Skip to main content
Log in

Bayesian confidence intervals for probability of default and asset correlation of portfolio credit risk

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We derive Bayesian confidence intervals for the probability of default (PD), asset correlation (Rho), and serial dependence (Theta) for low default portfolios (LDPs). The goal is to reduce the probability of underestimating credit risk in LDPs. We adopt a generalized method of moments with continuous updating to estimate prior distributions for PD and Rho from historical default data. The method is based on a Bayesian approach without expert opinions. A Markov chain Monte Carlo technique, namely, the Gibbs sampler, is also applied. The performance of the estimation results for LDPs validated by Monte Carlo simulations. Empirical studies on Standard & Poor’s historical default data are also conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersen LBG, Sidenius J (2004) Extensions to the Gaussian copula: random recovery and random factor loadings. J Cred Risk 1:29–70

    Google Scholar 

  • Bangia A, Diebold FX, Kronimus A, Schagen C, Schuermann T (2002) Ratings migration and the business cycle, with applications to credit portfolio stress testing. J Banking Financ 26:445–474

    Article  Google Scholar 

  • Basel Committee on Banking Supervision (2011) A global regulatory framework for more resilient banks and banking systems-revised version. Consultative Document. Bank for International Settlements. http://www.bis.org/publ/bcbs189.pdf

  • Bluhm C, Overbeck L, Wagner C (2010) Introduction to credit risk modeling. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  • Carlin BP, Louis TA (2008) Bayesian methods for data analysis. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  • Chang YP, Yu CT, Liu H (2011) Bayesian inference for credit risk with serially dependent factor model. Int J Infor Manag Sci 22:135–155

    MATH  MathSciNet  Google Scholar 

  • Chen MH, Shao QM (1998) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat 8:69–92

    MathSciNet  Google Scholar 

  • Chen MH, Shao QM, Ibrahim JG (2000) Monte Carlo methods in Bayesian computation. Springer, New York

    Book  MATH  Google Scholar 

  • Dwyer DW (2007) The distribution of defaults and Bayesian model validation. J Risk Model Valid 1:23–53

    Google Scholar 

  • Frey R, McNeil A (2003) Dependent defaults in models of portfolio credit risk. J Risk 6:59–92

    Google Scholar 

  • Ghosh J, Delampady M, Samanta T (2006) An introduction to Bayesian analysis: theory and methods. Springer, New York

    Google Scholar 

  • Gilks WR, Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Appl Stat 41:337–348

    Article  MATH  Google Scholar 

  • Gilks WR, Best NG, Tan KKC (1995) Adaptive rejection metropolis sampling within Gibbs sampling. Appl Stat 44:455–472 (Correction, Gilks et al. (1997) Appl Stat 46:541–542)

    Google Scholar 

  • Gordy MB (2003) A risk factor model foundation for ratings based capital rules. J Financ Intermed 12:199–232

    Article  Google Scholar 

  • Hansen LP (1982) Large sample properties of generalized method moments estimators. Econometrica 50:1029–1054

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen LP, Heaton J, Yaron A (1996) Finite sample properties of some alternative GMM estimators. J Bus Econ Stat 14:262–280

    Google Scholar 

  • Hanson S, Schuermann T (2006) Confidence intervals for probabilities of default. J Banking Financ 30:2281–2301

    Article  Google Scholar 

  • Jacobs M Jr, Kiefer NM (2010) The Bayesian approach to default risk: a guide. In: Bocker K (ed) Rethinking risk measurement and reporting: Volume II. Risk Books, London, pp 319–344

    Google Scholar 

  • Jafry Y, Schuermann T (2004) Measurement, estimation and comparison of credit migration matrices. J Banking Financ 28:2603–2639

    Article  Google Scholar 

  • Kiefer NM (2007) The probability approach to default probabilities. Risk 20:146–150

    Google Scholar 

  • Kiefer NM (2009) Default estimation for low default portfolio. J Empir Financ 16:164–173

    Article  Google Scholar 

  • Kiefer NM (2010) Default estimation and expert information. J Bus Econ Stat 28:320–328

    Article  MATH  MathSciNet  Google Scholar 

  • Kiefer NM (2011) Default estimation, correlated defaults, and expert information. J Appl Econ 26:173–192

    Article  MathSciNet  Google Scholar 

  • McNeil AJ, Wendin JP (2007) Bayesian inference for generalized linear mixed models of portfolio credit risk. J Empir Financ 14:131–149

    Article  Google Scholar 

  • Miu P, Ozdemir B (2008) Estimating and validating long-run probability of default with respect to Basel II requirements. J Risk Model Valid 2:3–41

    Google Scholar 

  • Orth W (2011) Default probability estimation in small samples—with an application to sovereign bonds. Working paper

  • Pluto K, Tasche D (2005) Thinking positively. Risk 18:72–78

    Google Scholar 

  • Pluto K, Tasche D (2011) Estimating probabilities of default for low default portfolios. In: Engelmann B, Rauhmeier R (eds) The Basel II risk parameters. Springer, Berlin, pp 75–101

