Skip to main content
Log in

Rank estimation for the function-on-scalar model

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Rank regression method has been widely pursued for robust inference in statistical models. Unfortunately, there does not exist related literature for the function-on-scalar model, which is the focus of this paper. We study the robust estimation based on rank regression and B-spline approximations for the function-on-scalar model and further establish the theoretical properties of the proposed method under regularity conditions. Extensive simulation studies and two real data applications are given to illustrate the merits of the proposed approach. Numerical results show that the proposed method is competitive with existing robust estimation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Beyaztas U, Shang HL, Alin A (2022) Function-on-function partial quantile regression. J Agric Biol Environ Stat 27:149–174

    MathSciNet  Google Scholar 

  • Cai X, Xue L, Cao J (2021) Robust penalized M-estimation for function-on-function linear regression. Stat 10:e390

    MathSciNet  Google Scholar 

  • Cao G, Wang S, Wang L (2020) Estimation and inference for functional linear regression models with partially varying regression coefficients. Stat 9:e286

    MathSciNet  Google Scholar 

  • Cardot H, Crambes C, Sarda P (2005) Quantile regression when the covariates are functions. J Nonparametr Stat 17:841–856

    MathSciNet  Google Scholar 

  • Chen Y, Goldsmith J, Ogden R (2016) Variable selection in function-on-scalar regression. Stat 5:88–101

    MathSciNet  Google Scholar 

  • Denhere M, Bindele HF (2016) Rank estimation for the functional linear model. J Appl Stat 43:1928–1944

    MathSciNet  Google Scholar 

  • Feng L, Zou C, Wang Z (2012) Rank-based inference for the single-index model. Stat Probab Lett 82:535–541

    MathSciNet  Google Scholar 

  • Feng L, Zou C, Wang Z, Wei X, Chen B (2015) Robust spline-based variable selection in varying coefficient model. Metrika 78:85–118

    MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    Google Scholar 

  • Goldsmith J, Kitago T (2016) Assessing systematic effects of stroke on motorcontrol by using hierarchical function-on-scalar regression. J R Stat Soc Ser C Appl Stat 65:215–236

    MathSciNet  Google Scholar 

  • Guo C, Yang H, Lv J, Wu J (2016) Joint estimation for single index mean-covariance models with longitudinal data. J Korean Stat Soc 45:526–543

    MathSciNet  Google Scholar 

  • Guo C, Yang H, Lv J (2017) Robust variable selection in high-dimensional varying coefficient models based on weighted composite quantile regression. Stat Pap 58:1009–1033

    MathSciNet  Google Scholar 

  • He X, Fung W, Zhu Z (2005) Robust estimation in generalized partial linear models for clustered data. J Am Stat Assoc 100:1176–1184

    MathSciNet  Google Scholar 

  • Hettmansperger TP, McKean JW (2011) Robust nonparametric statistical methods, 2nd edn. Chapman and Hall, Boca Raton

    Google Scholar 

  • Jaeckel LA (1972) Estimating regression coefficients by minimizing the dispersion of residuals. Ann Math Stat 43:1449–1458

    MathSciNet  Google Scholar 

  • Johnson BA, Peng L (2008) Rank-based variable selection. J Nonparametr Stat 20:241–252

    MathSciNet  Google Scholar 

  • Jureckova J (1971) Nonparametric estimate of regression coefficients. Ann Math Stat 42:1328–1338

    MathSciNet  Google Scholar 

  • Kato K (2012) Estimation in functional linear quantile regression. Ann Stat 40:3108–3136

    MathSciNet  Google Scholar 

  • Kim M (2007) Quantile regression with varying coefficients. Ann Stat 35:92–108

    MathSciNet  Google Scholar 

  • Knight K (1998) Limiting distributions for \(L_1\) regression estimators under general conditions. Ann Stat 26:755–770

    MathSciNet  Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    MathSciNet  Google Scholar 

  • Leng C (2010) Variable selection and coefficient estimation via regularized rank regression. Ann Stat 20:167–181

    MathSciNet  Google Scholar 

  • Li J, Lian H, Jiang X, Song X (2018) Estimation and testing for time-varying quantile single-index models with longitudinal data. Comput Stat Data Anal 118:66–83

    MathSciNet  Google Scholar 

  • Lv J, Yang H, Guo C (2016) Robust estimation for varying index coefficient models. Comput Stat 31:1131–1167

