Skip to main content
Log in

Design and surface analysis in large-amplitude longitudinal ultrasonic vibration-assisted milling of TC4 titanium alloy under dry conditions

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Exploring advanced green processing technology is the way to achieve efficient precision manufacturing of difficult-to-machine materials and carbon-neutral development. Thus, the design and manufacture of a large-amplitude longitudinal ultrasonic vibration-assisted milling (LALUVAM) toolholder is conducted in this work. For validation of the developed toolholder a TC4 titanium alloy milling experiment is carried out. Multifaceted analysis are presented in terms of milling force, surface roughness, and residual stress. The results indicate that the LALUVAM toolholder exhibits excellent performance in milling TC4 materials. What’s more, the disordered tool feed trajectory is eliminated when using the LALUVAM toolholder in milling TC4. Moreover, resultant forces F is reduced 36.61%. The minimum surface roughness and a smaller range of compressive residual stress can be obtained under LALUVAM condition. Meanwhile, a scaled texture can be generated on the surface of TC4 by using harmonic movement of end mill. In the future, LALUVAM toolholder will be able to meet the 10 μm to 20 μm ultrasonic machining and provide better results in terms of reduced milling forces and surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

LALUVAM:

Large-amplitude longitudinal ultrasonic vibration-assisted milling

CDM :

Conventional dry milling

LAM :

Laser-assisted milling

UVAM :

Ultrasonic vibration-assisted milling

CMQLAM:

Cryogenic minimum quantity lubrication-assisted milling

CM:

Conventional milling

LUVAM :

Longitudinal ultrasonic vibration-assisted milling

A :

Ultrasonic amplitude

n :

Spindle speed

FEM:

Finite element method

TOL:

Tool overhang length

TSAUCS:

Two-stage amplified ultrasound conversion system

UGS:

Ultrasonic generator system

TSS:

Toolholder shell system

ETS:

Electrical transmission system

f :

Frequency

PZT:

Piezoelectric

UCS:

Ultrasound conversion system

AC:

Alternating current

PWM:

Pulse width modulation

DC:

Direct current

F :

Resultant forces

f z :

Feed per tooth

Sq :

Root mean square surface roughness

Sa :

Average surface roughness

z :

The number of milling flute

a p :

Axial cutting depth

a e :

Radial cut width

CRS:

Compressive residual stress

References

  1. Liu HG, Zhang J, Xu X, Zhao WH (2018) Experimental study on fracture mechanism transformation in chip segmentation of Ti-6Al-4V alloys during high-speed machining. J Mater Process Technol 257:132–140. https://doi.org/10.1016/j.jmatprotec.2018.02.040

    Article  Google Scholar 

  2. Liang L, Liu ZQ (2018) Tool wear behaviors and corresponding machined surface topography during high-speed machining of Ti-6Al-4V with fine grain tools. Tribol Int 121:321–332. https://doi.org/10.1016/j.triboint.2018.01.057

    Article  Google Scholar 

  3. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tool Manu 51(3):250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003

    Article  Google Scholar 

  4. Khanna N, Davim JP (2015) Design-of-experiments application in machining titanium alloys for aerospace structural components. Measurement 61:280–290. https://doi.org/10.1016/j.measurement.2014.10.059

    Article  Google Scholar 

  5. Schulz H, Moriwaki T (1992) High speed machining. CIRP Ann 41(2):637–643. https://doi.org/10.1016/S0007-8506(07)63250-8

    Article  Google Scholar 

  6. Liang XL, Liu ZQ, Wang B (2020) Dynamic recrystallization characterization in Ti-6Al-4V machined surface layer with process-microstructure-property correlations. Appl Surf Sci 530:147184. https://doi.org/10.1016/j.apsusc.2020.147184

    Article  Google Scholar 

  7. Lotfi M, Amini S, Akbari J (2020) Surface integrity and microstructure changes in 3D elliptical ultrasonic assisted turning of Ti–6Al–4V: FEM and experimental examination. Tribol Int 151:106492. https://doi.org/10.1016/j.triboint.2020.106492

