Skip to main content
Log in

Smoothing combined generalized estimating equations in quantile partially linear additive models with longitudinal data

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

An Erratum to this article was published on 26 October 2015

Abstract

This paper develops a robust and efficient estimation procedure for quantile partially linear additive models with longitudinal data, where the nonparametric components are approximated by B spline basis functions. The proposed approach can incorporate the correlation structure between repeated measures to improve estimation efficiency. Moreover, the new method is empirically shown to be much more efficient and robust than the popular generalized estimating equations method for non-normal correlated random errors. However, the proposed estimating functions are non-smooth and non-convex. In order to reduce computational burdens, we apply the induced smoothing method for fast and accurate computation of the parameter estimates and its asymptotic covariance. Under some regularity conditions, we establish the asymptotically normal distribution of the estimators for the parametric components and the convergence rate of the estimators for the nonparametric functions. Furthermore, a variable selection procedure based on smooth-threshold estimating equations is developed to simultaneously identify non-zero parametric and nonparametric components. Finally, simulation studies have been conducted to evaluate the finite sample performance of the proposed method, and a real data example is analyzed to illustrate the application of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Brown BM, Wang YG (2005) Standard errors and covariance matrices for smoothed rank estimators. Biometrika 92:149–158

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll RJ, Maity A, Mammen E, Yu K (2009) Efficient semiparametric marginal estimationfor partially linear additive model for longitudinal/clustered data. Stat BioSci 1:10–31

    Article  Google Scholar 

  • Cheng G, Zhou L, Huang J (2014) Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data. Bernoulli 20:141–163

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  • Fu L, Wang YG (2012) Quantile regression for longitudinal data with a working correlation model. Comput Stat Data Anal 56:2526–2538

    Article  MathSciNet  MATH  Google Scholar 

  • Fu L, Wang YG, Zhu M (2015) A Gaussian pseudolikelihood approach for quantile regression with repeated measurements. Comput Stat Data Anal 84:41–53

    Article  MathSciNet  Google Scholar 

  • Guo J, Tang M, Tian M, Zhu K (2013) Variable selection in high-dimensional partially linear additive models for composite quantile regression. Comput Stat Data Anal 66:56–67

    Article  MathSciNet  Google Scholar 

  • Härdle W, Liang H, Gao J (2000) Partially linear models. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Härdle WK, Müller M, Sperlich S, Werwatz A (2004) Nonparametric and semiparametric models. Springer, New York

    Book  MATH  Google Scholar 

  • Henry K, Erice A, Tierney C, Balfour HH Jr, Fischl MA, Kmack A, Liou SH, Kenton A, Hirsch MS, Phair J, Martinez A, Kahn JO (1998) A randomized, controlled, double-blind study comparing the survival benefit of four different reverse transcriptase inhibitor therapies (three-drug, two-drug, and alternating drug) for the treatment of advanced AIDS. J Acquir Immune Defic Syndr Hum Retrovirol19:339–349

  • Jung SH (1996) Quasi-likelihood for median regression models. J Am Stat Assoc 91:251–257

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Bassett G Jr (1978) Regression quantiles. Econometrica 46:33–55

    Article  MathSciNet  MATH  Google Scholar 

  • Lai P, Wang Q, Lian H (2012) Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data. J Multivar Anal 105:422–432

    Article  MathSciNet  MATH  Google Scholar 

  • Li G, Lian H, Feng S, Zhu L (2013) Automatic variable selection for longitudinal generalized linear models. Comput Stat Data Anal 61:174–186

    Article  MathSciNet  Google Scholar 

  • Lian H (2012) Variable selection in high-dimensional partly linear additive models. J Nonparametr Stat 24:825–839

    Article  MathSciNet  MATH  Google Scholar 

  • Lian H, Liang H, Wang L (2014) Generalized additive partial linear models for clustered data with diverging number of covariates using GEE. Stat Sin 24:173–196

    MathSciNet  MATH  Google Scholar 

  • Liu X, Wang L, Liang H (2011) Variable selection and estimation for semiparametric additive partial linear models. Stat Sin 21:1225–1248

    Article  MathSciNet  MATH  Google Scholar 

  • Lu X, Fan Z (2015) Weighted quantile regression for longitudinal data. Comput Stat. 30:569–592. doi:10.1007/s00180-014-0550-x

  • Ma S, Yang L (2011) Spline-backfitted kernel smoothing of partially linear additive model. J Stat Plann Inference 141:204–219

    Article  MathSciNet  MATH  Google Scholar 

  • Ma S, Song Q, Wang L (2013) Simultaneous variable selection and estimation in semiparametric modeling of longitudinal/clustered data. Bernoulli 19:252–274

    Article  MathSciNet  MATH  Google Scholar 

  • Pollard D (1990) Empirical processes: theory and applications. In: NSF-CBMS regional conference series in probability and statistics. Institute of Mathematical Statistics, Hayward, CA

  • Schumaker L (1981) Spline functions: basic theory. Wiley, New York

    MATH  Google Scholar 

  • Tang CY, Leng C (2011) Empirical likelihood and quantile regression in longitudinal data analysis. Biometrika 98:1001–1006

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc B 58:267–288

    MathSciNet  MATH  Google Scholar 

  • Ueki M (2009) A note on automatic variable selection using smooth-threshold estimating equations. Biometrika 96:1005–1011

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Liu X, Liang H, Carroll RJ (2011) Estimation and variable selection for generalized additive partial linear models. Ann Stat 39:1827–1851

    Article  MathSciNet  MATH  Google Scholar 

  • Yin G, Cai J (2005) Quantile regression models with multivariate failure time data. Biometrics 61:151–161

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao P, Li G (2013) Modified SEE variable selection for varying coefficient instrumental variable models. Stat Methodol 12:60–70

    Article  MathSciNet  Google Scholar 

  • Zou H (2006) The adaptive LASSO and its oracle properties. J Am Stat Assoc 101:1418–1429

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful for the insightful comments from the anonymous reviewers and editors, which have greatly helped improve the quality of this paper. This work is supported by the Chongqing University Postgraduates’ Innovation Project, the National Natural Science Foundation of China (Grant No. 11171361) and Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110191110033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohui Guo.

Appendix

Appendix

To establish the asymptotic properties of the proposed estimators, the following regularity conditions are needed in this paper.

  1. (C1)

    \(E{g_l}({z_l}) = 0\) and \({g _l} \in {\mathscr {H}_r}\), \(l=1,\ldots ,d\) for some \(r>1/2\), where \(\mathscr {H}_r\) is the collection of all functions on [0, 1] whose \(\rho \)th order derivative satisfies the H\(\ddot{o}\)lder condition of the order v with \(r \equiv \rho + v\) and \(0<v\le 1\).

  2. (C2)

    There exist constants \(\delta _1\) and \(\delta _2\) such that the marginal density \(f_l(z_l)\) of \(Z_l\) satisfies \(0< \delta _1 \le f_l(z_l) \le \delta _2 < \infty \) on [0, 1] for every \(l=1,\ldots ,d\). The joint density \(f_{ll'}(z_l,z_{l'})\) of \((Z_{l},Z_{l'})\) satisfies \(0< \delta _1 \le f_{ll'}(z_l,z_{l'})\le \delta _2 < \infty \) for all \((z_l,z_{l'})\in [0,1]^2\), \(1\le l\ne {l'}\le d\).

  3. (C3)

    The dimensions pd of \(\varvec{x}_{ij}\) and \(\varvec{z}_{ij}\) are fixed and \(\max n_i\) is bounded when \(m\rightarrow \infty \). The distribution functions \(F_{ij}(t)=p( {y_{ij}} - \varvec{x}_{ij}^T{\varvec{\beta } } - \sum \nolimits _{l = 1}^d {{g_l}({z_{ijl}}) \le t\left| {{\varvec{x}_{ij}},{\varvec{z}_{ij}}} \right. } )\) are absolutely continuous, with continuous densities \(f_{ij}\) uniformly bounded, and its first derivative \({f'_{ij}}( \cdot )\) uniformly bounded away from 0 and \(\infty \) at the points \(0, i=1,\ldots ,m, j=1,\ldots ,n_i\).

  4. (C4)

    For any positive definite matrix \(\varvec{W}_i\), \(\mathrm{{ }}{m^{ - 1}}\sum \nolimits _{i = 1}^m {\varvec{H}_i^T{\varvec{\Lambda }_i}{\varvec{W}_i}} {\varvec{\Lambda }_i}{\varvec{H}_i}\) converges to a positive definite matrix, where \(\varvec{\Lambda } _i\) is an \(n_i \times n_i\) diagonal matrix with the jth diagonal element \(f_{ij}(0)\) and \({\sup _i}\Vert {{\varvec{H}_i}}\Vert < + \infty \).

  5. (C5)

    Matrix \(\varvec{\Omega }\) is positive definite and \(\varvec{\Omega }=O(\frac{1}{m})\).

  6. (C6)

    The parameter space \(\Theta \) is compact, and the true parameter vector \({\varvec{\theta } _0}\) is an interior point in \(\Theta \).

