Skip to main content
Log in

Dimension reduction in functional regression with categorical predictor

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In the present paper, we consider dimension reduction methods for functional regression with a scalar response and the predictors including a random curve and a categorical random variable. To deal with the categorical random variable, we propose three potential dimension reduction methods: partial functional sliced inverse regression, marginal functional sliced inverse regression and conditional functional sliced inverse regression. Furthermore, we investigate the relationships among the three methods. In addition, a new modified BIC criterion for determining the dimension of the effective dimension reduction space is developed. Real and simulation data examples are then presented to show the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amato U, Antoniadis A, Feis ID (2006) Dimension reduction in functional regression with applications. Comput Stat Data Anal 50:2422–2446

    Article  MathSciNet  MATH  Google Scholar 

  • Bosq D (1991) Modelization, non-parametric estimation and prediction for continuous time processes. In: Roussas G (ed) Nonparametric functional estimation and related topics, ASI Series. NATO, Washington, pp 509–529

    Chapter  Google Scholar 

  • Cai T, Hall P (2006) Prediction in functional linear regression. Ann Stat 34:2159–2179

    Article  MathSciNet  MATH  Google Scholar 

  • Chen KH, Lei J (2015) Localized functional principal component analysis. J Am Stat Assoc 110:1266–1275

    Article  MathSciNet  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (2003) Spline estimators for the functional linear model. Stat Sin 13:571–591

    MathSciNet  MATH  Google Scholar 

  • Chiaromonte F, Cook D, Li B (2002) Sufficient dimension reduction in regressions wth categorical predictors. Ann Stat 30:475–497

    Article  MATH  Google Scholar 

  • Cook D, Critchley F (2000) Identifying regression outliers and mixtures graphically. J Am Stat Assoc 86:328–332

    MathSciNet  MATH  Google Scholar 

  • Cook RD, Forzani L (2009) Likelihood-based sufficient dimension reduction. J Am Stat Assoc 104:197–208

    Article  MathSciNet  MATH  Google Scholar 

  • Dauxois J, Ferré L, Yao A F (2001) Un modèle semi-paramétrique pour variable aléatoire hilberienne. CR Acad Sci Pairs t.327, série I 947–952

  • Desarbo W, Cron W (1988) A maximum likelihood methodology for clusterwise linear regression. J Classif 5:249–282

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    MATH  Google Scholar 

  • Ferré L, Yao AF (2003) Functional sliced inverse regression analysis. Statistics 37:475–488

    Article  MathSciNet  MATH  Google Scholar 

  • Ferré L, Yao AF (2005) Smoothed functional inverse regression. Stat Sin 15:665–683

    MathSciNet  MATH  Google Scholar 

  • Goia A, Vieu P (2015) A partitioned single functional index model. Comput Stat 30:673–692

    Article  MathSciNet  MATH  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  MATH  Google Scholar 

  • Jiang CR, Yu W, Wang JL (2014) Inverse regression for longitudinal data. Ann Stat 42:563–591

    Article  MathSciNet  MATH  Google Scholar 

  • Li KC (1991) Sliced inverse regression for dimension reduction (with discussion). J Am Stat Assoc 86:316–342

    Article  MATH  Google Scholar 

  • Li B, Cook D, Chiaromonte F (2003) Dimesnion reduction for the conditional mean in regression with categorical predictors. Ann Stat 31:1636–1668

    Article  MATH  Google Scholar 

  • Lian H, Li GR (2014) Series expansion for functional sufficient dimension reduction. J Multivar Anal 124:150–165

    Article  MathSciNet  MATH  Google Scholar 

  • Luo R, Wang H, Tsai CL (2009) Contour projected dimension reduction. Ann Stat 37:3743–3778

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Bock RD, Gasser T (1995) Comparisons of heighted acceleration curves in the Fels, Zurich and Berkeley growth data. Ann Hum Biol 22:413–426

    Article  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Shao Y, Cook D, Weisberg S (2009) Partial central subspace and sliced averaged variance estimation. J Stat Plan Inference 139:952–961

    Article  MATH  Google Scholar 

  • Silverman BW (1996) Smoothed functional principal components analysis by choice of norm. Ann Stat 24:1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Tuddenham RD, Snyder MM (1954) Physical growth study of California boys and girs from birth to eighteen years. Univ Calif Publ Child Dev 1:183–364

    Google Scholar 

  • Wang GC, Lin N, Zhang BX (2013a) Functional contour regression. J Multivar Anal 116:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Wang GC, Lin N, Zhang BX (2013b) Dimension reduction in functional regression using mixed data canonical correlation analysis. Stat Interface 6:187–196

    Article  MathSciNet  MATH  Google Scholar 

  • Wang GC, Lin N, Zhang BX (2014) Functional K-mean inverse regression. Comput Stat Data Anal 70:172–182

    Article  MathSciNet  Google Scholar 

  • Wang GC, Feng X, Chen M (2016a) Functional partial linear single-index model. Scand J Stat 43:261–274

    Article  MathSciNet  MATH  Google Scholar 

  • Wang G C, Zhou JJ, Wu WQ, Chen M (2016b) Robust functional sliced inverse regression. Stat Pap (to appear)