    Article  Google Scholar 

  8. Lotfi M, Charkhian A, Akbari J (2022) Surface analysis in rotary ultrasonic-assisted milling of CFRP and titanium. J Manuf Process 84:174–182. https://doi.org/10.1016/j.jmapro.2022.10.006

    Article  Google Scholar 

  9. Hegab HA, Darras B, Kishawy HA (2018) Towards sustainability assessment of machining processes. J Clean Prod 170:694–703. https://doi.org/10.1016/j.jclepro.2017.09.197

    Article  Google Scholar 

  10. Jiang ZG, Zhou F, Zhang H, Wang Y, Sutherland JW (2015) Optimization of machining parameters considering minimum cutting fluid consumption. J Clean Prod 108:183–191. https://doi.org/10.1016/j.jclepro.2015.06.007

    Article  Google Scholar 

  11. Liu MZ, Li CH, Zhang YB, Yang M, Gao T, Cui X, Wang XM, Xu WH, Zhou ZM, Liu B, Said Z, Li RZ, Sharma S (2023) Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics. Chin J Aeronaut 36(7):160–193. https://doi.org/10.1016/j.cja.2022.11.005

    Article  Google Scholar 

  12. Sankaranarayanan R, Rajesh JHN, Senthil KJ, Krolczyk GM (2021) A comprehensive review on research developments of vegetable-oil based cutting fluids for sustainable machining challenges. J Manuf Process 67:286–313. https://doi.org/10.1016/j.jmapro.2021.05.002

    Article  Google Scholar 

  13. Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in highspeed machining of Inconel 718 and Ti-6Al-6V-2Sn. Wear 202(2):142–148. https://doi.org/10.1016/S0043-1648(96)07255-9

    Article  Google Scholar 

  14. Ma J, Luo D, Liao X, Zhang Z, Huang Y, Lu J (2021) Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning. Measurement 173:108554. https://doi.org/10.1016/j.measurement.2020.108554

    Article  Google Scholar 

  15. Filho SLMR, Lauro CH, Bueno AHS, Brandao LC (2016) Influence cutting parameters on the surface quality and corrosion behavior of Ti-6Al-4V alloy in synthetic body environment (SBF) using Response Surface Method. Measurement 88:223–237. https://doi.org/10.1016/j.measurement.2016.03.047

    Article  Google Scholar 

  16. Gao HH, Ma BJ, Zhu YP, Yang H (2022) Enhancement of machinability and surface quality of Ti-6Al-4V by longitudinal ultrasonic vibration-assisted milling under dry conditions. Measurement 187:110324. https://doi.org/10.1016/j.measurement.2021.110324

    Article  Google Scholar 

  17. Woo WS, Lee CM (2021) Laser-Assisted Milling of Turbine Blade Using Five-Axis Hybrid Machine Tool with Laser Module. Int J Pr Eng Man-Gt 8:783–793. https://doi.org/10.1007/s40684-020-00217-3

    Article  Google Scholar 

  18. Xie ZW, Liu ZQ, Han LC, Wang B, Xin MZ, Cai YK, Song QH (2022) Optimizing amplitude to improve machined surface quality in longitudinal ultrasonic vibration-assisted side milling 2.5D C/SiC composites. Compos Struct 297:115963. https://doi.org/10.1016/j.compstruct.2022.115963

    Article  Google Scholar 

  19. Shokrani A, Ai-Samarrai I, Newman ST (2019) Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy. J Manuf Process 43:229–243. https://doi.org/10.1016/j.jmapro.2019.05.006

    Article  Google Scholar 

  20. Zhang J, Huang XF, Kang XZ, Yi H, Wang QY, Cao HJ (2023) Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal materials. Front Mech Eng 18(2):28. https://doi.org/10.1007/s11465-022-0744-9

    Article  Google Scholar 

  21. Ma CX, Shamoto E, Moriwaki T, Wang LJ (2004) Study of machining accuracy in ultrasonic elliptical vibration cutting. Int J Mach Tool Manu 44(12-13):1305–1310. https://doi.org/10.1016/j.ijmachtools.2004.04.014

