Skip to main content
Log in

Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we study the performance of the Birnbaum–Saunders-power-exponential (BS-PE) kernel and Bayesian local bandwidth selection in the context of kernel density estimation for nonnegative heavy tailed data. Our approach considers the BS-PE kernel estimator and treats locally the bandwidth h as a parameter with prior distribution. The posterior density of h at each point x (point where the density is estimated) is derived in closed form, and the Bayesian bandwidth selector is obtained by using popular loss functions. The performance evaluation of this new procedure is carried out by a simulation study and real data in web-traffic. The proposed method is very quick and very competitive in comparison with the existing global methods, namely biased cross-validation and unbiased cross-validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Prob 6:319–327

    Article  MathSciNet  MATH  Google Scholar 

  • Brewer MJ (2000) A Bayesian model for local smoothing in kernel density estimation. Stat Comput 10:299–309

    Article  Google Scholar 

  • Calabria R, Pulcin G (1996) Point estimation under asymmetric loss functions for left-truncated exponential samples. Commun Stat Theory Methods 25(3):585–600

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SX (1999) Beta kernel estimators for density functions. Comput Stat Data Anal 31:131–145

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SX (2000) Gamma kernel estimators for density functions. Ann Inst Stat Math 52:471–480

    Article  Google Scholar 

  • de Lima MS, Atuncar GS (2010) A Bayesian method to estimate the optimal bandwidth for multivariate kernel estimator. J Nonparametric Stat 23:137–148

    Article  MathSciNet  MATH  Google Scholar 

  • Díaz-García JA, Leiva V (2005) A new family of life distributions based on the contoured elliptically distributions. J Stat Plan Inference 128:445–457

    Article  MATH  Google Scholar 

  • Fang KT, Kotz S, Ng WK (1990) Symmetric multivariate and related distributions. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Filippone M, Sanguinetti G (2011) Approximate inference of the bandwidth in multivariate kernel density estimation. Comput Stat Data Anal 55:3104–3122

    Article  MathSciNet  MATH  Google Scholar 

  • Gangopadhyay AK, Cheung KN (2002) Bayesian approach to the choice of smoothing parameter in kernel density estimation. J Nonparametric Stat 14:655–664

    Article  MathSciNet  MATH  Google Scholar 

  • Hu S, Poskitt DS, Zhang X (2012) Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions. Comput Stat Data Anal 56:732–740

    Article  MathSciNet  MATH  Google Scholar 

  • Igarashi G, Kakizawa Y (2014) Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators. Stat Prob Lett 84:235–246

    Article  MathSciNet  MATH  Google Scholar 

  • Jin X, Kawczak J (2003) Birnbaum–Saunders and lognormal kernel estimators for modelling durations in high frequency financial data. Ann Econ Finance 4:103–124

    Google Scholar 

  • Kokonendji CC, Senga Kiessé T (2011) Discrete associated kernels method and extensions. Stat Methodol 8:497–516

    Article  MathSciNet  MATH  Google Scholar 

  • Kulasekera KB, Padgett WJ (2006) Bayes bandwidth selection in kernel density estimation with censored data. J Nonparametric Stat 18:129–143

    Article  MathSciNet  MATH  Google Scholar 

  • Kuruwita CN, Kulasekera KB, Padgett WJ (2010) Density estimation using asymmetric kernels and Bayes bandwidths with censored data. J Stat Plan Inference 140:1765–1774

    Article  MathSciNet  MATH  Google Scholar 

  • Luz Gámiz M, Kulasekera KB, Limnios Nikolaos, Lindqvist Bo Henry (2011) Applied nonparametric statistics in reliability. Springer, London

    Book  MATH  Google Scholar 

  • Marchant C, Bertin K, Leiva V, Saulo H (2013) Generalized Birnbaum–Saunders kernel density estimators and an analysis of financial data. Comput Stat Data Anal 63:1–15

    Article  MathSciNet  Google Scholar 

  • Markovitch NM, Krieger UR (2002) The estimation of heavy-tailed probability density functions, their mixtures and quantiles. Comput Netw 40:459–474