  7. (C7)

    The differentiation of \({{\tilde{U}}_\tau }(\varvec{\theta } )\), \(\frac{{\partial {{\tilde{U}}_\tau }(\varvec{\theta } )}}{{\partial \varvec{\theta } }}\) is positive definite with probability 1.

  8. (C8)

    Let \(\lambda _{max}=\mathrm{max}(\lambda _1,\lambda _2)\) and \(\lambda _{min}=\mathrm{min}(\lambda _1,\lambda _2)\). The tuning parameters \(\lambda _{min}\) and \(\lambda _{max}\) satisfy \(m^{r/(2r+1)}\lambda _{max} \rightarrow 0\), and \(m^{(1+\kappa )r/(2r+1)}\lambda _{min} \rightarrow \infty \), as \(m \rightarrow \infty \).

Proof of Theorem 1

Let \(\varvec{G}_i^T = \varvec{H}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}\), so \({U_\tau }(\varvec{\theta } ) = - \sum \nolimits _{i = 1}^m {\varvec{G}_i^T} {\varvec{S}_i}\). Let \({{\bar{U}}_\tau }(\varvec{\theta } )= - \sum \nolimits _{i = 1}^m {\varvec{G}_i^T} {\varvec{P}_i}\) with \({\varvec{P}_i} = {(\tau - p({y_{i1}} - \varvec{h}_{i1}^T\varvec{\theta } \le 0),\ldots ,\tau - p({y_{i{n_i}}} - \varvec{h}_{i{n_i}}^T\varvec{\theta } \le 0))^T}\). We can obtain

$$\begin{aligned}&{m^{ - 1}}\left[ {{{\bar{U}}_\tau }(\varvec{\theta } ) - {U_\tau }(\varvec{\theta } )} \right] = {m^{ - 1}}\sum \limits _{i = 1}^m {\varvec{G}_i^T\left( {{\varvec{S}_i} - {\varvec{P}_i}} \right) } \\&\quad = {m^{ - 1}}\sum \limits _{i = 1}^m {\varvec{G}_i^T\left( {\begin{array}{*{20}{c}} {p({y_{i1}} - \varvec{h}_{i1}^T\varvec{\theta } \le 0) - I({y_{i1}} - \varvec{h}_{i1}^T\varvec{\theta } \le 0)} \\ \vdots \\ {p({y_{i{n_i}}} - \varvec{h}_{i{n_i}}^T\varvec{\theta } \le 0) - I({y_{i{n_i}}} - \varvec{h}_{i{n_i}}^T\varvec{\theta } \le 0)} \\ \end{array}} \right) } \\&\quad = {m^{ - 1}}\sum \limits _{i = 1}^m {\sum \limits _{j = 1}^{{n_i}} {{\varvec{g}_{ij}}\left[ {p({y_{ij}} - \varvec{h}_{ij}^T\varvec{\theta } \le 0) - I({y_{ij}} - \varvec{h}_{ij}^T\varvec{\theta } \le 0)} \right] } } , \end{aligned}$$

where \(\varvec{g}_{ij}\) is a \((p+dK)\times 1\) vector and \(\varvec{G}_i^T = ({\varvec{g}_{i1}},\ldots ,{\varvec{g}_{i{n_i}}})\). Under condition (C4) and from the uniform strong law of large numbers (Pollard 1990), we have

$$\begin{aligned}&\mathop {\sup }\limits _{\varvec{\theta } \in \Theta } \left| {{m^{ - 1}}\sum \limits _{i = 1}^m {\sum \limits _{j = 1}^{{n_i}} {{\varvec{g}_{ij}}\left[ {p({y_{ij}} - \varvec{h}_{ij}^T\varvec{\theta } \le 0) - I({y_{ij}} - \varvec{h}_{ij}^T \varvec{\theta } \le 0)} \right] } } } \right| \nonumber \\&\quad = o(m^{-1/2}) ~a.s.. \end{aligned}$$

Therefore, \(\mathop {\sup }\limits _{\varvec{\theta } \in \Theta } \Vert {m^{ - 1}}\{ {{{\bar{U}}_\tau }(\varvec{\theta } ) - {U_\tau }(\varvec{\theta } )} \}\Vert = o(m^{-1/2})\) a.s.. Now focusing on \({{\bar{U}}_\tau }(\varvec{\theta } )\),

$$\begin{aligned} m^{-1}{\varvec{D}_\tau }(\varvec{\theta }_0 ) =m^{-1} \frac{{\partial {{\bar{U}}_\tau }(\varvec{\theta } )}}{{\partial \varvec{\theta } }}\left| {_{\varvec{\theta } = {\varvec{\theta } _0}}} \right. = m^{-1}\sum \nolimits _{i = 1}^m {\varvec{H}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{\Lambda } _i}} {\varvec{H}_i}. \end{aligned}$$

is positive definite. Since \(p({y_{ij}} - \varvec{h}_{ij}^T{\varvec{\theta } _0} \le 0) = \tau \) by condition (C3), \({\varvec{\theta } _0}\) is the unique solution of the equation \({{\bar{U}}_\tau }(\varvec{\theta } )=\varvec{0}\). Due to \(\varvec{\hat{\theta }}\) is the solution of the equation \( {U_\tau }(\varvec{\theta } )=\varvec{0}\) together with condition (C4), hence \(\varvec{\hat{\theta }} \rightarrow {\varvec{\theta } _0}\) as \(m\rightarrow +\infty \). For any \(\varvec{\theta }\) satisfying \(\Vert {\varvec{\theta } - {\varvec{\theta } _0}}\Vert \) \(<\) cm\(^{-1/3}\),

$$\begin{aligned} {U_\tau }(\varvec{\theta } ) - {U_\tau }({\varvec{\theta } _0})= & {} \sum \limits _{i = 1}^m {\varvec{G}_i^T(\varvec{\theta } )} {\varvec{S}_i}(\varvec{\theta } ) - \sum \nolimits _{i = 1}^m {\varvec{G}_i^T({\varvec{\theta } _0})} {\varvec{S}_i}({\varvec{\theta } _0}) \\= & {} \sum \limits _{i = 1}^m {\varvec{G}_i^T(\varvec{\theta } )} \{ {\varvec{S}_i}(\varvec{\theta } ) - {\varvec{S}_i}({\varvec{\theta } _0})\}\\&+\, \sum \limits _{i = 1}^m {{{\{ {\varvec{G}_i}(\varvec{\theta } ) - {\varvec{G}_i}({\varvec{\theta } _0})\} }^T}} {\varvec{S}_i}({\varvec{\theta } _0}). \end{aligned}$$

The first term can be written as

$$\begin{aligned}&\sum \limits _{i = 1}^m {\varvec{G}_i^T(\varvec{\theta } )} \{ {\varvec{S}_i}(\varvec{\theta } ) - {\varvec{S}_i}({\varvec{\theta } _0})\} \\&\quad = \sum \limits _{i = 1}^m {\varvec{G}_i^T(\varvec{\theta } )} {\varvec{P}_i}(\varvec{\theta } ) + \sum \nolimits _{i = 1}^m {\varvec{G}_i^T(\varvec{\theta } )} \{ {\varvec{S}_i}(\varvec{\theta } ) - {\varvec{S}_i}({\varvec{\theta } _0}) - {\varvec{P}_i}(\varvec{\theta } )\} \\&\quad = \sum \limits _{i = 1}^m {\varvec{G}_i^T(\varvec{\theta } )} {\varvec{P}_i}(\varvec{\theta } ) + \sum \nolimits _{i = 1}^m {\sum \nolimits _{j = 1}^{{n_i}} {{\varvec{g}_{ij}}\left\{ {p({y_{ij}} - \varvec{h}_{ij}^T\varvec{\theta } \le 0) - I({y_{ij}} - \varvec{h}_{ij}^T\varvec{\theta } \le 0)} \right. } } \\&\qquad \left. { + I({y_{ij}} - \varvec{h}_{ij}^T{\varvec{\theta } _0} \le 0) - \tau } \right\} . \end{aligned}$$

According to Lemma 3 of Jung (1996), we have

$$\begin{aligned}&\sup \left| \sum \limits _{i = 1}^m \sum \limits _{j = 1}^{{n_i}} {\varvec{g}_{ij}}\left\{ p({y_{ij}} - \varvec{h}_{ij}^T\varvec{\theta } \le 0) - I({y_{ij}} - \varvec{h}_{ij}^T\varvec{\theta } \le 0)\right. \right. \\&\quad \qquad \left. \left. +\,I({y_{ij}} - \varvec{h}_{ij}^T{\varvec{\theta } _0} \le 0) - \tau \right\} \right| \\&\qquad = {o_p}(\sqrt{m} ). \end{aligned}$$