    MathSciNet  Google Scholar 

  • Martínez-Hernández I (2019) Robust depth-based estimation of the functional autoregressive model. Comput Stat Data Anal 131:66–79

    MathSciNet  Google Scholar 

  • Noh H, Chung K, Keilegom I (2012) Variable selection of varying coefficient models in quantile regression. Electron J Stat 6:1220–1238

    MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, New York

    Google Scholar 

  • Reiss PT, Huang L, Mennes M (2010) Fast function-on-scalar regression with penalized basis expansions. Int J Biostat 6:28

    MathSciNet  Google Scholar 

  • Sang P, Cao J (2020) Functional single-index quantile regression models. Stat Comput 30:771–781

    MathSciNet  Google Scholar 

  • Schumaker L (1981) Spline functions: basic theory. Wiley, New York

    Google Scholar 

  • Sievers GL, Abebe A (2004) Rank estimation of regression coefficients using iterated reweighted least squares. J Stat Comput Simul 74:821–831

    MathSciNet  Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Google Scholar 

  • Stone CJ (1982) Optimal rates of convergence for nonparametric estimators. Ann Stat 8:1348–1360

    MathSciNet  Google Scholar 

  • Sun J, Lin L (2014) Local rank estimation and related test for varying-coefficient partially linear models. J Nonparametr Stat 26:187–206

    MathSciNet  Google Scholar 

  • Wang L, Li R (2009) Weighted Wilcoxon-type smoothly clipped absolute deviation method. Biometrics 65:564–571

    MathSciNet  Google Scholar 

  • Wang L, Kai B, Li R (2009) Local rank inference for varying coefficient models. J Am Stat Assoc 488:1631–1645

    MathSciNet  Google Scholar 

  • Wolberg G, Alfy I (2002) An energy-minimization framework for monotonic cubic spline interpolation. J Comput Appl Math 143:145–188

    MathSciNet  Google Scholar 

  • Yang J, Yang H, Lu F (2019) Rank-based shrinkage estimation for identification in semiparametric additive models. Stat Pap 60:1255–1281

    MathSciNet  Google Scholar 

  • Yu D, Kong L, Mizera I (2016) Partial functional linear quantile regression for neuroimaging data analysis. Neurocomputing 195:74–87

    Google Scholar 

  • Zhang J, Chen J (2007) Statistical inferences for functional data. Ann Stat 35:1052–1079

    MathSciNet  Google Scholar 

  • Zhang F, Li R, Lian H, Bandyopadhyay D (2021) Sparse reduced-rank regression for multivariate varying-coefficient models. J Stat Comput Simul 91:752–767

    MathSciNet  Google Scholar 

  • Zhu H, Li R, Kong L (2012) Multivariate varying coefficient model for functional responses. Ann Stat 40:2634–2666

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Mingtao Zhao’s research was supported by the University Social Science Research Project of Anhui Province (Grant No. SK2020A0051) and the Anhui Provincial Philosophy and Social Science Project (Grant No. AHSKF2022D08). Ning Li’s research was supported by the Anhui Natural Science Foundation project (Grant No. 2108085QA16) and the Anhui University Natural Science Research Project (Grant No. KJ2021A0997). Jing Yang’s research was supported by the Natural Science Foundation of Hunan Province (Grant No. 2022JJ30368) and the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 22A0040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Technical proofs

Appendix: Technical proofs

We denote the cdf and pdf of \(\varepsilon _{ijk}=\varepsilon _{ik}-\varepsilon _{jk}\) as \(G_k\) and \(g_k\) respectively. By simple algebra operation we can get \(g_k(\nu )=\int f_k(t)f_k(t-\nu )dt\). By the Corollary 6.21 of Schumaker (1981), there exists a vector \({\varvec{\lambda }}_0=({\varvec{\lambda }}^T_{01},\ldots ,{\varvec{\lambda }}^T_{0p})^T\) such that \(\Vert {\varvec{B}}^T(s){\varvec{\lambda }}_{0\ell }-\beta _{0\ell }(s)\Vert =O_{p}({J^{-r}_n})\) for \(\ell =1,\ldots ,p\). In the proofs, C denotes a generic constant that might assume different values at different places.

