Skip to main content
Log in

Influence measures in ridge regression when the error terms follow an Ar(1) process

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Influence concepts have an important place in linear regression models and case deletion is a useful method for assessing the influence of single case. The influence measures in the presence of multicollinearity were discussed under the linear regression models when the errors structure is uncorrelated and homoscedastic. In contrast to other article on this subject, we consider the influence measures in ridge regression with autocorrelated errors. Theoretical results are illustrated with a numerical example and a Monte Carlo simulation is conducted to see the effect autocorrelation coefficient, strength of multicollinearity and sample size on leverage points and influential observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics. Wiley, New York

    Book  MATH  Google Scholar 

  • Chatterjee S, Hadi AS (1988) Sensitivity analysis in linear regression. Wiley, New York

    Book  MATH  Google Scholar 

  • Chatterjee S, Hadi AS, Price B (2000) Regression analysis by example, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman and Hall, New York

    MATH  Google Scholar 

  • Cook RD (1977) Detection of influential observations in linear regression. Technometrics 19:15–18

    MathSciNet  MATH  Google Scholar 

  • Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression I. Biometrica 37(3/4):409–428

    Article  MathSciNet  MATH  Google Scholar 

  • Firinguetti L (1989) A simulation study of ridge regression estimators with autocorrelated errors. Commun Statist Simul Comput 18(2):673–702

    Article  MathSciNet  MATH  Google Scholar 

  • Haslett J (1999) A simple derivation of deletion diagnostics results for the general linear model with correlated errors. J R Stat Soc Series B 61(3):603–609

    Article  MathSciNet  MATH  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for non-orthogonal problems. Technometrics 12(1):55–67

    Article  MathSciNet  MATH  Google Scholar 

  • Jahufer A, Jianbao C (2009) Assessing global influential observations in modified ridge regression. Stat Probab Lett 79:513–518

    Article  MathSciNet  MATH  Google Scholar 

  • Judge GG, Grifths WE, Hill RC, Lutkepohl H, Lee TC (1985) The theory and practice of econometrics, 2nd edn. Wiley, New York

    Google Scholar 

  • Judge GG, Hill RC, Griffiths WE, Lutkepohl H, Lee TC (1988) Introduction to the theory and practice of econometrics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Malinvaud E (1968) Statistical methods of econometrics. Rand McNally, Chicago

    MATH  Google Scholar 

  • McDonald GC, Galarneau DI (1975) A Monte Carlo evaluation of some ridge type estimators. J Am Stat Assoc 70:407–416

    Article  MATH  Google Scholar 

  • Myers RH (1990) Classical and modern regression with applications. Duxbury Press, Boston

    Google Scholar 

  • Özkale MR, Açar Söküt T (2015) Leverages and influential observations in regression model with autocorrelated errors. Commun Stat Theory Methods 44(11):2267–2290

    Article  MathSciNet  MATH  Google Scholar 

  • Özkale MR (2013) Influence measures in affine combination type regression. J Appl Stat 40(10):2219–2243

    Article  MathSciNet  Google Scholar 

  • Puterman ML (1988) Leverage and influence in autocorrelated regression models. J R Stat Soc 37(1):76–86

    Google Scholar 

  • Roy SS, Guria S (2004) Regression diagnostics in an autocorrelated model. Braz J Prob Stat 18:103–112

    MathSciNet  MATH  Google Scholar 

  • Shi L, Wang X (1999) Local influence in ridge regression. Comput Stat Data Anal 31:341–353

    Article  MathSciNet  MATH  Google Scholar 

  • Steece BM (1986) Regresor space outliers in ridge regression. Commun Stat Theory Methods 15(12):3599–3605

    Article  MathSciNet  MATH  Google Scholar 

  • Stemann D, Trenkler G (1993) Leverage and Cochrane–Orcutt estimation in linear regression. Commun Stat Theory Methods 22(5):1315–1333

    Article  MathSciNet  MATH  Google Scholar 

  • Trenkler G (1984) On the performance of biased estimators in the linear regression model with correlated or heteroscedastic errors. Commun Stat Theory Methods A 9(12):1247–1259

    Article  MathSciNet  MATH  Google Scholar 

  • Walker E, Birch JB (1988) Influence measures in ridge regression. Technometrics 30(2):221–227

    Article  Google Scholar 

  • Weisberg S (1985) Applied linear regression, 2nd edn. Wiley, New Jersey

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuğba Söküt Açar.