Then the first term

$$\begin{aligned} \sum \limits _{i = 1}^m {\varvec{G}_i^T( \varvec{\theta } )} \{ {\varvec{S}_i}(\varvec{\theta } ) - {\varvec{S}_i}({\varvec{\theta } _0})\}= & {} \sum \limits _{i = 1}^m {\varvec{G}_i^T(\varvec{\theta } )} {\varvec{P}_i}(\varvec{\theta } ) + {o_p}(\sqrt{m} ) \\= & {} {{\bar{U}}_\tau }(\varvec{\theta } ) + {o_p}(\sqrt{m} ). \end{aligned}$$

From the law of large numbers (Pollard 1990) the second term

$$\begin{aligned}&\sum \limits _{i = 1}^m {{{\{ {\varvec{G}_i}(\varvec{\theta } ) - {\varvec{G}_i}({\varvec{\theta } _0})\} }^T}} {\varvec{S}_i}({\varvec{\theta } _0}) \\&\quad = \sum \limits _{i = 1}^m {\sum \limits _{j = 1}^{{n_i}} {\left\{ {{\varvec{g}_{ij}}(\varvec{\theta } ) - {\varvec{g}_{ij}}({\varvec{\theta } _0})} \right\} \left\{ {p({y_{ij}} - \varvec{h}_{ij}^T{\varvec{\theta } _0} \le 0) - I({y_{ij}} - \varvec{h}_{ij}^T{\varvec{\theta } _0} \le 0)} \right\} } } \\&\quad = {o_p}(\sqrt{m} ). \end{aligned}$$

Therefore, \({U_\tau }(\varvec{\theta } ) - {U_\tau }({\varvec{\theta } _0}) = {{\bar{U}}_\tau }(\varvec{\theta } ) + {o_p}(\sqrt{m} )\). By Taylor’s expansion of \({{\bar{U}}_\tau }(\varvec{\theta } ) \) together with \({{\bar{U}}_\tau }(\varvec{\theta }_0 )=0\), we can obtain

$$\begin{aligned} {U_\tau }(\varvec{\theta } ) - {U_\tau }({\varvec{\theta } _0}) = \frac{{\partial {{\bar{U}}_\tau }(\varvec{\theta } )}}{{\partial \varvec{\theta } }}\left| {_{\varvec{\theta } = {\varvec{\theta } _0}}} \right. (\varvec{\theta } - {\varvec{\theta } _0}) + {o_p}(\sqrt{m} ). \end{aligned}$$

Because \(\varvec{\hat{\theta }}\) is in the \(m^{-1/3}\) neighborhood of \(\varvec{\theta }_0\) and \({U_\tau }(\varvec{\hat{\theta }} ) = \varvec{0}\), we have

$$\begin{aligned} \varvec{\hat{\theta }} - {\varvec{\theta } _0} = -\varvec{D}_\tau ^{ - 1}({\varvec{\theta } _0}){U_\tau }({\varvec{\theta } _0}) + {o_p}({m^{{{ - 1} / 2}}}). \end{aligned}$$

To obtain the closed form expression of \(\varvec{\hat{\beta }}\), similar to Ma et al. (2013), we write the inverse of \(\varvec{D}_\tau ({\varvec{\theta } _0})=\sum \nolimits _{i = 1}^m {\varvec{H}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{\Lambda } _i}} {\varvec{H}_i}\) as the following block form:

$$\begin{aligned} \varvec{D}_\tau ^{ - 1}({\varvec{\theta } _0})= & {} {\left( {\begin{array}{*{20}{c}} {\sum \nolimits _{i = 1}^m {\varvec{X}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{\Lambda } _i}} {\varvec{X}_i}} &{}\quad {\sum \nolimits _{i = 1}^m {\varvec{X}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{\Lambda } _i}} {\varvec{\Psi }_i}} \\ {\sum \nolimits _{i = 1}^m {\varvec{\Psi }_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{\Lambda } _i}} {\varvec{X}_i}} &{}\quad {\sum \nolimits _{i = 1}^m {\varvec{\Psi } _i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{\Lambda } _i}} {\varvec{\Psi }_i}} \\ \end{array}} \right) ^{ - 1}} \\= & {} {\left( {\begin{array}{*{20}{c}} {\varvec{D_{XX}}} &{}\quad \varvec{{D_{X\Psi }}} \\ {\varvec{D_{\Psi X}}} &{}\quad {\varvec{D_{\Psi \Psi }}} \\ \end{array}} \right) ^{ - 1}} = \left( {\begin{array}{*{20}{c}} {{\varvec{D}^{11}}} &{}\quad {{\varvec{D}^{12}}} \\ {{\varvec{D}^{21}}} &{}\quad {{\varvec{D}^{22}}} \\ \end{array}} \right) , \end{aligned}$$

where \({\varvec{D}^{11}} = {(\varvec{D_{XX}} - \varvec{D_{X\Psi }}\varvec{D}_{\Psi \Psi }^{ - 1} \varvec{D_{\Psi X}})^{ - 1}},{\varvec{D}^{22}} = {(\varvec{D_{\Psi \Psi }} - \varvec{D_{\Psi X}}\varvec{D_{XX}}^{ - 1}\varvec{D_{X\Psi }})^{ - 1}}, {\varvec{D}^{12}} = - {\varvec{D}^{11}}\varvec{D_{X\Psi }}\varvec{D_{\Psi \Psi } }^{ - 1}\) and \({\varvec{D}^{21}} = - {\varvec{D}^{22}}\varvec{D_{\Psi X}}\varvec{D_{XX}}^{ - 1}.\) Furthermore, let \({U_\tau }({\varvec{\theta } _0}) = {(\varvec{U}_1^T,\varvec{U}_2^T)^T},{\varvec{U}_1} = \sum \nolimits _{i = 1}^m {-\varvec{X}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{S}_i}({\varvec{\theta } _0})} ,{\varvec{U}_2} = \sum \nolimits _{i = 1}^m -\varvec{\Psi } _i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{S}_i}({\varvec{\theta } _0}) \). Then

$$\begin{aligned} \varvec{\hat{\beta }} - {\varvec{\beta } _0}= & {} - \left[ {{\varvec{D}^{11}}{\varvec{U}_1} + {\varvec{D}^{12}}{\varvec{U}_2}} \right] + {o_p}({m^{{{ - 1} / 2}}}) \\= & {} {\varvec{D}^{11}}{\sum \limits _{i = 1}^m {\left[ {{\varvec{X}_i} - {\varvec{\Psi } _i}\varvec{D_{\Psi \Psi } }^{ - 1}\varvec{D_{\Psi X}}} \right] } ^T}{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{S}_i}({\varvec{\theta } _0}) + {o_p}({m^{{{ - 1} / 2}}}), \\ \varvec{\hat{\gamma }} - {\varvec{\gamma } _0}= & {} - \left[ {{\varvec{D}^{21}}{\varvec{U}_1} + {\varvec{D}^{22}}{\varvec{U}_2}} \right] + {o_p}({m^{{{ - 1} / 2}}}) \\= & {} {\varvec{D}^{22}}{\sum \limits _{i = 1}^m {\left[ {{\varvec{\Psi } _i} - {\varvec{X}_i}\varvec{D_{XX} }^{ - 1}\varvec{D_{ X \Psi }}} \right] } ^T}{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{S}_i}({\varvec{\theta } _0}) + {o_p}({m^{{{ - 1} / 2}}}). \end{aligned}$$

That is,

$$\begin{aligned}&\sqrt{m} \left( {\varvec{\hat{\beta } } - {\varvec{\beta } _0}} \right) = \left( {m{\varvec{D}^{11}}} \right) {m^{{{ - 1} / 2}}}{\sum \limits _{i = 1}^m {\left[ {{\varvec{X}_i} - {\varvec{\Psi } _i}\varvec{D_{\Psi \Psi } }^{ - 1}\varvec{D_{\Psi X}}} \right] } ^T}\\&\quad \times {\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{S}_i}({\varvec{\theta } _0}) + {o_p}(1),\\&\sqrt{m} \left( {\varvec{\hat{\gamma }} - {\varvec{\gamma } _0}} \right) = \left( {m{\varvec{D}^{22}}} \right) {m^{{{ - 1} / 2}}}{\sum \limits _{i = 1}^m {\left[ {{\varvec{\Psi } _i} - {\varvec{X}_i}\varvec{D_{XX} }^{ - 1}\varvec{D_{ X \Psi }}} \right] } ^T}\\&\quad \times {\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{S}_i}({\varvec{\theta } _0}) + {o_p}(1). \end{aligned}$$