Proof of Theorem 1

Let \(\delta _n=n^{-r/(2r+1)}\), \({\varvec{u}}_n=\delta ^{-1}_n({\varvec{\lambda }}-{\varvec{\lambda }}_0)\) with \({\varvec{u}}_{n\ell }=\delta ^{-1}_n({\varvec{\lambda }}_\ell -{\varvec{\lambda }}_{0\ell })\). We want to show that for any given \(\eta >0\), there exists a large constant C such that, for large n we have

$$\begin{aligned} P\left\{ \inf _{\Vert {\varvec{u}}_n\Vert =C} {\mathcal {L}}_{n}({\varvec{\lambda }}_{0}+\delta _{n} {\varvec{u}}_{n})>\mathcal { L}_{n}({\varvec{\lambda }}_{0})\right\} \ge 1-\eta . \end{aligned}$$
(9)

This implies that, with probability tending to one, there is local minimum \(\hat{{\varvec{\lambda }}}\) in the ball \(\{{\varvec{\lambda }}_0+\delta _{n}{\varvec{u}}_{n},\Vert {\varvec{u}}_{n}\Vert \le C\}\) such that \(\Vert \hat{{\varvec{\lambda }}}-{\varvec{\lambda }}_{0}\Vert =O_{p}(\delta _{n})\).

Let \(D_n={\mathcal {L}}_{n}({\varvec{\lambda }}_{0}+\delta _{n} {\varvec{u}}_{n})-{\mathcal {L}}_{n}({\varvec{\lambda }}_{0})\), then

$$\begin{aligned} D_n=\frac{1}{2nm}\sum _{k=1}^m\sum _{i,j}\left\{ |\varepsilon _{ijk}-R_{ijk}-\delta _n{\varvec{\Pi }}^T_{ijk}{\varvec{u}}_{n}|-|\varepsilon _{ijk}-R_{ijk}|\right\} \triangleq&I, \end{aligned}$$
(10)

where \(R_{ijk}={\varvec{\Pi }}^T_{ijk}{\varvec{\lambda }}_{0}-{\varvec{Z}}^T_i{\varvec{\beta }}_0(s_k)+{\varvec{Z}}^T_j{\varvec{\beta }}_0(s_k)\) with \({\varvec{\Pi }}_{ijk}={\varvec{\Pi }}_{ik}-{\varvec{\Pi }}_{jk}\).

By knight’s identity (Knight 1998),

$$\begin{aligned} (|r-z|-|r|) / 2=-z\left( \frac{1}{2}-I(r<0)\right) +\int _{0}^{z}[I(r \le t)-I(r \le 0)] dt, \end{aligned}$$

we have

$$\begin{aligned} I=&-\frac{1}{nm}\sum _{k=1}^m\sum _{i, j} \delta _{n}{\varvec{\Pi }}_{i jk}^{T}{\varvec{u}}_{n}\left[ \frac{1}{2}-I(\varepsilon _{i jk}-R_{ijk}<0)\right] \nonumber \\&+\frac{1}{nm}\sum _{k=1}^m\sum _{i, j} \int _{0}^{\delta _{n} {\varvec{\Pi }}_{i jk}^{T}{\varvec{u}}_{n}}[I(\varepsilon _{i jk} \le t+R_{ i jk})-I(\varepsilon _{i jk} \le R_{ i jk})] d t\nonumber \\ \triangleq&\frac{1}{m}\sum _{k=1}^mI_1+\frac{1}{m}\sum _{k=1}^mI_2, \end{aligned}$$
(11)

For \(I_1\), we have

$$\begin{aligned} I_{1}&=-\frac{1}{n} \sum _{i, j} \delta _{n}{\varvec{\Pi }}_{i jk}^{T}{\varvec{u}}_{n}\left[ \frac{1}{2}-I(\varepsilon _{i jk}-R_{ijk}<0)\right] \nonumber \\&=-\frac{1}{n} \sum _{i, j} \delta _{n} {\varvec{\Pi }}_{i jk}^{T}{\varvec{u}}_{n}\left[ \frac{1}{2}-I(\varepsilon _{i jk}<0)\right] \nonumber \\&\quad -\frac{1}{n} \sum _{i, j} \delta _{n}{\varvec{\Pi }}_{i jk}^{T}{\varvec{u}}_{n}[I(\varepsilon _{i jk}<0)-I(\varepsilon _{i jk}-R_{ i jk}<0)] \nonumber \\&=-\frac{1}{n} \delta _{n}\sum _{i=1}^{n} {\varvec{\Pi }}_{ik}^{T}\{2 R(\varepsilon _{ik})-(n+1)\} {\varvec{u}}_{n}\nonumber \\&\quad -\frac{1}{n}\sum _{i, j} \delta _{n}{\varvec{\Pi }}_{i jk}^{T}[I(\varepsilon _{i jk}<0)-I(\varepsilon _{i jk}-R_{ ijk}<0)] {\varvec{u}}_{n} \nonumber \\&\triangleq I_{11}+I_{12}, \end{aligned}$$
(12)

