}{h_0} \right) \left( Z_{\mu ,i}Z^{T}_{\mu ,i} \right) \right) \nonumber \\&\quad = \frac{1}{h^3_0} \iint \phi ^{(2)} \left( \frac{v}{h_0} \right) f_{v}(v \mid X, Z) \left( ZZ^{T}\right) dv d F(X) \nonumber \\&\quad = \frac{1}{h^2_0} \iint \phi \left( \tau \right) (\tau ^2-1) f_{v}(\tau h_0 \mid X, Z) \left( ZZ^{T} \right) d\tau d F(X) \nonumber \\&\quad = {\mathbb {E}} \left( ZZ^{T} f^{(2)}_{v}(0 \mid X, Z) \right) . \end{aligned}$$
(A.15)

Then, it follows that

$$\begin{aligned} \hat{\mu }-\mu _0=\left( \Phi +o_p(1)\right) ^{-1} \{-\Psi (\hat{\beta }-\beta _0)+o_p(1)\}, \end{aligned}$$
(A.16)

where \(\Phi =\lim _{N \rightarrow \infty } (1/N) \sum ^N_{i=1} {\mathbb {E}} \left( Z_{\mu ,i}Z^{T}_{\mu ,i} f^{(2)}_{v}(0 \mid X_{it}, Z_{\mu ,i}) \right) \) and \(\Psi =\lim _{N,T \rightarrow \infty } (1/(NT))\sum ^N_{i=1}\) \(\sum ^T_{t=1} {\mathbb {E}}\left( Z_{\mu ,i}X^{T}_{it} f^{(2)}_{v}(0 \mid X_{it}, Z_{\mu ,i}) \right) \).

Substituting (A.16) into (A.11), we can have

$$\begin{aligned}&\frac{1}{NTh^2_0}\sum ^N_{i=1}\sum ^T_{t=1} \left[ -\phi ^{(1)} \left( \frac{v_{it}}{h_0} \right) X_{it}{+}\phi ^{(2)} \left( \frac{v_{it}}{h_0} \right) X_{it} \{ -X^T_{it}(\hat{\beta }{-}\beta _0)h^{-1}_0{+}Z^T_{\mu ,i}(\Phi ^{-1}\Psi (\hat{\beta }-\beta _0))h_0^{-1}\}\right. \nonumber \\&\quad \left. {+\frac{1}{2}\phi ^{(3)} \left( \frac{v^*_{it}}{h_0} \right) X_{it} \{ -X^T_{it}(\hat{\beta }-\beta _0)h^{-1}_0+Z^T_{\mu ,i}(\Phi ^{-1}\Psi (\hat{\beta }-\beta _0))h_0^{-1}\}^2} \right] +o_p(\hat{\beta }-\beta _0)=0. \end{aligned}$$
(A.17)

Define

$$\begin{aligned} &M_{NT}=\frac{-1}{NTh^2_0}\sum ^N_{i=1}\sum ^T_{t=1} \left( \phi ^{(1)}\left( \frac{v_{it}}{h_0} \right) {X_{it}}\right) ,\\&J_{NT}=\frac{1}{NTh^2_0}\sum ^N_{i=1}\sum ^T_{t=1}\left( \phi ^{(2)}\left( \frac{v_{it}}{h_0} \right) {X_{it}}(X^T_{it}-Z^T_{\mu ,i}\Phi ^{-1}\Psi )h^{-1}_0\right) , \end{aligned}$$

we then get

$$\begin{aligned} \hat{\beta }-\beta =J^{-1}_{NT}M_{NT}(1+o_p(1)). \end{aligned}$$
(A.18)