Let \(\varvec{\tilde{P}} = \varvec{X({X^T}}\varvec{\Lambda } {\varvec{V^{ - 1}}\varvec{\Lambda }\varvec{X}})^{-1}{\varvec{X}^T}\varvec{\Lambda }{\varvec{V^{ - 1}}}\varvec{\Lambda }\), \( \varvec{\tilde{\Psi }} = (\varvec{I - \tilde{P}})\varvec{\Psi }\) with \(\varvec{\tilde{\Psi } }= {(\varvec{\tilde{\Psi }_1}^T,\ldots ,\varvec{\tilde{\Psi }_m}^T)^T}\), \({\varvec{D_\Psi }} = \mathop {\lim }\nolimits _{m \rightarrow \infty } \frac{1}{m}\sum \nolimits _{i = 1}^m {\varvec{\tilde{\Psi }_i}^T{\varvec{\Lambda _i}}\varvec{V_i^{ - 1}}{\varvec{\Lambda _i}}} {{\varvec{\tilde{\Psi }}_i}}\), \({\varvec{\Sigma _\Psi }} = \mathop {\lim }\nolimits _{m \rightarrow \infty } \frac{1}{m}\sum \nolimits _{i = 1}^m \varvec{\tilde{\Psi }_i}^T{\varvec{\Lambda _i}}\varvec{V_i^{ - 1}}\varvec{\Sigma }_i \varvec{V_i^{ - 1}}{\varvec{\Lambda _i}} {{\varvec{\tilde{\Psi }}_i}}\). Because \(\varvec{S}_i\) are independent random variables with mean zero, and

$$\begin{aligned} {\mathop {\mathrm{var}}}\left( {m^{{{ - 1} / 2}}}{\sum \limits _{i = 1}^m {\left[ {{\varvec{X}_i} - {\varvec{\Psi } _i}\varvec{D_{\Psi \Psi }}^{ - 1}\varvec{D_{\Psi X}}} \right] } ^T}{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{S}_i}({\varvec{\theta } _0}) \right)= & {} \varvec{\Sigma _X},\\ {\mathop {\mathrm{var}}}\left( {m^{{{ - 1} / 2}}}{\sum \limits _{i = 1}^m {\left[ {{\varvec{\Psi } _i} - {\varvec{X}_i}\varvec{D_{XX }}^{ - 1}\varvec{D_{ X \Psi }}} \right] } ^T}{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{S}_i}({\varvec{\theta } _0})\right)= & {} \varvec{\Sigma _\Psi }. \end{aligned}$$

The multivariate central limit theorem implies that

$$\begin{aligned} {m^{{{ - 1} / 2}}}{\sum \limits _{i = 1}^m {\left[ {{\varvec{X}_i} - {\varvec{\Psi }_i}\varvec{D_{\Psi \Psi } }^{ - 1}\varvec{D_{\Psi X}}} \right] } ^T}{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{S}_i}({\varvec{\theta } _0})\mathop \rightarrow \limits ^d N\left( {\varvec{0},\varvec{\Sigma _X}} \right) ,\\ {m^{{{ - 1} / 2}}}{\sum \limits _{i = 1}^m {\left[ {{\varvec{\Psi }_i} - {\varvec{X}_i}\varvec{D_{X X} }^{ - 1}\varvec{D_{X\Psi }}} \right] } ^T}{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{S}_i}({\varvec{\theta } _0})\mathop \rightarrow \limits ^d N\left( {\varvec{0},\varvec{\Sigma _\Psi }} \right) . \end{aligned}$$

Moreover, we have

$$\begin{aligned} m{\varvec{D}^{11}}= & {} {\left[ {m^{-1}\left( {\varvec{D_{XX}} - \varvec{D_{X\Psi }}\varvec{D_{\Psi \Psi } }^{ - 1}\varvec{D_{\Psi X}}} \right) } \right] ^{ - 1}}\mathop \rightarrow \limits ^p \varvec{D_X}^{ - 1},\\ m{\varvec{D}^{22}}= & {} {\left[ {m^{-1}\left( {\varvec{D_{\Psi \Psi }} - \varvec{D_{\Psi X}}\varvec{D_{XX}}^{ - 1}\varvec{D_{X\Psi }}} \right) } \right] ^{ - 1}}\mathop \rightarrow \limits ^p \varvec{D_\Psi } ^{ - 1} \end{aligned}$$

by the law of large numbers. Then, by using Slutskys theorem, it follows that

$$\begin{aligned}&\sqrt{m} \left( {\varvec{\hat{\beta } } - {\varvec{\beta } _0}} \right) \mathop \rightarrow \limits ^d N\left( {\varvec{0},\varvec{D_X}^{ - 1}{\varvec{\Sigma _X}}{{\{ \varvec{D_X}^{ - 1}\} }^T}} \right) , \sqrt{m} \left( \varvec{{\hat{\gamma }} - {\varvec{\gamma } _0}} \right) \mathop \rightarrow \limits ^d N\\&\quad \left( {\varvec{0},\varvec{D_\Psi }^{ - 1}{\varvec{\Sigma _\Psi }}{{\{ \varvec{D_\Psi }^{ - 1}\} }^T}} \right) . \end{aligned}$$

This complete the proof of part (i). Now, we prove part (ii).

In order to obtain the convergence rate of \(\hat{g}_l(\cdot )\), let \(u_{ij} = \sum \nolimits _{l = 1}^d {g _{0l}}(z_{ijl}) -\varvec{\psi }_{ij}^T\varvec{\gamma }_{0}\). By the conditions (C1), (C2) and Corollary 6.21 in Schumaker (1981), we have \(|u_{ij}|=O\left( {{K^{ - r}}} \right) \). From the asymptotic normality of \(\varvec{\hat{\gamma } }\), we have

$$\begin{aligned} m^{-1}\sum \nolimits _{l = 1}^d {{{\sum \limits _{i = 1}^m {\sum \limits _{j = 1}^{{n_i}} {\left[ {\varvec{\psi }_{ijl}^T({\varvec{\hat{\gamma } }_l} - {\varvec{\gamma } _{0l}})} \right] } } }^2}} = {O_p}({m^{ - 1}}K). \end{aligned}$$

The triangular inequality implies that

$$\begin{aligned}&m^{-1}\sum \limits _{l = 1}^d {{{\sum \limits _{i = 1}^m {\sum \limits _{j = 1}^{{n_i}} {\left\{ {{{\hat{g}}_l}(z_{ijl}) - {g_{0l}}(z_{ijl})} \right\} } } }^2}} \\&\quad \le 2m^{-1}\sum \limits _{l = 1}^d {{{\sum \limits _{i = 1}^m {\sum \limits _{j = 1}^{{n_i}} {\left[ {\varvec{\psi }_{ijl}^T({\varvec{\hat{\gamma } }_l} - {\varvec{\gamma } _{0l}})} \right] } } }^2}} + C{K^{ - 2r}}. \end{aligned}$$

This completes the proof. \(\square \)

Proof of Theorem 2

Because \({{\tilde{S}}_{ij}} - {S_{ij}} = {\mathop {\mathrm{sgn}}} ( - {d_{ij}})\Phi ( - \left| {{d_{ij}}} \right| ),\) where \(sgn(\cdot )\) is the sign function and \(d_{ij}=(\varepsilon _{ij}+u_{ij})/r_{ij}\). We can obtain

$$\begin{aligned} -{m^{{{ - 1} / 2}}}\left[ {{{\tilde{U}}_\tau }(\varvec{\theta } ) - {U_\tau }(\varvec{\theta } )} \right]= & {} {m^{{{ - 1} / 2}}}\sum \limits _{i = 1}^m {\varvec{H}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}} \left( \begin{array}{l} {\mathop {\mathrm{sgn}}} ( - {d_{i1}})\Phi ( - \left| {{d_{i1}}} \right| ) \\ \vdots \\ {\mathop {\mathrm{sgn}}} ( - {d_{i{n_i}}})\Phi ( - \left| {{d_{i{n_i}}}} \right| ) \\ \end{array} \right) \\= & {} {m^{{{ - 1} / 2}}}\sum \limits _{i = 1}^m {\sum \limits _{j = 1}^{{n_i}} {{\varvec{g}_{ij}}{\mathop {\mathrm{sgn}}} ( - {d_{ij}})\Phi ( - \left| {{d_{ij}}} \right| )} } , \end{aligned}$$

where \(\varvec{g}_{ij}\) is the jth column of \(\varvec{H}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}\). Because

$$\begin{aligned} E\left( {{{\tilde{S}}_{ij}} - {S_{ij}}} \right)= & {} \int _{ - \infty }^{ + \infty } {{\mathop {\mathrm{sgn}}} ( - {d_{ij}})\Phi ( - \left| {{d_{ij}}} \right| )} {f_{ij}}(\varepsilon )d\varepsilon \\= & {} \int _{ - \infty }^{ + \infty } {\Phi ( - {{\left| \varepsilon +u_{ij} \right| } / {{r _{ij}}}})} \left\{ {2I(\varepsilon +u_{ij} \le 0) - 1} \right\} {f_{{ij}}}(\varepsilon )d\varepsilon \\= & {} {r _{ij}}\int _{ - \infty }^{ + \infty } {\Phi ( - \left| t \right| )} \left\{ {2I(t \le 0) - 1} \right\} \left[ {{f_{{ij}}}(0) + {f'_{ij}}(\zeta (t))({r_{ij}}t-u_{ij})} \right] dt, \end{aligned}$$

where \(\zeta (t)\) is between 0 and \({r _{ij}}t-u_{ij}\). Since \(\int _{ - \infty }^{ + \infty } {\Phi ( - \left| t \right| )} \{ {2I(t \le 0) - 1}\}dt = 0\), and by condition (C3), there exists a constant C such that \({\sup _{ij}}\left| {{f'_{ij}}(\zeta (t))} \right| \le C\). Then

$$\begin{aligned}&\int _{ - \infty }^{ + \infty } {\Phi ( - \left| t \right| )} \left\{ {2I(t \le 0) - 1} \right\} ({f_{{ij}}}(0)- {f'_{ij}}(\zeta (t))u_{ij}) dt\\&\quad \le \int _{ - \infty }^{ + \infty } {\Phi ( - \left| t \right| )} \left\{ {2I(t \le 0) - 1} \right\} ({f_{{ij}}}(0)+ C |u_{ij}|) dt= 0. \end{aligned}$$

