Skip to main content
Log in

Monitoring memory parameter change-points in long-memory time series

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

In this paper, we propose two ratio-type statistics to sequentially detect the memory parameter change-points in the long-memory time series. The limiting distributions of monitoring statistics under the no-change-point null hypothesis as well as their consistency under the alternative hypothesis are proved. In particular, a sieve bootstrap approximation method is proposed to determine the critical values. Extensive simulations indicate that the new monitoring procedures perform well in finite samples. Finally, we illustrate our monitoring procedures by two sets of real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abadir KM, Distaso W, Giraitis L (2007) Nonstationarity-extended local Whittle estimation. J Econom 141:1353–1384

    Article  Google Scholar 

  • Betken A (2016) Testing for change-points in long-range dependent time series by means of a self-normalized Wilcoxon test. J Time Ser Anal 37(6):785–809

    Article  Google Scholar 

  • Betken A, Kulik R (2019) Testing for change in long-memory stochastic volatility time series. J Time Ser Anal 40:707–738. https://doi.org/10.1111/jtsa.12449

    Article  Google Scholar 

  • Betken J, Terrin N (1996) Testing for a change of the long-memory parameter. Biometrika 163:186–199

    Google Scholar 

  • Bühlmann P (1997) Sieve bootstrap for time series. Bernoulli 3(2):123–148

    Article  Google Scholar 

  • Busetti F, Taylor AMR (2004) Tests of stationarity against a change in persistence. J Econom 123:33–66

    Article  Google Scholar 

  • Caporin M, Gupta R (2017) Time-varying persistence in US inflation. Empir Econ 53:423–439

    Article  Google Scholar 

  • Chen Z, Tian Z (2010) Modified procedures for change point monitoring in linear regression models. Math Comput Simul 81:62–75

    Article  Google Scholar 

  • Chen Z, Tian Z, Wei Y (2010) Monitoring change in persistence in linear time series. Stat Probab Lett 80(19–20):1520–1527

    Article  Google Scholar 

  • Chen Z, Jin Z, Tian Z, Qi P (2012) Bootstrap testing multiple changes in persistence for a heavy-tailed sequence. Comput Stat Data Anal 56:2303–2316

    Article  Google Scholar 

  • Chen Z, Tian Z, Xing Y (2016a) Sieve bootstrap monitoring persistence change in long memory process. Stat Interface 9:37–45

    Article  Google Scholar 

  • Chen Z, Xing Y, Li F (2016b) Sieve bootstrap monitoring for change from short to long memory. Econ Lett 140:53–56

    Article  Google Scholar 

  • Chu CSJ, White H (1996) Monitoring structural change. Econometrica 64:1045–1065

    Article  Google Scholar 

  • Davidson J, De Jong RM (2000) The functional central limit theorem and weak convergence to stochastic integrals II: fractionally integrated processes. Econom Theory 16(5):643–666

    Article  Google Scholar 

  • Davidson J, Hashimzade N (2009) Type I and type II fractional Brownian motions: a reconsideration. Comput Stat Data Anal 53(6):2089–2106

    Article  Google Scholar 

  • Fukuda K (2006) Monitoring unit root and multiple structural changes: an information criterion approach. Math Comput Simul 71:121–130

    Article  Google Scholar 

  • Gombay E, Serban D (2009) Monitoring parameter change in AR(p) time series models. J Multivar Anal 100:715–725

    Article  Google Scholar 

  • Harvey D, Leybourne S, Taylor AMR (2006) Modified tests for a change in persistence. J Econom 134:441–469

    Article  Google Scholar 

  • Hassler U, Meller B (2014) Detecting multiple breaks in long memory: the case of U.S. inflation. Empir Econ 46:653–680

    Article  Google Scholar 

  • Hassler U, Scheithauer J (2011) Detecting changes from short to long memory. Stat Pap 52:847–870

    Article  Google Scholar 

  • Horváth L, Shao Q (1999) Limit theorems for quadratic forms with applications to Whittle’s estimates. J Appl Probab 9:146–187