With some calculations, we can obtain

$$\begin{aligned}&{\mathbb {E}} \left( \frac{-1}{NTh^2_0}\sum ^N_{i=1}\sum ^T_{t=1}\phi ^{(1)}\left( \frac{v_{it}}{h_0} \right) {X_{it}} \right) \nonumber \\&\quad = \frac{1}{h^2_0} \iint \phi ^{(1)} \left( \frac{v}{h_0} \right) f_{v}(v \mid X,Z) X \ dv d F(X) \nonumber \\&\quad = \frac{1}{h_0} \iint \phi \left( \tau \right) \tau f_{v}(\tau h_0 \mid X,Z) X \ d\tau d F(X) \nonumber \\&\quad = \frac{h^2_0}{2} {\mathbb {E}} \left( X f^{(3)}_{v}(0 \mid X,Z) \right) . \end{aligned}$$
(A.19)
$$\begin{aligned}&{\mathbb {E}} \left( \frac{1}{NTh^3_0}\sum ^N_{i=1}\sum ^T_{t=1}\phi ^{(2)}\left( \frac{v_{it}}{h_0} \right) \left( X_{it}(X^T_{it}-Z^T_{\mu ,i}\Phi ^{-1}\Psi \right) \right) \nonumber \\&\quad = \frac{1}{h^3_0} \iint \phi ^{(2)} \left( \frac{v}{h_0} \right) f_{v}(v \mid X, Z) \left( X(X^T-Z^T\Phi ^{-1}\Psi ) \right) dv d F(X) \nonumber \\&\quad = \frac{1}{h^2_0} \iint \phi \left( \tau \right) (\tau ^2-1) f_{v}(\tau h_0 \mid X, Z) \left( X(X^T-Z^T\Phi ^{-1}\Psi ) \right) d\tau d F(X) \nonumber \\&\quad = {\mathbb {E}} \left( X(X^T-Z^T\Phi ^{-1}\Psi ) f^{(2)}_{v}(0 \mid X, Z) \right) . \end{aligned}$$
(A.20)

Meanwhile, based on above calculations, we have

$$\begin{aligned}&{\text {Cov}}(M_{NT}) \nonumber \\&\quad ={\mathbb {E}} \Bigg \{ \left( \frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1} \left( \phi ^{(1)}\left( \frac{v_{it}}{h_0} \right) \frac{X_{it}}{h_0} \right) \right) \left( \frac{1}{NTh_0}\sum ^N_{i=1}\sum ^T_{t=1} \left( \phi ^{(1)}\left( \frac{v_{it}}{h_0} \right) \frac{X_{it}}{h_0} \right) \right) ^T \Bigg \} \{1+o_p(1) \}\nonumber \\&\quad = \frac{1}{NTh^4_0} \iint \phi ^{(1)2} \left( \frac{v}{h_0} \right) f_{v}(v \mid X, Z) X X^{T} dv d F(X) \{1+o_p(1) \}\nonumber \\&\quad =\frac{1}{NTh^3_0} v_2 {L}\{1+o_p(1) \}, \end{aligned}$$
(A.21)

where \(v_2=\int \phi ^{2} \left( \tau \right) \tau ^2 d \tau \) and \({L}=\lim _{N,T \rightarrow \infty } (1/(NT))\sum ^N_{i=1}\) \(\sum ^T_{t=1} {\mathbb {E}} \Big ( X_{it}X^{T}_{it} f_{v}(0 \mid X_{it}, Z_{\mu ,i}) \Big )\).

To show Theorem 2.2, it is sufficient to show the asymptotic normality for \(M^*_{NT}=\sqrt{NTh^3_0}M_{NT} \), where we prove that for any unit vector \(d \in {\mathbb {R}}^q\),

$$\begin{aligned} \{d^T {\text {Cov}}(M^*_{NT}) d\}^{-1/2} \{d^T M^*_{NT}-d^T {\mathbb {E}}(M^*_{NT}) \} {\mathop {\rightarrow }\limits ^{d}} N(0, 1). \end{aligned}$$
(A.22)