  • Wang GC, Zhou Y, Feng XN, Zhang BX (2015) The hybrid method of FSIR and FSAVE for functional effective dimension reduction. Comput Stat Data Anal 91:64–77

    Article  MathSciNet  Google Scholar 

  • Wen XR, Cook D (2007) OPtimal sufficient dimension reduction in regression with categorical predictors. J Stat Plan Inference 137:1961–1978

    Article  MathSciNet  MATH  Google Scholar 

  • Yao F, Fu Y, Lee T (2011) functional mixture regression. Biostatistics 12:341–353

    Article  Google Scholar 

  • Zipunnikov V, Caffo B, Yousem DM, Davatzikos C, Schwartz BS, Crainiceanu C (2011) Multilevel functional principal component analysis for high-dimensional data. J Comput Graphical Stat 20:852–873

    Article  MathSciNet  Google Scholar 

  • Zhang JT, Chen JW (2007) Statistical inferences for functional data. Ann Stat 35:1052–1079

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu LX, Ng KW (1995) Asymptotics of sliced inverse regression. Stat Sin 5:727–736

    MathSciNet  MATH  Google Scholar 

  • Zhu LX, Miao BQ, Peng H (2006) On sliced inverse regression with high-dimensional covariates. J Am Stat Assoc 101:630–643

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are most grateful to the editor, the associate editor, and the reviewers for their constructive comments, which have helped greatly in improving the quality of the paper. The work was supported by 2013M541060 from China Postdoctoral Science Foundation, 12615304 and 84015024 from the Fundamental Research Funds for the Central Universities and NSFC 11501248, 11271064 and 11371354 from the National Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guochang Wang.

Appendix

Appendix

Lemma 4

For generic random variables or random curves \(V_1,V_2,V_3, V_4\), the following equivalences hold:

We define the independent for random variable \(V_1\) and random curve \(V_2\in L^2(T)\) by for any \(t\in T\). A discussion of this result can be found in Chiaromonte et al. (2002). The proof of Lemmas 12 and 3 are similar to Propositions 1–3 of Chiaromonte et al. (2002).

1.1 Proof of Lemma 1

From Lemma 4 we have that, for a generic subspace S,

Thus, under the assumption that ,

and therefore \(S_{y|x}^{(W)}\supseteq S_{y|x}\). Again using Lemma 4,

Thus, under the assumption that ,

and therefore \(S_{y|x}^{(W)}\supseteq S_{y|x}\).

1.2 Proof of Lemma 2

From the Lemma 4, we know that

As in the proof of Lemma 1, noting that is obviously guaranteed by . Under such an assumption

and therefore \(S_{y|x}\supseteq S_{y|x}^{(W)}\).

1.3 Proof of Lemma 3

It is immediate to see that, for a generic subspace S,

(8)

Because \(S_{y|x}^{(W)}\) satisfies the left-hand side of (8), then it also satisfies for any \( w=1, \ldots , C.\) And this implies \(S_{y|x}^{(W)}\supseteq S_{y_w|x_w},\ w=1,\ldots ,C\), and therefore

$$\begin{aligned} S_{y|x}^{(W)}\supseteq \oplus _{w=1}^CS_{y_w|x_w}. \end{aligned}$$

Since \(\oplus _{w=1}^CS_{y_w|x_w}\supseteq S_{y_w|x_w}, \ w=1,\ldots ,C\), the sum space satisfies the right-hand side of (8). Hence

which implies

$$\begin{aligned} \oplus _{w=1}^CS_{y_w|x_w} \supseteq S_{y|x}^{(W)}. \end{aligned}$$

Then, we have proven the Lemma 3.

1.4 Proof of Theorem 1

Let K be the true value of the dimension of the EDR space. By the law of large numbers, we can get

$$\begin{aligned} \hat{\lambda }_i-\lambda _i=O_p(1/\sqrt{n}). \end{aligned}$$

Therefore, If \(K>k,\)

$$\begin{aligned} G(K)-G(k)= & {} \frac{n\sum _{i=k+1}^K(\log (1+\hat{\lambda }_i) -\hat{\lambda }_i)}{2\sum _{i=1}^p(\log (1+\hat{\lambda }_i)-\hat{\lambda }_i)}+\frac{c_n}{2p}[k(k+1)-K(K+1)]\nonumber \\ \end{aligned}$$
(9)
$$\begin{aligned}&\quad \rightarrow \frac{c_n}{2p}[k(k+1)-K(K+1)]>0. \end{aligned}$$
(10)

If \(K<k\),

$$\begin{aligned} G(K)-G(k)= & {} \frac{n\sum _{i=K+1}^k(\log (1+\hat{\lambda }_i) -\hat{\lambda }_i)}{2\sum _{i=1}^p(\log (1+\hat{\lambda }_i)-\hat{\lambda }_i)} +\frac{c_n}{2p}[k(k+1)-K(K+1)] \end{aligned}$$
(11)
$$\begin{aligned}&\rightarrow \frac{c_n}{2p}[k(k+1)-K(K+1)]>0. \end{aligned}$$
(12)

It follows from (10) and (12) that \(\hat{K}\rightarrow K\) in probability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G. Dimension reduction in functional regression with categorical predictor. Comput Stat 32, 585–609 (2017). https://doi.org/10.1007/s00180-016-0675-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-016-0675-1

Keywords

Navigation