where \(R(\varepsilon _{ik})\) is the rank statistic of \(\varepsilon _{ik}\), \(I_{11}= W^T_n{\varvec{u}}_{n}\) with \(W_n=-\frac{1}{n} \delta _{n}\sum _{i=1}^{n} {\varvec{\Pi }}_{ik}^{T}\{2 R(\varepsilon _{ik})-(n+1)\}\). By the independence between \({\varvec{Z}}_i\) and \(\varepsilon _{ik}\) and condition (C1), \({\text {E}}(W_n)=0\), \( {\text {Cov}}(W_n)=\frac{1}{n^2}\delta ^2_{n}{\varvec{\Pi }}^T_{k} {\text {Cov}}(\zeta _k){\varvec{\Pi }}_{k}\) for \({\varvec{\Pi }}_{k}=(\Pi _{1k},\ldots ,\Pi _{nk})^T\) and \(\zeta _k=(2 R(\varepsilon _{1k})-(n+1), \ldots , 2 R(\varepsilon _{nk})-(n+1))^{T}\). According to the Theorem 1 of Leng (2010), the diagonal terms of \(\frac{1}{n^2} {\text {Cov}}(\zeta )\) are

$$\begin{aligned} \frac{1}{n^2}{\text {Var}}(\zeta _{ik})&=\frac{1}{n^2} \sum _{i=1}^{n}\{2 i-(n+1)\}^{2} \frac{1}{n}=\frac{4(n+1)^{2}}{n^{3}} \\&\quad \sum _{i=1}^{n}\left( \frac{i}{(n+1)}-\frac{1}{2}\right) ^{2} \rightarrow 4 \int \left(t-\frac{1}{2}\right)^{2} d t=1 / 3, \end{aligned}$$

and its off-diagonal terms are

$$\begin{aligned} \frac{1}{n^2} {\text {Cov}}(\zeta _{ik}, \zeta _{jk})&=\frac{1}{n^2}\sum _{i=1}^{n} \sum _{j \ne i}\{2 i-(n+1)\}\{2 j-(n+1)\} \frac{1}{n(n-1)}\\&=-\frac{4(n+1)^{2}}{n^{2}(n-1)} \int (t-\frac{1}{2})^{2} d t \rightarrow 0. \end{aligned}$$

Thus, we have \({\text {E}}(I_{11})=0\) and \({\text {Var}}(I_{11})=\delta _{n}^{2} {\varvec{u}}^{T}_{n} {\varvec{\Pi }}^T_{k} n^{-2} {\text {Cov}}(\zeta ) {\varvec{\Pi }}_{k} {\varvec{u}}_{n} \rightarrow \frac{1}{3} \delta _{n}^{2} {\varvec{u}}^{T}_{n} {\varvec{\Pi }}^T_{k}{\varvec{\Pi }}_{k} {\varvec{u}}_{n}\).

Applying the Markov inequality, we have

$$\begin{aligned} P(|I_{11}|&\ge n \delta _{n}^{2}\Vert {\varvec{u}}_{n}\Vert ) \le \frac{{\text {Var}}(I_{11})}{\Vert {\varvec{u}}_{n}\Vert ^{2} n^{2} \delta _{n}^{4}} \rightarrow \frac{1}{3\Vert {\varvec{u}}_{n}\Vert ^{2} n^{2} \delta _{n}^{4}} \delta _{n}^{2} {\varvec{u}}^T_{n} {\varvec{\Pi }}^T_{k}{\varvec{\Pi }}_{k} {\varvec{u}}_{n} \\&\le \frac{\delta _{n}^{2}\Vert {\varvec{u}}_{n}\Vert ^{2} \lambda _{\max }({\varvec{\Pi }}^T_{k}{\varvec{\Pi }}_{k})}{3\Vert {\varvec{u}}_{n}\Vert ^{2} n^{2} \delta _{n}^{4}} \rightarrow 0, \end{aligned}$$

where \(\lambda _{\max }(M)\) denotes the maximum eigenvalue of a positive definite matrix M. Hence, \(I_{11}=o_{p}(n \delta _{n}^{2})\Vert {\varvec{u}}_{n}\Vert \).