    Article  Google Scholar 

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  • Robert CP (1996) Intrinsic losses. Theory Decis 40:191–214

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–837

    Article  MathSciNet  MATH  Google Scholar 

  • Saulo H, Leiva V, Ziegelmann FA, Marchant C (2013) A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data. Stoch Environ Res Risk Assess 7:1479–1491

    Article  Google Scholar 

  • Scaillet O (2004) Density estimation using inverse and reciprocal inverse Gaussian kernels. J Nonparametric Stat 16:217–226

    Article  MathSciNet  MATH  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Simonoff JS (1996) Smoothing methods in statistics. Springer, New York

    Book  MATH  Google Scholar 

  • Wand M, Jones M (1995) Kernel smoothing. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Ziane Y, Adjabi S, Zougab N (2015) Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data. J Appl Stat 42:8:1645–1658

    Article  MathSciNet  Google Scholar 

  • Zhang X, King ML, Hyndman RJ (2006) A Bayesian approach to bandwidth selection for multivariate kernel density estimation. Comput Stat Data Anal 50:3009–3031

    Article  MathSciNet  MATH  Google Scholar 

  • Zougab N, Adjabi S, Kokonendji CC (2012) Binomial kernel and Bayes local bandwidth in discrete functions estimation. J Nonparametric Stat 24:783–795

    Article  MathSciNet  MATH  Google Scholar 

  • Zougab N, Adjabi S, Kokonendji CC (2013) Adaptive smoothing in associated kernel discrete functions estimation using Bayesian approach. J Stat Comput Simul 83:2219–2231

    Article  MathSciNet  Google Scholar 

  • Zougab N, Adjabi S, Kokonendji CC (2014) Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation. Comput Stat Data Anal 75:28–38

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmina Ziane.

Appendix

Appendix

1.1 Proof of Proposition 1

We here present the calculations of \(\hat{\pi }(h|x,X_{1},X_{2},\ldots ,X_{n})\) and \(\hat{h}_{n}(x)\) (with quadratic loss function) using the prior (13) and the BS-PE kernel density estimator (5):

$$\begin{aligned}&\hat{\pi }(h|x,X_{1},X_{2},\ldots ,X_{n}) = \frac{\hat{f}_{h}(x)\pi (h)}{\int \hat{f}_{h}(x)\pi (h)dh}\nonumber \\&\quad { =\frac{\frac{\nu }{n2^{\frac{1}{2\nu }+1}\varGamma \left( \frac{1}{2\nu }\right) \varGamma (\alpha )\beta ^{\alpha }h^{\alpha \nu +\frac{3}{2}}}\sum \nolimits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \exp \left( \frac{-1}{2h^{\nu }}\left( \frac{X_{i}}{x}+\frac{x}{X_{i}}-2\right) ^{\nu }\right) \exp \left( -\frac{1}{\beta h^{\nu }}\right) }{\frac{\nu }{n2^{\frac{1}{2\nu }+1}\varGamma \left( \frac{1}{2\nu }\right) \varGamma (\alpha )\beta ^{\alpha }} \int \frac{1}{h^{\alpha \nu +\frac{3}{2}}}\sum \nolimits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \exp \left( \frac{-1}{2h^{\nu }}\left( \frac{X_{i}}{x}+\frac{x}{X_{i}}-2\right) ^{\nu }\right) \exp (-\frac{1}{\beta h^{\nu }}) dh}}\nonumber \\&\quad { =\frac{\sum \nolimits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \frac{1}{h^{\nu \alpha +\frac{3}{2}}}\exp \left( -\frac{1}{h^{\nu }}\left( \frac{(\frac{X_{i}}{x}+\frac{x}{X_{i}}-2)^{\nu }}{2}+\frac{1}{\beta }\right) \right) }{\int \sum \nolimits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \frac{1}{h^{\nu \alpha +\frac{3}{2}}}\exp \left( -\frac{1}{h^{\nu }}\left( \frac{(\frac{X_{i}}{x}+\frac{x}{X_{i}}-2)^{\nu }}{2}+\frac{1}{\beta }\right) \right) dh}.} \end{aligned}$$
(18)