Then, we check Lyapunov’s condition. Let \(\xi _i=-1/\sqrt{NTh_0}\phi ^{(1)}\left( \frac{v_{it}}{h_0} \right) d^T X_{it}\), we need to prove \(NT {\mathbb {E}} |\xi _1 |^3 \rightarrow 0\). As \(\left( d^T X_{it} \right) ^2 \le \Vert d\Vert ^2 \Vert X_{it} \Vert ^2\) and \(\phi ^{(1)}(.)\) is bounded, we have

$$\begin{aligned} NT {\mathbb {E}} |\xi _1 |^3 \le O((NT)^{-1/2} h^{-3/2}_0) \rightarrow 0. \end{aligned}$$
(A.23)

Thus, the asymptotic normality for \(M^*_{NT}\) holds with

$$\begin{aligned} \sqrt{NTh^3_0} \left( M_{NT}-h^2_0M/2 \right) {\mathop {\rightarrow }\limits ^{d}} N(0, {v_2}{L}). \end{aligned}$$
(A.24)

According to Slutsky’s Theorem, we obtain Theorem 2.2. \(\square \)

1.3 Proof of Theorem 3.1

The main proof steps here are similar with those of Proof of Theorem 2.1. We briefly outline the proof. Recall that

$$\begin{aligned} Q_{NT}(\gamma _1, \beta )&=\frac{1}{NTh_1}\sum ^N_{i=1}\sum ^T_{t=1}\phi \left( \frac{{\hat{Y}}_{it}-\gamma _1-{{X}}^T_{it} {\beta }}{h_1} \right) \nonumber \\&=\frac{1}{NTh_1}\sum ^N_{i=1}\sum ^T_{t=1}\phi \left( \frac{{Y}_{it}-\alpha _{i0}+\alpha _{i0}-\hat{\alpha }_i-{\tilde{X}}^{T}_{it} {\theta }}{h_1} \right) , \end{aligned}$$
(A.25)

where \({\tilde{X}}^{T}_{it}=(1,{X}_{it}^T)\) and \(\theta =(\gamma _1, \beta ^T)^T\). Define \(\delta _{NT}=h_1^{2}+\sqrt{\left( NTh_1^{3}\right) ^{-1}}\), it is sufficient to show that for any given \(\eta ,\) there exists a large number constant a such that \(P\left\{ \sup _{\Vert c\Vert =a} Q_{N T}\left( \theta _{0}+\delta _{NT} c\right) <Q_{N T}\left( \theta _{0}\right) \right\} \ge 1-\eta \), where \(\Vert \cdot \Vert \) represents the Euclidean distance, and \(\theta _{0}\) is the true parameter value. Applying the Taylor expansion, it follows

$$\begin{aligned}&Q_{N T}\left( \theta _{0}+\delta _{NT} c\right) -Q_{N T}\left( \theta _{0}\right) \nonumber \\ {}&\quad = \frac{1}{NTh_1}\sum ^N_{i=1}\sum ^T_{t=1} \left[ \phi \left( \frac{v_{it}+\alpha _{i0}-\hat{\alpha }_i-\delta _{NT} c^{T} {\tilde{X}}_{it}}{h_1} \right) -\phi \left( \frac{v_{it}+\alpha _{i0}-\hat{\alpha }_i}{h_1} \right) \right] \nonumber \\ {}&\quad = \frac{1}{NTh_1}\sum ^N_{i=1}\sum ^T_{t=1} \left[ {-\phi ^{(1)} \left( \frac{v_{it}+\alpha _{i0}-\hat{\alpha }_i}{h_1} \right) \left( \frac{\delta _{NT} c^{T} {\tilde{X}}_{it}}{h_1} \right) }\right. \nonumber \\ {}&\qquad \left. {+\frac{1}{2}\phi ^{(2)} \left( \frac{v_{it}+\alpha _{i0}-\hat{\alpha }_i}{h_1} \right) \left( \frac{\delta _{NT} c^{T} {\tilde{X}}_{it}}{h_1} \right) ^{2} -\frac{1}{6}\phi ^{(3)} \left( \frac{v^*_{it}}{h_1} \right) \left( \frac{\delta _{NT} c^{T} {\tilde{X}}_{it}}{h_1} \right) ^{3}} \right] , \end{aligned}$$
(A.26)

