Skip to main content
Log in

Nonparametric estimation of expected shortfall for α-mixing financial losses

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the Bahadur type representation of a nonparametric expected shortfall estimator for \(\alpha \)-mixing financial losses. Based on the Bahadur type representation, we further establish the Berry–Esseen bound of the nonparametric expected shortfall estimator. It is shown that the optimal rate can achieve nearly \(O(n^{-1/8})\) under some appropriate conditions. We also carry out some numerical simulations and a real data example to support our theoretical results based on finite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Mathem Financ 9(3):203–228

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SX (2008) Nonparametric estimation of expected shortfall. J Financ Econometr 6:87–107

    Article  Google Scholar 

  • Doukhan P (1994) Mixing properties and examples, vol 85. Lecture notes in statistics. Springer, Berlin

    MATH  Google Scholar 

  • Embrechts P, Klüeppelberg C, Mikosch T (1997) Modeling extremal events for insurance and finance. Springer, Berlin

    Book  MATH  Google Scholar 

  • Frey R, McNeil AJ (2002) VaR and expected shortfall in portfolios of dependent credit risks: conceptual and practical insights. J Bank Financ 26(7):1317–1334

    Article  Google Scholar 

  • Gorodeskii VV (1977) On the strong mixing property for linear sequences. Theory Probab Appl 22:411–413

    Article  Google Scholar 

  • Mausser H, Rosen D (1998) Beyond VaR: from measuring risk to managing risk. Algo Res Quart 1(2):5–20

    Google Scholar 

  • Mckay R, Keefer TE (1996) VaR is a dangerous technique. Corporate Finance, Searching for Systems Integration Supplement, September

  • Pollard D (1984) Convergence of stochastic processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • Roussas GG, Ioannides D (1987) Moment inequalities for mixing sequences of random variables. Stoch Anal Appl 5(1):60–120

    Article  MathSciNet  MATH  Google Scholar 

  • Scaillet O (2004) Nonparametric estimation and sensitivity analysis of expected shortfall. Mathem Financ 14:115–129

    Article  MathSciNet  MATH  Google Scholar 

  • Withers CS (1981) Conditions for linear processes to be strong-mixing. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete 57(4):477–480

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Y, Yu W, Balakrishnan N, Wang XJ (2022) Nonparametric estimation of expected shortfall via Bahadur-type representation and Berry-Esséen bounds. J Stat Comput Simul 92(3):544–566

    Article  MathSciNet  MATH  Google Scholar 

  • Yang SC (2000) Moment bounds for strong mixing sequences and their application. J Mathem Res Exposit 20(3):349–359

    MathSciNet  MATH  Google Scholar 

  • Yang SC (2003) Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples. Stat Probab Lett 62(2):101–110

    Article  MathSciNet  MATH  Google Scholar 

  • Yang SC (2007) Maximal moment inequality for partial sums of strong mixing sequences and application. Acta Mathem Sin Engl Ser 23(6):1013–1024

    Article  MathSciNet  MATH  Google Scholar 

  • Yang SC, Li YM (2006) Uniformly asymptotic normality of the regression weighted estimator for \(\alpha \)-mixing samples. Acta Mathem Sin Chin Ser 49:1163–1170

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The study was supported by the National Social Science Foundation of China (22BTJ059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

To prove our main results, the following lemmas are indispensable. The first one can be found in Roussas and Ioannides (1987).

Lemma A.1

Suppose that \(\xi \) and \(\eta \) are \(\mathcal {F}_{1}^{k}\)-measurable and \(\mathcal {F}_{k+n}^{\infty }\)-measurable random variables, respectively. If \(E|\xi |^{p}<\infty \), \(E|\eta |^{q}<\infty \) for some \(p,q,t>1\) with \(p^{-1}+q^{-1}+t^{-1}=1\). Then

$$\begin{aligned} |E\xi \eta -E\xi E\eta |\le 10\alpha ^{1/t}(n)\Vert \xi \Vert _{p}\Vert \eta \Vert _{q}. \end{aligned}$$

The next lemma is Theorem 2.1 of Yang (2007).