Because \(\int _{ - \infty }^{ + \infty } {\Phi ( - \left| t \right| )} \left| t \right| dt = {1 / 2}\), thus

$$\begin{aligned} \left| {E\left( {{{\tilde{S}}_{ij}} - {S_{ij}}} \right) } \right| \le r _{ij}^2\int _{ - \infty }^{ + \infty } {\Phi ( - \left| t \right| )} \left| t \right| {\left| {{{f'}_{ij}}\left( {\zeta \left( t \right) } \right) } \right| }dt \le {{Cr _{ij}^2} / {2.}} \end{aligned}$$

Under conditions (C4) and (C5), as \(m \rightarrow \infty \),

$$\begin{aligned} \left\| {{m^{{{ - 1} / 2}}}E\left[ {{{\tilde{U}}_\tau }(\varvec{\theta } ) - {U_\tau }(\varvec{\theta } )} \right] } \right\| \le {m^{{{ - 1} / 2}}}{\sup _{i,j}}\left| {{\varvec{g}_{ij}}} \right| \sum \limits _{i = 1}^m {{{Cr _{ij}^2} / {2 = o(1).}}} \end{aligned}$$

In addition,

$$\begin{aligned} {m^{ - 1}}{\mathop {\mathrm{var}}} \left[ {{{\tilde{U}}_\tau }(\varvec{\theta } ) - {U_\tau }(\varvec{\theta } )} \right] = {m^{ - 1}}\sum \limits _{i = 1}^m {{\mathop {\mathrm{var}}} \left\{ {\sum \limits _{j = 1}^{{n_i}} {{\varvec{g}_{ij}}{\mathop {\mathrm{sgn}}} \left( - {d_{ij}}\right) \Phi ( - \left| {{d_{ij}}} \right| )} } \right\} } . \end{aligned}$$

By Cauchy-Schwartz inequality,

$$\begin{aligned} \frac{1}{m}{\mathop {\mathrm{var}}} \left[ {{{\tilde{U}}_\tau }(\varvec{\theta } ) - {U_\tau }(\varvec{\theta } )} \right]\le & {} \frac{1}{m}\sum \limits _{i = 1}^m {\sum \limits _{j = 1}^{{n_i}} {{\varvec{g}_{ij}}\varvec{g}_{ij}^T{\mathop {\mathrm{var}}} ({{\tilde{S}}_{ij}} - {S_{ij}})} } \\&+\,\frac{1}{m}\sum \limits _{i = 1}^m \sum \limits _{j = 1}^{{n_i}} \sum \limits _{j' \ne j}^{{n_i}} {\varvec{g}_{ij}}\varvec{g}_{ij'}^T\\&\times \sqrt{\mathop {\mathrm{var}}} ({{\tilde{S}}_{ij}} - {S_{ij}}){\mathop {\mathrm{var}}} ({{\tilde{S}}_{ij'}} - {S_{ij'}}) . \end{aligned}$$

For each \(j=1,\ldots ,n_i\),

$$\begin{aligned} {\mathop {\mathrm{var}}} ({{\tilde{S}}_{ij}} - {S_{ij}})\le & {} E{({{\tilde{S}}_{ij}} - {S_{ij}})^2} \\= & {} \int _{ - \infty }^{ + \infty } {{{\{ {\mathop {\mathrm{sgn}}} ( - {d_{ij}})\Phi ( - \left| {{d_{ij}}} \right| )\} }^2}} {f_{ij}}(\varepsilon )d\varepsilon \\= & {} {r _{ij}}\int _{ - \infty }^{ + \infty } {{\Phi ^2}( - \left| t \right| )} {f_{ij}}({r_{ij}}t-u_{ij})dt \\= & {} {r _{ij}}\int _{\left| t \right| > \Delta } {{\Phi ^2}( - \left| t \right| ){f_{ij}}({r_{ij}}t-u_{ij})dt}\\&+\, {r _{ij}}\int _{\left| t \right| \le \Delta } {{\Phi ^2}( - \left| t \right| ){f_{ij}}({r_{ij}}t-u_{ij})dt} \\\le & {} {\Phi ^2}( - \Delta ) + {r _{ij}}\Delta {f_{ij}}(\xi ), \end{aligned}$$

where \(\Delta \) is a positive value, and \(\xi \) lies between \((-r_{ij}\Delta -u_{ij},r_{ij}\Delta -u_{ij})\). Let \(\Delta =m^{1/3}\). Under condition (C5), since \(r_{ij}=O(m^{-1/2})\), then \(r_{ij}\Delta =O(m^{-1/6})\). As \(m\rightarrow \infty \), both \({\Phi ^2}( - \Delta ) \) and \( {r _{ij}}\Delta {f_{ij}}(\xi )\) go to 0. By conditions (C4) and (C6), it is easy to obtain \({m^{ - 1}}{\mathop {\mathrm{var}}} \left[ {{{\tilde{U}}_\tau }(\varvec{\theta } ) - {U_\tau }(\varvec{\theta } )} \right] =o(1)\). Therefore, we have \(m^{ - 1/2}\left[ {{{\tilde{U}}_\tau }(\varvec{\theta } ) - {U_\tau }(\varvec{\theta } )} \right] \rightarrow 0\) as \(m\rightarrow \infty \) for any \(\theta \). We complete the proof of Theorem 2. \(\square \)

Proof of Theorem 3

Since \({\sup _{\varvec{\theta } \in \Theta }}\left\| {{m^{ - 1}}\left[ {{{\bar{U}}_\tau }(\varvec{\theta } ) - {U_\tau }(\varvec{\theta } )} \right] } \right\| = o({m^{{{ - 1} / 2}}} )\) a.s. and Theorem 2, we can obtain \({\sup _{\varvec{\theta } \in \Theta }}\left\| {{m^{ - 1}}\left[ {{{\tilde{U}}_\tau }(\varvec{\theta } ) - {{\bar{U}}_\tau }(\varvec{\theta } )} \right] } \right\| = o({m^{{{ - 1} / 2}}} )\) by the triangle inequality. Since \(\varvec{\theta }_0\) is the unique solution of equation \({{\bar{U}}_\tau }(\varvec{\theta } )=0\). This together with the definite of \(\varvec{\tilde{\theta }}\) implies \(\varvec{\tilde{\theta }}\rightarrow \varvec{\theta }_0\) as \(m\rightarrow \infty \). In order to prove the normality of \(\varvec{\tilde{\theta }}\), we first prove that \({m^{ - 1}}\{ {{\tilde{\varvec{D}}_\tau }({\varvec{\theta } _0}) - {\varvec{D}_\tau }({\varvec{\theta } _0})}\}\mathop \rightarrow \limits ^p 0\), where \({\tilde{\varvec{D}}_\tau }( {{\varvec{\theta } _0}}) = {{\partial {{\tilde{U}}_\tau }( \varvec{\theta })} / {\partial \varvec{\theta } }}{|_{\varvec{\theta } = {\varvec{\theta } _0}}} = \sum \nolimits _{i = 1}^m {\varvec{H}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{\varvec{\tilde{\Lambda } }_i}} {\varvec{H}_i}\). If we denote \(\varvec{G}_i^T = \varvec{H}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}=(\varvec{g}_{i1},\ldots ,\varvec{g}_{in_i})\), where \(\varvec{g}_{ij}\) is a \((p+dK)\times 1\) vector, we can obtain that

$$\begin{aligned} E\left\{ {{\tilde{\varvec{D}}_\tau }(\varvec{\theta }_0 )} \right\} - {\varvec{D}_\tau }(\varvec{\theta }_0 ) = \sum \limits _{i = 1}^m {\sum \limits _{j = 1}^{{n_i}} {{\varvec{g}_{ij}}\left\{ {r_{ij}^{ - 1}E\phi \left( {\frac{{{\varepsilon _{ij}+u_{ij}}}}{{{r _{ij}}}}} \right) - {f_{ij}}(0)} \right\} } } {\varvec{h}_{ij}}. \end{aligned}$$