On the other hand, based on the independence between \({\varvec{Z}}_i\) and \(\varepsilon _{ik}\) and condition (C1), it follows that \({\text {E}}(I_{12})=0\). By the similar arguments of Theorem 1(a) of Noh et al. (2012), we have

$$\begin{aligned} {\text {E}}(I_{12}^{2})&={\text {E}}\bigg (n^{-1}\sum _{i, j} \delta _{n}{\varvec{\Pi }}_{i jk}^{T}[I(\varepsilon _{i jk}<0)-I(\varepsilon _{i jk}-R_{i jk}<0)] {\varvec{u}}_{n}\bigg )^{2} \\&=n^{-2}\delta _{n}^{2}{\text {E}}\bigg (\sum _{i, j}{\varvec{\Pi }}_{i jk}^{T}{\varvec{u}}_{n}[I(\varepsilon _{i jk}<0)-I(\varepsilon _{i jk}-R_{i jk}<0)]\bigg )^{2} \\&\le n^{-2} \delta _{n}^{2} n^{4}\bigg \{{\text {E}}[I(\varepsilon _{12k}<0)-I(\varepsilon _{12k}-R_{ 12k}<0)]\bigg \}^{2} {\text {E}}({\varvec{u}}^T_{n} {\varvec{\Pi }}_{12k} {\varvec{\Pi }}_{12k}^{T} {\varvec{u}}_{n}) \\&=n^{-2} \delta _{n}^{2} n^{4}[G_k(0)-G_k(R_{12k})]^{2} {\text {E}}({\varvec{u}}^T_{n} {\varvec{\Pi }}_{12k} {\varvec{\Pi }}_{12k}^{T} {\varvec{u}}_{n})\\&=-n^{2} \delta _{n}^{2}\{g_k(0) R_{12k}(1+o(1))\}^{2}{\varvec{u}}^T_{n} {\text {E}}({\varvec{\Pi }}_{12k} {\varvec{\Pi }}_{12k}^{T} ){\varvec{u}}_{n}\\&=O(n^{2} \delta _{n}^{4})\Vert {\varvec{u}}_{n}\Vert ^{2}. \end{aligned}$$

Therefore, we have \(I_{12}=O_p(n \delta _{n}^{2})\Vert {\varvec{u}}_{n}\Vert \).

Next, use condition (C1) and the Markov inequality, taking the similar arguments as in Guo et al. (2017), it can be shown that

$$\begin{aligned} P\bigg (\max _{i, j}(\delta _{n}|{\varvec{\Pi }}_{i jk}^{T} {\varvec{u}}_{n}|)>\eta \bigg )&=P\bigg (\bigcup _{i, j=1}^{n}(\delta _{n}|{\varvec{\Pi }}_{i jk}^{T} {\varvec{u}}_{n}|>\eta )\bigg ) \\&\le n^{2} P\left( \delta _{n}\left| {\varvec{\Pi }}_{12k}^{T} {\varvec{u}}_{n}\right| >\eta \right) \\&\le n^{2} \frac{\delta _{n}^{6}}{\eta ^{6}} {\text {E}}\left( {\varvec{\Pi }}_{12k}^{T} {\varvec{u}}_{n}\right) ^{6} \\&\le n^{2} \frac{\delta _{n}^{6}}{\eta ^{6}}\Vert {\varvec{u}}_{n}\Vert ^{6} {\text {E}}\left\| {\varvec{\Pi }}_{12k}\right\| ^{6} \\&\le n^{2} \frac{\delta _{n}^{6}}{\eta ^{6}} C^{6} M^{6} \rightarrow 0. \end{aligned}$$

Thus,

$$\begin{aligned} \max _{i, j}\left( \delta _{n}\left| {\varvec{\Pi }}_{i jk}^{T} {\varvec{u}}_{n}\right| \right) =o_p(1). \end{aligned}$$
(13)