Lemma A.2

Let \(r>2,\eta >0\), and \(\{e_{i},i\ge 1\}\) be a sequence of \(\alpha \)-mixing random variables with \(Ee_{i}=0\) and \(E|e_{i}|^{r+\eta }<\infty \) for each \(i\ge 1\). Suppose that \(\alpha (n)=O(n^{-\lambda })\) for some \(\lambda >r(r+\eta )/(2\eta )\). Then for any \(\epsilon >0\), there exists a positive constant C depending only on \(\varepsilon ,r,\eta \), and \(\lambda \) such that for each \(n\ge 1\),

$$\begin{aligned} E\left( \max _{1\le m\le n}\left| \sum _{i=1}^{m}e_{i}\right| ^{r}\right) \le C\left\{ n^{\epsilon }\sum _{i=1}^{n}E|e_{i}|^{r}+\left( \sum _{i=1}^{n}\Vert e_{i}\Vert _{r+\eta }^{2}\right) ^{r/2}\right\} . \end{aligned}$$

The following lemma comes from Yang (2000).

Lemma A.3

Let \(\{a_{i},i\ge 1\}\) be a real sequence and \(\{Y_{i},i\ge 1\}\) be a sequence of zero mean \(\alpha \)-mixing random variables with \(E|Y_{i}|^{2+\delta }<\infty \) for some \(\delta >0\). Then for all \(n\ge 1\),

$$\begin{aligned} E\left( \sum _{i=1}^{n}a_{i}Y_{i}\right) ^{2}\le \left( 1+20\sum _{m=1}^{n}\alpha ^{\delta /(2+\delta )}(m)\right) \sum _{i=1}^{n}a_{i}^{2}\Vert Y_{i}\Vert _{2+\delta }^{2}. \end{aligned}$$

The following lemma can be seen in Yang and Li (2006).

Lemma A.4

Let p and q be positive integers and \(\{e_{i},i\ge 1\}\) be a sequence of \(\alpha \)-mixing random variables. Set \(\eta _{l}=:\sum _{j=(l-1)(p+q)+1}^{(l-1)(p+q)+p}e_{j}, 1\le l\le k\). Assume that \(r>0\) and \(s>0\) such that \(1/r+1/s=1\). Then there exists some positive constant C such that for any \(t\in \mathbb {R}\),

$$\begin{aligned} \left| E\exp \left\{ it\sum _{l=1}^{k}\eta _{l}\right\} -\prod _{l=1}^{k}E\exp \{it\eta _{l}\}\right| \le C|t|\alpha ^{1/s}(q)\sum _{l=1}^{k}\Vert \eta _{l}\Vert _{r}. \end{aligned}$$

The last one can be found in Yang (2003) for instance.

Lemma A.5

Suppose that \(\{\zeta _{n},n\ge 1\}\) and \(\{\eta _{n},n\ge 1\}\) are two sequences of random variables, \(\{\gamma _{n},n\ge 1\}\) is a positive constant sequence with \(\gamma _{n}\rightarrow 0\) as \(n\rightarrow \infty \). If

$$\begin{aligned} \sup _{-\infty<u<\infty }|F_{\zeta _{n}}(u)-\Phi (u)|\le C\gamma _{n}, \end{aligned}$$

the for any \(\varepsilon >0\),

$$\begin{aligned} \sup _{-\infty<u<\infty }|F_{\zeta _{n}+\eta _{n}}(u)-\Phi (u)|\le C[\gamma _{n}+\varepsilon +P(|\eta _{n}|>\varepsilon )]. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, Y. & Wang, W. Nonparametric estimation of expected shortfall for α-mixing financial losses. Comput Stat (2023). https://doi.org/10.1007/s00180-023-01434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00180-023-01434-5

Keywords

Navigation