Because

$$\begin{aligned} \left| {r _{ij}^{ - 1}E\phi \left( {\frac{{{\varepsilon _{ij}+u_{ij}}}}{{{r _{ij}}}}} \right) - {f_{ij}}(0)} \right|= & {} \left| {r _{ij}^{ - 1}\int _{ - \infty }^{ + \infty } {\phi \left( {\frac{\varepsilon +u_{ij} }{{{r _{ij}}}}} \right) {f_{ij}}(\varepsilon )d\varepsilon } - {f_{ij}}(0)} \right| \\= & {} \left| \int _{ - \infty }^{ +\infty } {\phi \left( t \right) \left\{ {{f_{ij}}(0) +( {r _{ij}}t-u_{ij}){f'_{ij}}({\zeta _t})} \right\} dt}\right. \\&\left. - {f_{ij}}(0) \right| \\= & {} \left| {\int _{ - \infty }^{ + \infty } {\phi \left( t \right) ({r _{ij}}t-u_{ij}){f'_{ij}}({\zeta _t})} dt } \right| \\\le & {} {r_{ij}}\int _{ - \infty }^{ +\infty } {\left| {\phi \left( t \right) t{f'_{ij}}({\zeta _t})} \right| } dt\\&+\int _{ - \infty }^{ + \infty } \phi \left( t \right) |u_{ij}{f'_{ij}}({\zeta _t}) |dt, \end{aligned}$$

where \(\zeta _t\) lies between 0 and \(r _{ij}t-u_{ij}\). By condition (C3), \(f'_{ij}(\cdot )\) is uniformly bounded, hence there exists a constant C satisfying \(\left| {{f'_{ij}}({\zeta _t})} \right| \le C\), and by condition (C5), we have

$$\begin{aligned} \left| {r _{ij}^{ - 1}E\phi \left( {\frac{{{\varepsilon _{ij}+u_{ij}}}}{{{r _{ij}}}}} \right) - {f_{ij}}(0)} \right| \le \sqrt{\frac{2}{\pi }} {r _{ij}}C +C|u_{ij}|\rightarrow 0. \end{aligned}$$

By the strong law of large number, we know that \({m^{ - 1}}{\tilde{\varvec{D}}_\tau }({\varvec{\theta } _0}) \rightarrow E\{ {{m^{ - 1}}{\tilde{\varvec{D}}_\tau }({\varvec{\theta } _0})}\}\). Using the triangle inequality, we have

$$\begin{aligned} \left| {{m^{ - 1}}\left\{ {{\tilde{\varvec{D}}_\tau }({\varvec{\theta } _0}) - {\varvec{D}_\tau }({\varvec{\theta } _0})} \right\} } \right|\le & {} \left| {{m^{ - 1}}\left\{ {{\tilde{\varvec{D}}_\tau }({\varvec{\theta } _0}) - E{\tilde{\varvec{D}}_\tau }({\varvec{\theta } _0})} \right\} } \right| \\&+ \left| {{m^{ - 1}}\left\{ {{E \tilde{\varvec{D}}_\tau }({\varvec{\theta } _0}) - {\varvec{D}_\tau }({\varvec{\theta } _0})} \right\} } \right| \rightarrow o(1), \end{aligned}$$

which is equivalent to \({{m^{ - 1}}\{ {{\tilde{\varvec{D}}_\tau }({\varvec{\theta } _0}) - {\varvec{D}_\tau }({\varvec{\theta } _0})}\}}\mathop \rightarrow \limits ^p 0.\) By Taylor series expansion of \({{{\tilde{U}}_\tau }({\varvec{\theta } })}\) around \(\varvec{\theta }_0\), we have

$$\begin{aligned} {{\tilde{U}}_\tau }(\varvec{\theta } ) = {{\tilde{U}}_\tau }({\varvec{\theta } _0}) + {\tilde{\varvec{D}}_\tau }({\varvec{\theta } ^*})\left( {\varvec{\theta } - {\varvec{\theta } _0}} \right) , \end{aligned}$$

where \(\varvec{\theta } ^*\) lies between \(\varvec{\theta } \) and \(\varvec{\theta } _0\). Let \(\varvec{\theta }=\varvec{\tilde{\theta }}\). Because \({{\tilde{U}}_\tau }(\varvec{\tilde{\theta } }) = 0\) and \(\varvec{\tilde{\theta } } \rightarrow {\varvec{\theta } _0}\), we therefore obtain \(\varvec{\theta } ^* \rightarrow {\varvec{\theta } _0}\) and \({\tilde{\varvec{D}}_\tau }({\varvec{\theta } ^*}) \rightarrow {\tilde{\varvec{D}}_\tau }({\varvec{\theta } _0})\). By Theorem 2 and \({m^{ - 1}}\{ {{\tilde{\varvec{D}}_\tau }({\varvec{\theta } _0}) - {\varvec{D}_\tau }({\varvec{\theta } _0})}\} = o_p(1)\), we have

$$\begin{aligned} \sqrt{m} \left( {\varvec{\tilde{\theta }} - {\varvec{\theta } _0}} \right) = - m \varvec{D}_\tau ^{ - 1}({\varvec{\theta } _0}){m^{{{ - 1} / 2}}}{{ U}_\tau }({\varvec{\theta } _0}) + {o_p}(1). \end{aligned}$$

Applying Theorem 1, we can easily complete the proof Theorem 3. \(\square \)

Proof of Theorem 4

Let \({\delta _m}=m^{-r/(2r+1)}\), \(\varvec{\theta }={{\varvec{\theta }}_0}+{\delta _m}{\varvec{T}}\). Define \({ S_m}(\varvec{\theta } ) =({\varvec{I}_{p+dK}} - \varvec{\hat{\Delta }} ){\tilde{U}_\tau }(\varvec{\theta } )+\varvec{\hat{\Delta }}\varvec{\theta }\). We want to prove that \(\forall \varepsilon > 0\), there exists a constant \(C > 0\), such that

$$\begin{aligned} p\left( {\mathop {\inf }\limits _{\left\| \varvec{ T} \right\| = C} {\delta _m}{\varvec{T}^T}{S_m}({\varvec{\theta } _0} + {\delta _m}\varvec{T}) > 0} \right) \ge 1 - \varepsilon \end{aligned}$$

for m large enough. This will imply with probability at least \(1 - \varepsilon \) that there exists a solution of the equation \({S_m}(\varvec{\theta } )=\varvec{0}\) such that \(\Vert \varvec{\bar{\theta }} - {\varvec{\theta } _0}\Vert = {O_p}({\delta _m})\). The key of the proof is to evaluate the sign of \({\delta _m}{\varvec{T}^T}{S_m}({\varvec{\theta } _0} + {\delta _m}\varvec{T}) \) on \(\{ {{\varvec{\theta } _0} + {\delta _m}\varvec{T}:\Vert \varvec{T}\Vert = C}\}\). Note that

$$\begin{aligned} {\delta _m}{\varvec{T}^T}{S_m}({\varvec{\theta } _0} + {\delta _m}\varvec{T}) = {\delta _m}{\varvec{T}^T}{S_m}({\varvec{\theta } _0}) + {\delta _m^2}{\varvec{T}^T}\frac{\partial }{{\partial \varvec{\theta } }}{S_m}(\varvec{\tilde{\theta }} )\varvec{T} \buildrel \Delta \over = {I_{m1}} + {I_{m2}}, \end{aligned}$$

where \({\varvec{\tilde{\theta }} }\) is between \(\varvec{\theta }_0\) and \({{\varvec{\theta } _0} +{\delta _ m}\varvec{T}}\). Next we will consider \(I_{m1}\) and \(I_{m2}\) respectively. For \(I_{m1}\), by some basic calculations, we have

$$\begin{aligned} {I_{m1}} = {\delta _n}{\varvec{T}^T}({\varvec{I}_{p+dK}} - \varvec{\hat{\Delta }} ){\tilde{U}_\tau }({\varvec{\theta } _0})+ {\delta _m}{\varvec{T}^T} \varvec{\hat{\Delta }}\varvec{\theta }_0 \buildrel \Delta \over = {I_{m11}} + {I_{m12}}. \end{aligned}$$

Using the Cauchy-Schwarz inequality, we have

$$\begin{aligned} {|I_{m11}|}\le & {} {\delta _m}\left\| \varvec{T}^T({\varvec{I}_{p+dK}} - \varvec{\hat{\Delta }} ) \right\| \left\| {{\tilde{U}_\tau }({\varvec{\theta } _0} )} \right\| \\\le & {} {\delta _m}\left\{ {1 - \min \left( {\mathop {\min }\limits _{j \in \mathscr {A}} {{\hat{\delta } }_j}({\lambda _1},\kappa ),\mathop {\min }\limits _{j \in {\mathscr {B}}} {{\hat{\delta } }_j}({\lambda _2},\kappa )} \right) } \right\} \left\| \varvec{T} \right\| \left\| {{\tilde{U}_\tau }({\varvec{\theta } _0} )} \right\| . \end{aligned}$$