By conditions (C1) and (C4), and the Lebesgue’s dominated convergence theorem, we have

$$\begin{aligned} {\text {E}}(I_{2})&={\text {E}}\left\{ {\text {E}}\left[ n^{-1} \sum _{i,j} \int _{0}^{\delta _{n} {\varvec{\Pi }}_{ijk}^{T} {\varvec{u}}_{n}}(I(\varepsilon _{i jk} \le t+R_{i jk})-I(\varepsilon _{i jk} \le R_{ ijk})) d t\right] \right\} \\&={\text {E}}\left[ n^{-1} \sum _{i, j} \int _{0}^{\delta _{n}{\varvec{\Pi }}_{ijk}^{T} {\varvec{u}}_{n}}\left\{ G_k\left( t+R_{i jk}\right) -G_k\left( R_{i jk}\right) \right\} d t\right] \\&=n^{-1} \sum _{i, j} E\left[ \int _{0}^{\delta _{n}{\varvec{\Pi }}_{ijk}^{T} {\varvec{u}}_{n}} g_k(R_{ i jk}) t(1+o(1)) d t\right] \\&=\frac{1}{2n} g_k(0)(1+o(1)) \delta _{n}^{2}{\varvec{u}}^T_{n}{\text {E}}(\sum _{i, j} {\varvec{\Pi }}_{ijk} {\varvec{\Pi }}^T_{ijk}) {\varvec{u}}_{n} \end{aligned}$$

Here we use the (13) in the third step.

By noting that

$$\begin{aligned}&{\text {Var}}\left( I_{2 i jk}\right) \\&= n^{-2} {\text {E}}\left\{ \int _{0}^{\delta _{n} {\varvec{\Pi }}_{ijk}^{T} {\varvec{u}}_{n}}\bigg [I(\varepsilon _{i jk} \le t+R_{i jk})-I(\varepsilon _{i jk} \le R_{i jk})-(G_k(t+R_{i jk}) -G_k(R_{i jk}))\bigg ] d t\right\} ^{2} \\&\le n^{-2} E\left\{ \left| \int _{0}^{\delta _{n} {\varvec{\Pi }}_{ijk}^{T} {\varvec{u}}_{n}}\bigg [I(\varepsilon _{i jk} \le t+R_{i jk})-I(\varepsilon _{i jk} \le R_{i jk}) -(G_k(t+R_{i jk})-G_k(R_{ i jk}))\bigg ] d t\right| \right\} \\&\quad \times 2 \delta _{n}\left| {\varvec{\Pi }}_{ijk}^{T} {\varvec{u}}_{n}\right| \le 4 n^{-2} \delta _{n} \max \left| {\varvec{\Pi }}_{ijk}^{T} {\varvec{u}}_{n}\right| {\text {E}}\left( I_{2 i jk}\right) . \end{aligned}$$

Again by (13), we have

$$\begin{aligned} {\text {Var}}\left( I_{2}\right) \le n^{2} \sum _{i j} {\text {Var}}\left( I_{2 i jk}\right) \le 4 \delta _{n} \max \left| {\varvec{\Pi }}_{ijk}^{T} {\varvec{u}}_{n}\right| {\text {E}}\left( I_{2}\right) =o\left( n \delta _{n}^{2}\right) \Vert {\varvec{u}}_{n}\Vert ^2, \end{aligned}$$

Therefor, we have \(I_2=\frac{1}{2n} g_k(0)\delta _{n}^{2}{\varvec{u}}^T_{n}{\text {E}}(\sum _{i, j} {\varvec{\Pi }}_{ijk} {\varvec{\Pi }}^T_{ijk}) {\varvec{u}}_{n}+o_p(\sqrt{n \delta _{n}^{2}})\Vert {\varvec{u}}_{n}\Vert \). It follows from the above analysis that the \(D_n\) in (10) is dominated by the positive quadratic term of \(I_2\) as long as \(\Vert {\varvec{u}}_{n}\Vert \) is large enough. Hence (9) holds. In particular, this implies that \(\Vert {\hat{\beta }}_{\ell }(s)-\beta _{0\ell }(s)\Vert =O_{p}(n^{-r /(2 r+1)})\) for \(\ell =1,2,\ldots ,p\). We complete the proof of Theorem 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zhao, M., Li, N. et al. Rank estimation for the function-on-scalar model. Comput Stat 39, 1807–1823 (2024). https://doi.org/10.1007/s00180-023-01414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-023-01414-9

Keywords

Navigation