Skip to main content
Log in

A fast iterative algorithm for high-dimensional differential network

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

A differential network is an important tool for capturing the changes in conditional correlations under two sample cases. In this paper, we introduce a fast iterative algorithm to recover the differential network for high-dimensional data. The computational complexity of our algorithm is linear in the sample size and the number of parameters, which is optimal in that it is of the same order as computing two sample covariance matrices. The proposed method is appealing for high-dimensional data with a small sample size. The experiments on simulated and real datasets show that the proposed algorithm outperforms other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson T (2003) An introduction to multivariate statistical analysis. Wiley series in probability and statistics. Wiley, New York

    MATH  Google Scholar 

  • Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M et al (2010) Rewiring of genetic networks in response to DNA damage. Science 330(6009):1385–1389

    Article  Google Scholar 

  • Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101

    Article  Google Scholar 

  • Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56

    Article  Google Scholar 

  • Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel PJ, Levina E (2008) Regularized estimation of large covariance matrices. Ann Stat 36(1):199–227

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  MATH  Google Scholar 

  • Cai T, Liu W (2011) Adaptive thresholding for sparse covariance matrix estimation. J Am Stat Assoc 106(494):672–684

    Article  MathSciNet  MATH  Google Scholar 

  • Cai T, Zhang L (2018) A convex optimization approach to high-dimensional sparse quadratic discriminant analysis. Ann Stat (submitted)

  • Cai T, Liu W, Luo X (2011) A constrained \(\ell _1\) minimization approach to sparse precision matrix estimation. J Am Stat Assoc 106(494):594–607

    Article  MATH  Google Scholar 

  • Ding X, Yang Y, Han B, Du C, Xu N, Huang H, Cai T, Zhang A, Han ZG, Zhou W, Chen L (2014) Transcriptomic characterization of hepatocellular carcinoma with ctnnb1 mutation. PLoS ONE 9(5):e95307

    Article  Google Scholar 

  • Fan J, Liao Y, Liu H (2016) An overview of the estimation of large covariance and precision matrices. Econom J 19(1):C1–C32

    Article  MathSciNet  Google Scholar 

  • Gambardella G, Moretti MN, De Cegli R, Cardone L, Peron A, Di Bernardo D (2013) Differential network analysis for the identification of condition-specific pathway activity and regulation. Bioinformatics 29(14):1776–1785

    Article  Google Scholar 

  • Gambardella G, Peluso I, Montefusco S, Bansal M, Medina DL, Lawrence N, Bernardo DD (2015) A reverse-engineering approach to dissect post-translational modulators of transcription factors activity from transcriptional data. BMC Bioinform 16(1):279

    Article  Google Scholar 

  • Gambardella G, Carissimo A, Chen A et al (2017) The impact of micrornas on transcriptional heterogeneity and gene co-expression across single embryonic stem cells. Nat Commun 8:14126

    Article  Google Scholar 

  • Hsiao TH, Chiu YC, Hsu PY, Lu TP, Lai LC, Tsai MH, Huang THM, Chuang EY, Chen Y (2016) Differential network analysis reveals the genome-wide landscape of estrogen receptor modulation in hormonal cancers. Sci Rep 6:23035

    Article  Google Scholar 

  • Ideker T, Krogan NJ (2014) Differential network biology. Mol Syst Biol 8(1):565

    Article  Google Scholar 

  • Jerome F, Trevor H, Robert T (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441

    Article  MATH  Google Scholar 

  • Jian G, Elizaveta L, George M, Ji Z (2011) Joint estimation of multiple graphical models. Biometrika 98(1):1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang B, Wang X, Leng C (2018) A direct approach for sparse quadratic discriminant analysis. J Mach Learn Res 19(31):1–37

    MathSciNet  MATH  Google Scholar 

  • Julien C, Yves G, Christophe A (2011) Inferring multiple graphical structure. Stat Comput 21(4):537–553

    Article  MathSciNet  MATH  Google Scholar 

  • Kaushik A, Ali S, Gupta D (2017) Altered pathway analyzer: a gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways. Sci Rep 7:40450

    Article  Google Scholar 

  • Li Q, Shao J (2015) Sparse quadratic discriminant analysis for high dimensional data. Stat Sin 25:457–473

    MathSciNet  MATH  Google Scholar 

  • Liu H, Lafferty J, Wasserman L (2009) The nonparanormal: semiparametric estimation of high dimensional undirected graphs. J Mach Learn Res 10:2295–2328

    MathSciNet  MATH  Google Scholar 

  • Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable selection with the lasso. Ann Stat 34(3):1436–1462