Appendix

Appendix

The difference between \(\widehat{b}^{(k)}\) and \(\widehat{b}_{(i)}^{(k)}\) The ARR estimator without the ith observation is

$$\begin{aligned} \widehat{b}_{(i)}^{(k)}=\left( Z_{(i)}^{*\prime }Z_{(i)}^{*}+kI_{p}^{*}\right) ^{-1}Z_{(i)}^{*\prime }y_{(i)}^{*}=\left( Z^{*\prime }Z^{*}-z_{i}^{*\prime }z_{i}^{*}+kI_{p}^{*}\right) ^{-1}\left( Z^{*\prime }y^{*}-z_{i}^{*\prime }y_{i}^{*}\right) . \end{aligned}$$

By using Sherman Morrison Woodbury (SMV) Theorem (Myers 1990, p. 459) for the matrix \(\left( Z^{*\prime }Z^{*}-z_{i}^{*\prime }z_{i}^{*}+kI_{p}^{*}\right) ^{-1}\), we get

$$\begin{aligned} \widehat{b}_{(i)}^{(k)}= & {} \left( (Z^{*\prime }Z^{*}+kI_{p}^{*})^{-1}+\frac{(Z^{*\prime }Z^{*}+kI_{p}^{*})^{-1}z_{i}^{*\prime }z_{i}^{*}(Z^{*\prime }Z^{*}+kI_{p}^{*})^{-1}}{ 1-z_{i}^{*}(Z^{*\prime }Z^{*}+kI_{p}^{*})^{-1}z_{i}^{*\prime }}\right) \nonumber \\&\times \,\left( Z^{*\prime }y^{*}-z_{i}^{*\prime }y_{i}^{*}\right) \\= & {} \widehat{b}^{(k)}-\frac{\left( Z^{*\prime }Z^{*}+kI_{p}^{*}\right) ^{-1}z_{i}^{*\prime }\widehat{u}^{(k)*}}{1-l_{i}^{(k)}}. \end{aligned}$$

Then the difference between \(\widehat{b}^{(k)}\) and \(\widehat{b}_{(i)}^{(k)}\) is obtained as

$$\begin{aligned} \widehat{b}^{(k)}-\widehat{b}_{(i)}^{(k)}=\frac{\left( Z^{*\prime }Z^{*}+kI_{p}^{*}\right) ^{-1}z_{i}^{*\prime }\widehat{u} _{i}^{(k)*}}{1-l_{i}^{(k)}}. \end{aligned}$$

Since \(z_{i}^{*}(\widehat{b}^{(k)}-\widehat{b}_{(i)}^{(k)})=\frac{ l_{i}^{(k)}\widehat{u}_{i}^{(k)*}}{1-l_{i}^{(k)}}\) and

$$\begin{aligned} se(z_{i}^{*}\widehat{b}^{(k)})= & {} \sigma \left( z_{i}^{*}\left( Z^{*\prime }Z^{*}+kI_{p}^{*}\right) ^{-1}Z^{*\prime }Z^{*}\left( Z^{*\prime }Z^{*}+kI_{p}^{*}\right) ^{-1}z_{i}^{*\prime }\right) ^{1/2} \\= & {} s_{(i)}^{*}\left[ \sum _{j=1}^{n}\left( l_{ij}^{(k)}\right) ^{2}\right] ^{1/2}, \end{aligned}$$

we get the result.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Söküt Açar, T., Özkale, M.R. Influence measures in ridge regression when the error terms follow an Ar(1) process. Comput Stat 31, 879–898 (2016). https://doi.org/10.1007/s00180-015-0615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0615-5

Keywords

Navigation