Since \(\mathop {\min {{\hat{\delta } }}}\nolimits _{j \in \mathscr {A}} (\lambda _1 ,\kappa ) \le \mathop {\min {{\hat{\delta } }}}\nolimits _{j \in {\mathscr {A}_0}} (\lambda _1 ,\kappa )\) and \(\mathop {\min {{\hat{\delta } }}}\nolimits _{j \in {\mathscr {B}}} (\lambda _2 ,\kappa ) \le \mathop {\min {{\hat{\delta } }}}\nolimits _{j \in {{\mathscr {B}}_0}} (\lambda _2 ,\kappa )\), we only need to gain the convergence rate of \(\mathop {\min {{\hat{\delta } }}}\nolimits _{j \in {\mathscr {A}_0}} (\lambda _1 ,\kappa )\) and \(\mathop {\min {{\hat{\delta } }}}\nolimits _{j \in {{\mathscr {B}}_0}} (\lambda _2 ,\kappa )\). By Theorem 3, we know that the initial estimator \({\varvec{{\tilde{\gamma }} }}\) is \(m^{r/(2r+1)}\)-consistent. By using the condition \(m^{r/(2r+1)}\lambda _{max} \rightarrow 0\), for \(\varepsilon >0\) and \({j \in {{\mathscr {B}}_0}}\), we can derive that

$$\begin{aligned} P\left( {\frac{{{\lambda _2}}}{{\left\| {{\varvec{\tilde{\gamma } }_j}} \right\| _{\varvec{W}_j}^{1 + \kappa }}} > {m^{\frac{{ - r}}{{2r + 1}}}}\varepsilon } \right)\le & {} P\left( {\frac{{{\lambda _{\max }}}}{{\left\| {{\varvec{\tilde{\gamma } }_j}} \right\| _{\varvec{W}_j}^{1 + \kappa }}} > {m^{\frac{{ - r}}{{2r + 1}}}}\varepsilon } \right) \\= & {} P\left( {{{\left( {{{{m^{\frac{r}{{2r + 1}}}}{\lambda _{\max }}} / \varepsilon }} \right) }^{{1 / {(1 + \kappa )}}}} > {{\left\| {{\varvec{\tilde{\gamma } }_j}} \right\| }_{\varvec{W}_j}}} \right) \\\le & {} P\left( {{\left( {{{{m^{\frac{r}{{2r + 1}}}}{\lambda _{\max }}} / \varepsilon }} \right) }^{{1 / {(1 + \kappa )}}}} > \mathop {\min }\limits _{j \in {\mathscr {B}}_0} \{ {{\left\| {{\varvec{\tilde{\gamma } }_{0j}}} \right\| }_{\varvec{W}_j}}\}\right. \\&\left. - {O_p}\left( {{m^{\frac{{ - r}}{{2r + 1}}}}} \right) \right) \\\rightarrow & {} 0, \end{aligned}$$

which implies that \({{\hat{\delta } }_j}(\lambda _2 ,\kappa ) ={o_p}( {{m^{{{ - r} / {(2r + 1)}}}}})\) for \({j \in {{\mathscr {B}}_0}}\). Therefore, we can get \({\min _{j \in {\mathscr {B}}}}{{\hat{\delta } }_j}(\lambda _2 ,\kappa ) = {o_p}( {{m^{{{ - r} / {(2r + 1)}}}}})\). With the similar argument, we can obtain that \({\min _{j \in \mathscr {A}}}{{\hat{\delta } }_j}(\lambda ,\kappa ) = {o_p}( {{m^{{{ - r} / {(2r + 1)}}}}})\). Thus, \(|I_{m11}|= {O_p}(\sqrt{m}{\delta _m})\Vert \varvec{T } \Vert -{o_p}({\sqrt{m} \delta _m^2})\Vert \varvec{T }\Vert \). In addition, \({{\hat{\delta } }_j} = \min ( {1,{\lambda _1 / {{{\left| {{{\tilde{\beta } }_j}} \right| }^{1 + \kappa }}}}})\), \(j = 1,\ldots ,p\), and \({{\hat{\delta } }_j} = \min ( {1,{\lambda _2 / {\Vert {{\varvec{\tilde{\gamma } }_j}} \Vert _{\varvec{W}_j}^{1 + \kappa }}}})\), \(j= p + 1,\ldots ,p + d\). Thus, we have \(\Vert {{I_{m12}}}\Vert \le {\delta _m}\Vert \varvec{T}\Vert \Vert {{\varvec{\theta } _0}}\Vert =O_p(\delta _m\Vert \varvec{T}\Vert )\). Therefore, \(| {{I_{m1}}}\Vert = {O_p}(\sqrt{m}{\delta _m})\Vert \varvec{T }\Vert ={o_p}({m}{\delta _m^2})\Vert \varvec{T }\Vert \). For \(I_{m2}\), we can derive that

$$\begin{aligned} {I_{m2}}= & {} \delta _m^2{\varvec{T}^T}\frac{\partial }{{\partial \theta }}{S_m}(\varvec{\tilde{\theta }} )\varvec{T} \\= & {} m \delta _m^2 {\varvec{T}^T}({\varvec{I}_{p+dK}} {-} \varvec{\hat{\Delta }} ) \left[ {\frac{1}{m}\sum \nolimits _{i = 1}^m {\varvec{H}_i^T{\varvec{\Lambda } _i}\varvec{V}_i^{ - 1}{{\varvec{\Lambda } }_i}{\varvec{H}_i}} }\right] \varvec{T}{+} \delta _m^2{\varvec{T}^T}\varvec{\hat{\Delta }}\varvec{T} +o_p(m\delta _m^2 ) \\&\buildrel \Delta \over = {I_{m21}} + {I_{m22}}+o_p(m\delta _m^2 ). \end{aligned}$$

With the same argument, it’s easy to prove that \({I_{m22}} = {O_p}( \delta _m^2 ){\Vert \varvec{T}\Vert ^2}=o(m\delta _m^2\Vert \varvec{T} \Vert ^2)\). Thus \({\delta _m}{\varvec{T}^T}{S_m}({\varvec{\theta } _0} + {\delta _m}\varvec{T}) \) is asymptotically dominated in probability by \(I_{m21}\) on \(\{ {{\varvec{\theta } _0} + {\delta _m}\varvec{T}:\Vert \varvec{T}\Vert = C}\}\) for the sufficiently large C, and \(I_{m21}>0\) by condition (C7). This implies \(\Vert {\varvec{\bar{\theta } }- {\varvec{\theta } _0}}\Vert =O_p({m^{{{ - r} / {(2r + 1)}}}})\), which in turn immediately implies that \( {| \sum \nolimits _j{ \bar{g} _{j}}(z_j) - \varvec{\psi }_{ij}^T\varvec{\gamma }_0 |} =O_p({m^{{{ - r} / {(2r + 1)}}}})\) and \({|\sum \nolimits _j{ g _{0j}}(z_j) - \varvec{\psi }_{ij}^T\varvec{\gamma }_0| } = O_p({m^{{{ - r} / {(2r + 1)}}}})\). This complete the proof of part (i).

Now, we prove part (ii). For any given \(j \in {{\mathscr {B}}_0^c}\), we have \(\Vert {\varvec{\tilde{\gamma }}_j}\Vert _{\varvec{W}_j} = {O_p}(m^{-r/(2r+1)})\), together with \(m^{(1+\kappa )r/(2r+1)} \lambda _{min} \rightarrow \infty \), we can derive that

$$\begin{aligned} P\left( {{{{\lambda _2}} / {\left\| {{\varvec{\tilde{\gamma } }_j}} \right\| _{\varvec{W}_j}^{1 + \kappa }}} < 1} \right)\le & {} \lambda _2^{ - 1}E\left( {\left\| {{\varvec{\tilde{\gamma } }_j}} \right\| _{\varvec{W}_j}^{1 + \kappa }} \right) \\= & {} \lambda _2^{ - 1}{m^{{{ - r(1+\kappa )} / {(2r + 1)}}}} \\\le & {} {\lambda _{min} ^{ - 1}}{m^{{{ - r(1+\kappa )} / {(2r + 1)}}}} \\&\rightarrow 0. \end{aligned}$$

This implies that

$$\begin{aligned} P\left\{ {{{\hat{\delta } }_j} = 1~~for~all~j \in {\mathscr {B}}_0^c} \right\} \rightarrow 1. \end{aligned}$$

On the other hand, by the condition \( m^{r/(2r+1)}\lambda _{max}\rightarrow 0\), for \(\varepsilon >0\) and \(j \in {\mathscr {B}}_0\), we have

$$\begin{aligned} P\left( {\frac{{{\lambda _2}}}{{\left\| {{\varvec{\tilde{\gamma } }_j}} \right\| _{\varvec{W}_j}^{1 + \kappa }}} > {m^{\frac{{ - r}}{{2r + 1}}}}\varepsilon } \right)\le & {} P\left( {\frac{{{\lambda _{\max }}}}{{\left\| {{\varvec{\tilde{\gamma } }_j}} \right\| _{\varvec{W}_j}^{1 + \kappa }}} > {m^{\frac{{ - r}}{{2r + 1}}}}\varepsilon } \right) \\= & {} P\left( {{{\left( {{{{m^{\frac{r}{{2r + 1}}}}{\lambda _{\max }}} / \varepsilon }} \right) }^{{1 / {(1 + \kappa )}}}} > {{\left\| {{\varvec{\tilde{\gamma } }_j}} \right\| }_{\varvec{W}_j}}} \right) \\\le & {} P\left( {{\left( {{{{m^{\frac{r}{{2r + 1}}}}{\lambda _{\max }}} / \varepsilon }} \right) }^{{1 / {(1 + \kappa )}}}} > \mathop {\min }\limits _{j \in {\mathscr {B}}_0} \{ {{\left\| {{\varvec{\tilde{\gamma } }_{j0}}} \right\| }_{\varvec{W}_j}}\}\right. \\&\left. - {O_p}\left( {{m^{\frac{{ - r}}{{2r + 1}}}}} \right) \right) \\&\rightarrow 0, \end{aligned}$$

which implies that \({{\hat{\delta } }_j} = {o_p}(m^{-r/(2r+1)})\) for each \(j \in {{\mathscr {B}}_0}\). Therefore, we prove that \(P\{ {{{\hat{\delta } }_j} < 1~~for~all~j \in {\mathscr {B}}_0}\} \rightarrow 1.\) Thus, we complete the proof of (ii).