    Google Scholar 

  • Iacone F, Lazarová Š (2019) Semiparametric detection of changes in long range dependence. J Time Ser Anal 40:693–706. https://doi.org/10.1111/jtsa.12448

    Article  Google Scholar 

  • Kejriwal M, Perron P, Zhou J (2013) Wald tests for detecting multiple structural changes in persistence. Econom Theory 29(2):289–323

    Article  Google Scholar 

  • Kim JY (2000) Detection of change in persistence of a linear time series. J Econom 95:97–116

    Article  Google Scholar 

  • Kirch C, Weber S (2018) Modified sequential change point procedures based on estimating functions. Electron J Stat 12(1):1579–1613

    Article  Google Scholar 

  • Lavancier F, Leipus R, Philippe A, Surgailis D (2013) Detection of nonconstant long memory parameter. Econom Theory 29(05):1009–1056

    Article  Google Scholar 

  • Leybourne SJ, Taylor R, Kim TH (2007) CUSUM of squares-based tests for a change in persistence. J Time Ser Anal 28:408–433

    Article  Google Scholar 

  • Park JY (2002) An invariance principle for sieve bootstrap in time series. Econ Theory 18:469–490

    Article  Google Scholar 

  • Preuss P, Vetter M (2013) Discriminating between long-range dependence and non-stationarity. Electron J Stat 7:2241–2297

    Article  Google Scholar 

  • Poskitt DS (2008) Properties of the sieve Bootstrap for fractionally integrated and non-invertible processes. J Time Ser Anal 29(2):224–250

    Article  Google Scholar 

  • Poskitt DS, Martin GM, Grose S (2017) Bias correction of semiparametric long memory parameter estimators via the prefiltered sieve bootstrap. Econom Theory 33:578–609

    Article  Google Scholar 

  • Sibbertsen P, Kruse R (2009) Testing for a break in persistence under long-range dependences. J Time Ser Anal 30(3):263–285

    Article  Google Scholar 

  • Steland A (2007) Monitoring procedures to detect unit roots and stationarity. Econ Theory 23:1108–1135

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and two anonymous referees for their detailed comments and valuable suggestions. This work was supported by the National Natural Science Foundation of China (Nos. 11661067, 61966030), Natural Science Foundation of Qinghai Province (No. 2019-ZJ-920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanshou Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 3.1

Let \(t=[Tr],\ n=[Ts],\ m=[T\tau ]\), then if \(\gamma _t=1\), we have \({\hat{\varepsilon }}_{0,i}=X_i-[T\tau ]^{-1}\sum \nolimits _{j=1}^{[T\tau ]}X_j\), and

$$\begin{aligned} {\hat{\varepsilon }}_{1,i}=\left\{ \begin{array}{ll} X_i-[T\tau ]^{-1}\sum \limits _{j=[Ts]-[T\tau ]+1}^{[Ts]}X_j, &{}\quad [Ts]\le 2[T\tau ],\\ X_i-([Ts]-[T\tau ])^{-1}\sum \limits _{j=[T\tau ]+1}^{[Ts]}X_j,&{}\quad [Ts]> 2[T\tau ]. \end{array} \right. \end{aligned}$$