    Chapter  Google Scholar 

  • Robert C, Casella G (2004) Monte Carlo statistical models. Springer, New York

    Book  Google Scholar 

  • Rösch D, Scheule H (2004) Forecasting retail portfolio credit risk. J Risk Financ 5:16–32

    Article  Google Scholar 

  • Standard & Poor (2012) Default, transition, and recovery: 2011 annual global corporate default study and rating transitions. Technical Report Global Fixed Income Research

  • Tasche D (2012) Bayesian estimation of probabilities of default for low default portfolios. Working paper

  • Wilde T, Jackson L (2006) Low-default portfolios without simulation. Risk 19:60–63

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewer’s valuable comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Tun Yu.

Appendix

Appendix

In Sect. 3, we use the GMM method with the CU approach to estimate the prior parameters. The GMM method with CU estimators is based on the expectation values (15) and (16). To derive these expectation values, we introduce two lemmas.

Lemma 1

Andersen and Sidenius (2004). For any constants \(a\) and \(b\),

$$\begin{aligned} \int \limits _{-\infty }^{\infty } \Phi (a z + b) \phi (z) \text { d}z = \Phi \left( {b \over \sqrt{1+a^2}} \right) . \end{aligned}$$

Lemma 2

Let \(y \sim \hbox {Binomial}(n, p)\), then, for \(n \ge k\),

$$\begin{aligned} \mathsf{E}\left[ {y(y-1) \cdots (y-k+1) \over n(n-1) \cdots (n-k+1)} \right] = p^k, \quad k=1, 2, \ldots . \end{aligned}$$

From Lemmas 1 and 2, it can be shown that

$$\begin{aligned} \mathsf{E}\left[ \lambda _t(p, \rho ,z_t)|p, \rho \right]&= \int \limits _{-\infty }^{\infty } \Phi \left( {\Phi ^{-1}(p) - \sqrt{\rho } z_t \over \sqrt{1-\rho }} \right) \phi (z_t) \text { d}z_t \nonumber \\&= p, \nonumber \\ \mathsf{E}\left[ \lambda _t^k(p, \rho ,z_t)|p, \rho \right]&= \int \limits _{-\infty }^{\infty } \Phi ^k \left( {\Phi ^{-1}(p) - \sqrt{\rho } z_t \over \sqrt{1-\rho }} \right) \phi (z_t) \text { d}z_t,\quad k=2, 3, 4. \end{aligned}$$

Now, the expectation value (15) is

$$\begin{aligned} \mathsf{E}(\bar{y}_t)&= \mathsf{E}[\mathsf{E}(\bar{y}_t|z_t, p, \rho )]\nonumber \\&= \mathsf{E}[\lambda _t(p, \rho , z_t)]\nonumber \\&= \mathsf{E}[\mathsf{E}[\lambda _t(p, \rho , z_t)|p, \rho ]] \nonumber \\&= \mathsf{E}(p) \nonumber \\&= \int \limits _0^1 p\times \pi (p) \text { d}p \nonumber \\&= {a_p \over a_p+b_p}, \end{aligned}$$

and, for \(k=2, 3, 4\), we obtain (16),

$$\begin{aligned}&\mathsf{E}\left[ \bar{y}_t \left( \bar{y}_t - {1 \over n_t} \right) \cdots \left( \bar{y}_t - {k-1 \over n_t} \right) \right] \nonumber \\&\quad = \mathsf{E}\left\{ \mathsf{E}\left[ \bar{y}_t \left( \bar{y}_t - {1 \over n_t} \right) \cdots \left( \bar{y}_t - {k-1 \over n_t} \right) \right] \Bigg |z_t, p, \rho \right\} \nonumber \\&\quad ={n_t(n_t-1) \cdots (n_t-k+1) \over n_t^k} \mathsf{E}\left[ \lambda _t^k( p, \rho , z_t) \right] \nonumber \\&\quad ={(n_t-1) \cdots (n_t-k+1) \over n_t^{k-1}} \mathsf{E}\left\{ \mathsf{E}\left[ \lambda _t^k(p, \rho , z_t)|p, \rho \right] \right\} \nonumber \\&\quad ={(n_t-1) \cdots (n_t-k+1) \over n_t^{k-1}} \int \limits _0^1 \int \limits _0^1\int \limits _{-\infty }^{\infty } \Phi ^k\left( \frac{\Phi ^{-1}(p)-\sqrt{\rho }z_{t}}{\sqrt{1-\rho }}\right) \nonumber \\&\qquad \times \pi (p) \times \pi (\rho )\times \phi (z_t)\text { d}z_t \text { d}p \text { d}\rho . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YP., Yu, CT. Bayesian confidence intervals for probability of default and asset correlation of portfolio credit risk. Comput Stat 29, 331–361 (2014). https://doi.org/10.1007/s00180-013-0453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0453-2

Keywords

Navigation