For part (iii), apply the similar techniques as in part (ii), we have, with probability tending to 1, that \({{\hat{\delta } }_j} = 1\) for \( j\in \mathscr {A}_0^c\) and \({{\hat{\delta } }_j} <1\) for \( j\in \mathscr {A}_0\). \(\square \)

Proof of Theorem 5

As shown in (ii) and (iii) in Theorem 4, \({{\bar{\beta } }_j} = 0\) for \(j \in {\mathscr {A}_0^c}\) and \({\varvec{\bar{\gamma }}_j} = 0\) for \(j \in {{\mathscr {B}}_0^c}\) with probability tending to 1. Meanwhile, with probability tending to 1, \(({\varvec{\bar{\beta }}_{\mathscr {A}_0}},\varvec{\bar{\gamma }_{{\mathscr {B}}_0}}) \) satisfies the RSGEE

$$\begin{aligned} \tilde{U}_\tau \left( {\varvec{\beta }_{\mathscr {A}_0} , \varvec{\gamma }_{{\mathscr {B}}_0}} \right) +\varvec{\hat{S}}_{{\mathscr {A}_0},{{\mathscr {B}}_0}}\varvec{\theta }_{{\mathscr {A}_0},{{\mathscr {B}}_0}}=0, \end{aligned}$$

where \(\varvec{\theta }_{{\mathscr {A}_0},{{\mathscr {B}}_0}}=(\varvec{\beta }_{\mathscr {A}_0}^T,\varvec{\gamma }_{{\mathscr {B}}_0}^T)^T\), \(\varvec{\hat{S}}_{{\mathscr {A}_0},{{\mathscr {B}}_0}}=({\varvec{I}_{s+tK}} - {\varvec{\hat{\Delta }}}_{{\mathscr {A}_0},{{\mathscr {B}}_0}} )^{-1}\varvec{\hat{\Delta }}_{{\mathscr {A}_0},{{\mathscr {B}}_0}}\) and \(\varvec{\hat{\Delta }}_{{\mathscr {A}_0},{{\mathscr {B}}_0}} = {\mathrm{diag}}\{ {{{\hat{\delta } }_1},\ldots ,{{\hat{\delta } }_s},\underbrace{{{\hat{\delta } }_{p + 1}},\ldots ,{{\hat{\delta } }_{p + 1}}}_{K},\ldots ,\underbrace{{{\hat{\delta } }_{p + t}},\ldots ,{{\hat{\delta } }_{p + t}}}_{K}} \}\). Moreover, let \(\varvec{\hat{\Delta }}_{{\mathscr {A}_0}}={\mathrm{diag}}\{ {{{\hat{\delta } }_1},\ldots ,{{\hat{\delta } }_s}}\}\) and \(\varvec{\hat{\Delta }}_{{{\mathscr {B}}_0}}={\mathrm{diag}}\{ {\underbrace{{{\hat{\delta } }_{p + 1}},\ldots ,{{\hat{\delta } }_{p + 1}}}_{K},\ldots ,\underbrace{{{\hat{\delta } }_{p + t}},\ldots ,{{\hat{\delta } }_{p + t}}}_{K}} \}\). Define \(\varvec{\hat{S}}_{{\mathscr {A}_0}}=({\varvec{I}_{s}} - {\varvec{\hat{\Delta }}}_{{\mathscr {A}_0}} )^{-1}\varvec{\hat{\Delta }}_{{\mathscr {A}_0}}\) and \(\varvec{\hat{S}}_{{{\mathscr {B}}_0}}=({\varvec{I}_{tK}} - {\varvec{\hat{\Delta }}}_{{{\mathscr {B}}_0}} )^{-1}\varvec{\hat{\Delta }}_{{{\mathscr {B}}_0}}\). Then \({\Vert {\varvec{\hat{S}}_{{\mathscr {A}_0},{{\mathscr {B}}_0}}\varvec{\theta }_{{\mathscr {A}_0},{{\mathscr {B}}_0}} }\Vert ^2} ={\Vert {\left( \begin{array}{l} \varvec{\hat{S}}_{\mathscr {A}_0}\varvec{\beta }_{\mathscr {A}_0} \\ \varvec{\hat{S}}_{{\mathscr {B}}_0}\varvec{\gamma }_{{\mathscr {B}}_0}\\ \end{array} \right) }\Vert ^2} = {\Vert { {\varvec{\hat{S}}_{\mathscr {A}_0}\varvec{\beta }_{\mathscr {A}_0} } }\Vert ^2}+{\Vert { { \varvec{\hat{S}}_{{\mathscr {B}}_0}\varvec{\gamma }_{{\mathscr {B}}_0}} }\Vert ^2}\), where

$$\begin{aligned} {\left\| { {\varvec{\hat{S}}_{\mathscr {A}_0}\varvec{\beta }_{\mathscr {A}_0} } } \right\| ^2}\le & {} \frac{1}{{{{\left\{ {1 - \mathop {\max }\limits _{j \in {\mathscr {A}_0}} {{\hat{\delta } }_j}(\lambda _1 ,\kappa )} \right\} }^2}}}\sum \limits _{j \in {\mathscr {A}_0}} {\frac{{{{(\lambda _1 {\beta _j})}^2}}}{{\tilde{\beta } _j^{2(1 + \kappa )}}}} \\= & {} \frac{\lambda _1^2}{{{{\left\{ {1 - \mathop {\max }\limits _{j \in {\mathscr {A}_0}} {{\hat{\delta } }_j}(\lambda _1 ,\kappa )} \right\} }^2}}}\sum \limits _{j \in {\mathscr {A}_0}} {{{\left| {\tilde{\beta } _j^{( - \kappa )} + ({\beta _j} - \tilde{\beta } _j)\tilde{\beta } _j^{( - 1 -\kappa )}} \right| }^2}} \\\le & {} {O_p}(\lambda _1^2 )\sum \limits _{j \in {\mathscr {A}_0}} {\left( {2{{\left| {\tilde{\beta } _j} \right| }^{ - 2\kappa }} + 2{{\left| {({\beta _j} - \tilde{\beta } _j)\tilde{\beta } _j^{( - 1 - \kappa )}} \right| }^2}} \right) } \\\le & {} {O_p}({\lambda _{max}^2})\left( {2s\mathop {\min }\limits _{j \in {\mathscr {A}_0}} {{\left| {\tilde{\beta } _j} \right| }^{ - 2\kappa }} + 2\mathop {\min }\limits _{j \in {\mathscr {A}_0}} {{\left| {\tilde{\beta } _j} \right| }^{2( - 1 - \kappa )}}{{\left\| {{\varvec{\beta } _{\mathscr {A}_0}} - \varvec{\tilde{\beta }} _{\mathscr {A}_0}} \right\| }^2}} \right) \\= & {} {O_p}\left\{ {{{((m^{r/(2r+1)} \lambda _{max})}^2}m^{-2r/(2r+1)}{\nu ^{ - 2\kappa }}s)(1 + {O_p}({\nu ^{ - 2}}m^{-2r/(2r+1)}))} \right\} \\= & {} {o_p}(m^{-2r/(2r+1)}), \end{aligned}$$

where \(\nu = \mathop {\min }\nolimits _{j \in {\mathscr {A}_0}} \left| {\tilde{\beta } _j} \right| \). Similarly, we have \({\Vert {\varvec{\hat{S}}_{{\mathscr {B}}_0}\varvec{\gamma }_{{\mathscr {B}}_0} } \Vert ^2}={o_p}(m^{-2r/(2r+1)})\). Applying Theorem 3, we can easily complete the proof Theorem 5. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Yang, H. & Guo, C. Smoothing combined generalized estimating equations in quantile partially linear additive models with longitudinal data. Comput Stat 31, 1203–1234 (2016). https://doi.org/10.1007/s00180-015-0612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0612-8

Keywords

Navigation