Then,

$$\begin{aligned} T^{-\frac{1}{2}-d_0}\sum \limits _{i=1}^t{\hat{\varepsilon }}_{0,i}= & {} T^{-\frac{1}{2}-d_0}\sum \limits _{i=1}^{[Tr]} X_i-\frac{[Tr]T^{-\frac{1}{2}-d_0}}{[T\tau ]} \sum \limits _{j=1}^{[T\tau ]}X_j\nonumber \\\Rightarrow & {} \kappa (B_{d_0}(r)-r\tau ^{-1} B_{d_0}(\tau )) \nonumber \\:= & {} \kappa U_{1,0}(d_0,r). \end{aligned}$$
(14)
$$\begin{aligned} T^{-\frac{1}{2}-d_0}\sum \limits _{i=t+1}^{n}{\hat{\varepsilon }}_{1,i}= & {} \left\{ \begin{array}{ll} T^{-\frac{1}{2}-d_0}\sum \limits _{i=[Tr]+1}^{[Ts]} X_i-\frac{[Ts]-[Tr]}{[T\tau ]T^{\frac{1}{2}+d_0}} \sum \limits _{j=[Ts]-[T\tau ]+1}^{[Ts]}X_j,&{}\quad n\le 2m,\nonumber \\ T^{-\frac{1}{2}-d_0}\sum \limits _{i=[Tr]+1}^{[Ts]} X_i-\frac{([Ts]-[Tr])T^{-\frac{1}{2}-d_0}}{[Ts]-[T\tau ]} \sum \limits _{j=[T\tau ]+1}^{[Ts]}X_j,&{}\quad n> 2m \end{array} \right. \nonumber \\\Rightarrow & {} \left\{ \begin{array}{ll} \kappa \left( B_{d_0}(s)-B_{d_0}(r)-\frac{s-r}{\tau }( B_{d_0}(s)-B_{d_0}(s-\tau ))\right) ,&{}\quad s\le 2\tau \\ \kappa \left( B_{d_0}(s)-B_{d_0}(r)-\frac{s-r}{s-\tau }( B_{d_0}(s)-B_{d_0}(\tau ))\right) ,&{}\quad s> 2\tau \end{array} \right. \nonumber \\:= & {} \left\{ \begin{array}{ll} \kappa U_{1,1}(d_0,r),\\ \kappa U_{1,2}(d_0,r). \end{array} \right. \end{aligned}$$
(15)

When \(\gamma _t=(1,t)'\), let \(\delta =(\alpha ,\beta )'\), then by the definition of LS we have

$$\begin{aligned} \left( \begin{array}{c} {\hat{\alpha }}-\alpha \\ {\hat{\beta }}-\beta \end{array}\right)= & {} \left( \begin{array}{ll} \sum 1 &{}\quad \sum t\\ \sum t &{}\quad \sum t^2 \end{array}\right) ^{-1} \left( \begin{array}{l} \sum X_t\\ \sum tX_t \end{array}\right) \\= & {} \left| \begin{array}{ll} \sum 1 &{}\quad \sum t\\ \sum t &{}\quad \sum t^2 \end{array}\right| ^{-1} \left( \begin{array}{l} \left( \sum t^2\right) \left( \sum X_t\right) -\left( \sum t\right) \left( \sum tX_t\right) \\ -\left( \sum t\right) \left( \sum X_t\right) +\left( \sum 1\right) \left( \sum tX_t\right) \end{array}\right) \end{aligned}$$

where \(\sum =\sum \nolimits _{t=1}^{m}\), if we estimate \(\delta \) using the samples \(y_{1},\ldots ,y_{m}\), \(\sum =\sum \nolimits _{t=n-m+1}^{n}\), if we estimate \(\delta \) using the samples \(y_{n-m+1},\ldots ,y_{n}\), and \(\sum =\sum \nolimits _{t=m+1}^{n}\), if we estimate \(\delta \) using the samples \(y_{m+1},\ldots ,y_{n}\). Since