Now, we consider the denominator of (18),

$$\begin{aligned} \int \hat{f}_{h}(x)\pi (h)dh= & {} \int \sum \limits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \frac{1}{h^{\nu \alpha +\frac{3}{2}}}\exp \left( -\frac{1}{h^{\nu }}\left( \frac{\left( \frac{X_{i}}{x}+\frac{x}{X_{i}}-2\right) ^{\nu }}{2}+\frac{1}{\beta }\right) \right) dh\nonumber \\= & {} \sum \limits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \int \frac{1}{h^{\alpha \nu +\frac{3}{2}}}\exp \left( -\frac{1}{h^{\nu }}\left( \frac{\left( \frac{X_{i}}{x}+\frac{x}{X_{i}}-2\right) ^{\nu }}{2}+\frac{1}{\beta }\right) \right) dh.\nonumber \\ \end{aligned}$$
(19)

Let \(u=\frac{1}{h^{\nu }}\). Then we can rewrite the above integral as:

$$\begin{aligned} \int \hat{f}_{h}(x)\pi (h)dh= & {} \frac{1}{\nu }\sum _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \int u^{\alpha +\frac{1}{2\nu }-1}\exp \left( -u\left( \frac{\left( \frac{X_{i}}{x}+\frac{x}{X_{i}}-2\right) ^{\nu }}{2}+\frac{1}{\beta }\right) \right) du \nonumber \\= & {} \frac{1}{\nu }\varGamma \left( \alpha +\frac{1}{2\nu }\right) \sum \limits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \left[ \frac{\left( \frac{X_{i}}{x}+\frac{x}{X_{i}}-2\right) ^{\nu }}{2}+\frac{1}{\beta }\right] ^{-\alpha -\frac{1}{2\nu }}. \end{aligned}$$
(20)

The local bandwidth \(\hat{h}_{n}(x)\) is given by

$$\begin{aligned} \hat{h}_{n}(x)= & {} \int h \hat{\pi }(h|x,X_{1},X_{2},\ldots ,X_{n}) dh \nonumber \\= & {} \int \frac{ h\frac{1}{h^{\alpha \nu +\frac{3}{2}}}\sum \nolimits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \exp \left( -\frac{1}{h^{\nu }}\left( \frac{\left( \frac{X_{i}}{x}+\frac{x}{X_{i}}-2\right) ^{\nu }}{2}+\frac{1}{\beta }\right) \right) }{\frac{1}{\nu }\varGamma (\alpha +\frac{1}{2\nu })\sum \nolimits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \left[ \frac{\left( \frac{X_{i}}{x}+\frac{x}{X_{i}}-2\right) ^{\nu }}{2}+\frac{1}{\beta }\right] ^{-\alpha -\frac{1}{2\nu }}}dh. \end{aligned}$$
(21)

By the same reasoning for the numerator of (21), the local bandwidth is then given by:

$$\begin{aligned} \hat{h}_{n}(x)=\frac{\varGamma \left( \alpha -\frac{1}{2\nu }\right) \sum \nolimits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \left[ \frac{\left( \frac{X_{i}}{x}+\frac{x}{X_{i}}-2\right) ^{\nu }}{2}+\frac{1}{\beta }\right] ^{-\alpha +\frac{1}{2\nu }}}{ \varGamma \left( \alpha +\frac{1}{2\nu }\right) \sum \nolimits _{i=1}^{n}\left( \frac{1}{\sqrt{xX_{i}}}+\sqrt{\frac{x}{X_{i}^{3}}}\right) \left[ \frac{\left( \frac{X_{i}}{x}+\frac{x}{X_{i}}-2\right) ^{\nu }}{2}+\frac{1}{\beta }\right] ^{-\alpha -\frac{1}{2\nu }}}, \end{aligned}$$

which corresponds to Eq. (15). Similarly we can use the same technique above for the case of \(\tilde{h}_{n}(x)\) given by (16) which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziane, Y., Zougab, N. & Adjabi, S. Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data. Comput Stat 33, 299–318 (2018). https://doi.org/10.1007/s00180-017-0712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-017-0712-8

Keywords

Navigation