    Article  MathSciNet  MATH  Google Scholar 

  • Nesterov Y (1983) A method for solving the convex programming problem with convergence rate \(O(k^2)\). Soviet Math Dokl 27:372–376

    MATH  Google Scholar 

  • Rothman AJ, Levina E, Zhu J (2009) Generalized thresholding of large covariance matrices. J Am Stat Assoc 104(485):177–186

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  • Tong T, Wang C, Wang Y (2014) Estimation of variances and covariances for high-dimensional data: a selective review. Comput Stat 6(4):255–264

    Article  Google Scholar 

  • Wu MY, Zhang XF, Dai DQ, Le OY, Zhu Y, Yan H (2016) Regularized logistic regression with network-based pairwise interaction for biomarker identification in breast cancer. BMC Bioinform 17(1):108

    Article  Google Scholar 

  • Xue L, Zou H (2012) Regularized rank-based estimation of high-dimensional nonparanormal graphical models. Ann Stat 40(5):2541–2571

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan H, Xi R, Chen C, Deng M (2017) Differential network analysis via the lasso penalized D-trace loss. Biometrika 104(4):755–770

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang T, Zou H (2014) Sparse precision matrix estimation via lasso penalized D-trace loss. Biometrika 101(1):103–120

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao SD, Cai TT, Li H (2014) Direct estimation of differential networks. Biometrika 101(2):253–268

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu Y, Li L (2018) Multiple matrix gaussian graphs estimation. J R Stat Soc Ser B 80:927–950

    Article  MathSciNet  MATH  Google Scholar 

  • Zou H, Li R (2008) One-step sparse estimates in nonconcave penalized likelihood models. Ann Stat 36(4):1509–1533

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank two reviewers, an associate editor, and the editor for their most helpful comments. Yu was supported in part by National Natural Science Foundation of China 11671256, 2016YFC0902403 of the Chinese Ministry of Science and Technology and Neil Shen’s SJTU Medical Research Fund. Wang was partially supported by the Shanghai Sailing Program 16YF1405700 and the National Natural Science Foundation of China 11701367 and 11825104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

According to the main results of Beck and Teboulle (2009), to complete the proof of Theorem 1, we need to show only that the loss function \(L_1(\varDelta )\) is convex, which is the result of the following lemma.

Lemma 1.1 The loss function (2.3) is a smooth convex function, and its gradient is Lipschitz continuous with Lipschitz constant \(L=\lambda _{\max }(S_1) \lambda _{\max }(S_2)\), that is

$$\begin{aligned} \Vert \nabla L_1(\varDelta _1) - \nabla L_1(\varDelta _2)\Vert _2 \le L \Vert \varDelta _1 - \varDelta _2\Vert _2, \end{aligned}$$

where \(\lambda _{\max }(S_i)\) is the largest eigenvalue of the sample covariance matrix \(S_i\) for \(i=1,2\).

Proof

Because the loss function (2.3) is defined by

$$\begin{aligned} L_1(\varDelta )= \frac{1}{2} \text{ tr }\{\varDelta ^{\hbox {T}}S_1 \varDelta S_2\}- \text{ tr }\{\varDelta (S_1-S_2)\}, \end{aligned}$$

We can calculate the gradient of \(L_1(\varDelta )\)

$$\begin{aligned} \nabla L_1(\varDelta ) = S_1\varDelta S_2 - (S_1-S_2), \end{aligned}$$

and the Hessian matrix is \(S_2 \otimes S_1\). Because both covariance matrices \(S_1\) and \(S_2\) are definite positive matrices, the Hessian matrix is a definite positive matrix. Hence, the loss function \(L_1(\varDelta )\) is a smooth convex function.

Moreover, for any \(\varDelta _1, \varDelta _2 \in \text {dom}(\nabla L_1)\), we have

$$\begin{aligned} \Vert \nabla L_1(\varDelta _1) - \nabla L_1(\varDelta _2)\Vert _2= & {} \Vert S_1 (\varDelta _1-\varDelta _2) S_2 \Vert _2 \\= & {} \Vert (S_2 \otimes S_1) \text{ vec }(\varDelta _1-\varDelta _2) \Vert _2 \\\le & {} \lambda _{\max }(S_2 \otimes S_1) \Vert \text{ vec }(\varDelta _1-\varDelta _2)\Vert _2 \\= & {} \lambda _{\max }(S_1) \lambda _{\max }(S_2) \Vert \varDelta _1-\varDelta _2\Vert _2 . \end{aligned}$$

The proof is now complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Yu, Z. & Wang, C. A fast iterative algorithm for high-dimensional differential network. Comput Stat 35, 95–109 (2020). https://doi.org/10.1007/s00180-019-00915-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-019-00915-w

Keywords

Navigation