$$\begin{aligned}&12T^{-4}\left| \begin{array}{ll} \sum \limits _{t=1}^m 1 &{}\sum \limits _{t=1}^m t\\ \sum \limits _{t=1}^m t &{}\sum \limits _{t=1}^m t^2 \end{array}\right| = 12T^{-4}\left( \frac{1}{6}m^2(m+1)(2m+1)-\frac{1}{4}m^2(m+1)^2\right) \\&\quad \rightarrow \tau ^4, \\&\qquad 12T^{-7/2-d_0}\left( \left( \sum \limits _{t=1}^m t^2\right) \left( \sum \limits _{t=1}^m X_t\right) -\left( \sum \limits _{t=1}^m t\right) \left( \sum \limits _{t=1}^m tX_t\right) \right) \\&\quad =2T^{-3}m(m+1)(2m+1)T^{-1/2-d_0}\sum \limits _{t=1}^m X_t -\,6T^{-2}m(m+1)T^{-3/2-d_0}\sum \limits _{t=1}^m tX_t\\&\quad \Rightarrow 4\tau ^3\kappa B_{d_0}(\tau )\\&\qquad -\,6\tau ^{2}\kappa \left( \tau B_{d_0}(\tau )-\int _{0}^\tau B_{d_0}(v)\mathrm{d}v\right) \\&\qquad 12T^{-5/2-d_0}\left( -\left( \sum \limits _{t=1}^m t\right) \left( \sum \limits _{t=1}^m X_t\right) +\left( \sum \limits _{t=1}^m 1\right) \left( \sum \limits _{t=1}^m tX_t\right) \right) \\&\quad =-\,6T^{-2}m(m+1)T^{-1/2-d_0}\sum \limits _{t=1}^m X_t +12T^{-1}mT^{-3/2-d_0}\sum \limits _{t=1}^m tX_t\\&\quad \Rightarrow -\,6\tau ^2\kappa B_{d_0}(\tau )+12\tau \kappa \left( \tau B_{d_0}(\tau )-\int _{0}^\tau B_{d_0}(v)\mathrm{d}v\right) \end{aligned}$$

Hence, by a tedious calculation, we have

$$\begin{aligned}&T^{-\frac{1}{2}-d_0}\sum \limits _{i=1}^t{\hat{\varepsilon }}_{0,i}\nonumber \\&\quad =T^{-\frac{1}{2}-d_0}\sum \limits _{i=1}^{[Tr]}\left( X_i -({\hat{\alpha }}-\alpha )-({\hat{\beta }}-\beta )i\right) \nonumber \\&\quad \Rightarrow \kappa \left( B_{d_0}(r)-(2r\tau ^{-1}-3r^2\tau ^{-2})B_{d_0}(\tau ) +6r\tau ^{-3}(r-\tau )\int _{0}^\tau B_{d_0}(v)\mathrm{d}v \right) \nonumber \\&\quad := \kappa U_{2,0}(d_0,r). \end{aligned}$$
(16)

Let

$$\begin{aligned} K_1= & {} \frac{(s-r)}{4\left( s^3-(s-\tau )^3\right) -3\tau (2s-\tau )^2},\\ K_2= & {} \frac{(s-r)}{(s-\tau )^3}. \end{aligned}$$

Then, a similar arguments gives that if \(n\le 2m\),

$$\begin{aligned}&T^{-\frac{1}{2}-d_0}\sum \limits _{i=t}^{n}{\hat{\varepsilon }}_{1,i}\nonumber \\&\quad \Rightarrow \kappa \left\{ B_{d_0}(s)-B_{d_0}(r)- K_1(4\tau ^2+3\tau r-3\tau s)(B_{d_0}(s)-B_{d_0}(r))\right. \nonumber \\&\left. \qquad -6K_1(r+\tau -s)\left( \tau B_{d_0}(s-\tau )-\int _{s-\tau }^sB_{d_0}(v)\mathrm{d}v\right) \right\} \nonumber \\&\quad := \kappa U_{2,1}(d_0,r). \end{aligned}$$
(17)

If \(n> 2m\),

$$\begin{aligned}&T^{-\frac{1}{2}-d_0}\sum \limits _{i=t}^{[Ts]}{\hat{\varepsilon }}_{1,i}\nonumber \\&\quad \Rightarrow \kappa \left\{ B_{d_0}(s)-B_{d_0}(r)-K_2(4\tau ^2+(s+\tau )(s-3r))(B_{d_0}(s)-B_{d_0}(\tau ))\right. \nonumber \\&\left. \qquad - 6K_2(r-s)\left( sB_{d_0}(s)-\tau B_{d_0}(\tau )-\int _{\tau }^sB_{d_0}(v)\mathrm{d}v\right) \right\} \nonumber \\&\quad := \kappa U_{2,2}(d_0,r). \end{aligned}$$
(18)

Combining (14)–(18), together with the result \(\frac{T^k}{m^k} \rightarrow \tau ^{-k},\ \frac{T^k}{(n-m)^k} \rightarrow (s-\tau )^{-k}, \ k=2,3\), as \(T\rightarrow \infty \), Theorem 3.1 can be proved similar to Lavancier et al. (2013).