where \(v^*_{it}\) is between \(v_{it}+\alpha _{i0}-\hat{\alpha }_i\) and \(v_{it}+\alpha _{i0}-\hat{\alpha }_i-\delta _{NT} c^{T} {\tilde{X}}_{it}\). Following the same steps as the Proof of Theorem 2.1, with assumption that \(\sqrt{T}h^2_1 \rightarrow \infty \) (i.e., \(N^a/T \rightarrow 0\) for some \(a>4/3\)), one can obtain \(\Vert \hat{\theta }-\theta _0 \Vert \le \delta _{NT}\).

\(\square \)

1.4 Proof of Theorem 3.2

Recall that \({\tilde{X}}^T_{it}=(1, {X}_{it}^T)\), \(\theta _0 =(\gamma _{10}, \beta _0^T)^T\), and \(\hat{\theta }=(\hat{\gamma }_1, \hat{\beta }^T)^T\). If \(\hat{\theta }\) maximizes (11), it will satisfy the following equation

$$\begin{aligned} \frac{1}{NTh_1}\sum ^N_{i=1}\sum ^T_{t=1}\phi ^{(1)} \left( \frac{{Y}_{it}-\alpha _{i0}-(\hat{\alpha }_i-\alpha _{i0})-{\tilde{X}}^T_{it} \hat{\theta }}{h_1} \right) \left( \frac{-{\tilde{X}}_{it}}{h_1} \right) =0. \end{aligned}$$
(A.27)

Then, we can achieve

$$\begin{aligned}&\frac{1}{NTh_1}\sum ^N_{i=1}\sum ^T_{t=1}\phi ^{(1)} \left( \frac{v_{it}}{h_1} \right) \left( \frac{-{\tilde{X}}_{it}}{h_1} \right) \nonumber \\ {}&\quad +\frac{1}{NTh_1}\sum ^N_{i=1}\sum ^T_{t=1}\phi ^{(2)} \left( \frac{v_{it}}{h_1} \right) \left( \frac{{\tilde{X}}_{it}}{h_1} \right) \left( \frac{\alpha _{i0}-\hat{\alpha }_i-{\tilde{X}}^T_{it} (\hat{\theta }-\theta _0 )}{h_1} \right) \nonumber \\ {}&\quad +\frac{1}{2NTh_1}\sum ^N_{i=1}\sum ^T_{t=1}\phi ^{(3)} \left( \frac{v^*_{it}}{h_1} \right) \left( \frac{{\tilde{X}}_{it}}{h_1} \right) \left( \frac{\alpha _{i0}-\hat{\alpha }_i-{\tilde{X}}^T_{it} (\hat{\theta }-\theta _0 )}{h_1} \right) ^2 =0, \end{aligned}$$
(A.28)

where \(v^*_{it}\) is between \(v_{it}\) and \(v_{it}+\alpha _{i0}-\hat{\alpha }_i-{\tilde{X}}^T_{it} (\hat{\theta }-\theta _0 )\). It can be shown that the third term on the left-hand side of (A.28) is dominated by the second term. With assumption that \(\sqrt{T}h^2_1 \rightarrow \infty \) (i.e., \(N^a/T \rightarrow 0\) for some \(a>4/3\)), we could then follow the same proof steps as those of Proof of Theorem 2.2 to achieve the results.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Wang, T. & Yao, W. Modal regression for fixed effects panel data. Empir Econ 60, 261–308 (2021). https://doi.org/10.1007/s00181-020-01999-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-020-01999-w

Keywords

JEL Classification

Navigation