In the remainder of this section, we omit the proof for the case of \(\gamma _t = (1, t)'\); this follows the same logical development as those presented for the case of \(\gamma _t = 1\). In addition, we omit the proofs of Theorems 3.3 and 3.4, for these are similar to those of Theorems 3.1 and 3.2, respectively. \(\square \)

Proof of Theorem 3.2

From the proof of Theorem 3.1, we have the denominator of \(\varGamma _T(s)\) is \(O_p(T^{2+2d_0})\). If \(2\tau \ge s> \tau ^*\), then

$$\begin{aligned} T^{-\frac{1}{2}-d_1}\sum \limits _{i=[Ts]-[T\tau ]+1}^{[Ts]}X_i= & {} T^{-\frac{1}{2}-d_1}\sum \limits _{i=[Ts]-[T\tau ]+1}^{[T\tau ^*]}X_i +T^{-\frac{1}{2}-d_1}\sum \limits _{i=[T\tau ^*]+1}^{[Ts]}X_i\\\Rightarrow & {} O_p(T^{d_0-d_1})+\kappa (B_{d_1}(s)-B_{d_1}(\tau ^*)).\\ T^{-\frac{1}{2}-d_1}\sum \limits _{i=[Tr]+1}^{[Ts]}X_i= & {} \left\{ \begin{array}{ll} \sum \limits _{i=[Tr]}^{[T\tau ^*]}X_i+\sum \limits _{i=[T\tau ^*]+1}^{[Ts]}X_i,&{}\quad r\le \tau ^*\\ \sum \limits _{i=[Tr]}^{[Ts]}X_i,&{}\quad r> \tau ^* \end{array} \right. \\\Rightarrow & {} \left\{ \begin{array}{ll} O_p(T^{d_0-d_1})+\kappa (B_{d_1}(s)-B_{d_1}(\tau ^*)),&{}\quad r\le \tau ^*\\ \kappa (B_{d_1}(s)-B_{d_1}(r)),&{}\quad r> \tau ^*. \end{array} \right. \end{aligned}$$

Note that \(d_1>d_0\), so

$$\begin{aligned} T^{-\frac{1}{2}-d_1}\sum \limits _{i=t}^{[Ts]}{{\hat{\varepsilon }}}_{1,i}= & {} T^{-\frac{1}{2}-d_1}\sum \limits _{i=t}^{[Ts]}X_i-\frac{[Ts]-[Tr]}{[T\tau ]T^{\frac{1}{2}+d_1}}\sum \limits _{i=t}^{[Ts]}X_i\\\Rightarrow & {} \left\{ \begin{array}{ll} \kappa (B_{d_1}(s)-B_{d_1}(\tau ^*))-\frac{s-r}{\tau }\kappa (B_{d_1}(s)-B_{d_1}(\tau ^*)),&{}\quad r\le \tau ^*\\ \kappa (B_{d_1}(s)-B_{d_1}(r))-\frac{s-r}{\tau }\kappa (B_{d_1}(s)-B_{d_1}(\tau ^*)),&{}\quad r> \tau ^*. \end{array} \right. \end{aligned}$$

This indicates the numerator of \(\varGamma _T(s)\) is \(O_p(T^{2+2d_1})\) if \(2\tau \ge s> \tau ^*\). Similar calculation gives that this conclusion is still hold if \(s>2\tau \). Hence,

$$\begin{aligned} \varGamma _T(s)= O_p(T^{2(d_1-d_0)}),\,\,\, s\in (\tau +\tau ^*,1]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Xiao, Y. & Li, F. Monitoring memory parameter change-points in long-memory time series. Empir Econ 60, 2365–2389 (2021). https://doi.org/10.1007/s00181-020-01840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-020-01840-4

Keywords

JEL Classification

Navigation