    Article  Google Scholar 

  22. Zhang LB, Wang LJ, Liu XY, Zhao HW, Wang X, Luo HY (2001) Mechanical model for predicting thrust and torque in vibration drilling fibre-reinforced composite materials. Int J Mach Tool Manu 41(5):641–657. https://doi.org/10.1016/S0890-6955(00)00105-X

    Article  Google Scholar 

  23. Liu J, Zhang D, Qin L, Yan L (2012) Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP). Int J Mach Tool Manu 53(1):141–150. https://doi.org/10.1016/j.ijmachtools.2011.10.007

    Article  Google Scholar 

  24. Zhang ML, Zhang DY, Geng DX, Liu JJ, Shao ZY, Jiang XG (2020) Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V. Mater Design 191:108658. https://doi.org/10.1016/j.matdes.2020.108658

    Article  Google Scholar 

  25. Gao T, Zhang XP, Li CH, Zhang YB, Yang M, Jia DZ, Ji HJ, Zhao YJ, Li RZ, Yao P, Zhu LD (2020) Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding. J Manuf Process 51:44–61. https://doi.org/10.1016/j.jmapro.2020.01.024

    Article  Google Scholar 

  26. Yang YY, Yang M, Li CH, Li RZ, Said Z, Ali HM, Sharma S (2023) Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant. Front Mech Eng 18(1):1. https://doi.org/10.1007/s11465-022-0717-z

    Article  Google Scholar 

  27. Jain A, Singh G, Jain V, Gupta D (2020) Feasibility analysis for machining serpentine microchannels on glass using rotary ultrasonic milling. Measurement 160:107844. https://doi.org/10.1016/j.measurement.2020.107844

    Article  Google Scholar 

  28. Xie WB, Wang XK, Liu EB, Wang J, Tang XB, Li GX, Zhang J, Yang LQ, Chai YB, Zhao B (2022) Research on cutting force and surface integrity of TC18 titanium alloy by longitudinal ultrasonic vibration assisted milling. Int J Adv Manuf Technol 119:4745–4755. https://doi.org/10.1007/s00170-021-08532-y

    Article  Google Scholar 

  29. Zou Y, Chen G, Lu L, Qin X, Ren C (2019) Kinematic view of cutting mechanism in hole-making process of longitude-torsional ultrasonic assisted helical milling. Int J Adv Manuf Technol 103(1–4):267–280. https://doi.org/10.1007/s00170-019-03483-x

    Article  Google Scholar 

  30. Yuan SM, Tang ZX, Wu Q, Song H (2019) Design of Longitudinal Torsional Ultrasonic Transducer and Its Performance Test. Aust J Mech Eng 55(01):139–148. https://doi.org/10.3901/JME.2019.01.139

    Article  Google Scholar 

  31. Moghaddas MA, Short MA, Wiley NR, Yi AY, Graff KF (2018) Performance of an ultrasonic-assisted drilling module. Int J Adv Manuf Technol 94(9):3019–3028. https://doi.org/10.1007/s00170-017-0495-7

    Article  Google Scholar 

  32. Verma GC, Pandey PM, Dixit US (2018) Modeling of static machining force in axial ultrasonic-vibration assisted milling considering acoustic softening. Int J Mech Sci 136:1–16. https://doi.org/10.1016/j.ijmecsci.2017.11.048

    Article  Google Scholar 

  33. Wu CJ, Chen SJ, Cheng K, Ding H, Xiao CW (2019) Innovative design and analysis of a longitudinal-torsional transducer with the shared node plane applied for ultrasonic assisted milling. P I Mech Eng C-J Mec 233(12):4128–4139. https://doi.org/10.1177/0954406218797962

    Article  Google Scholar 

  34. Su YS, Li L (2021) An Investigation of Cutting Performance and Action Mechanism in Ultrasonic Vibration-Assisted Milling of Ti6Al4V Using a PCD Tool. Micromachines 12(11):1319. https://doi.org/10.3390/mi12111319

    Article  Google Scholar 

  35. Xie WB, Wang XK, Zhao B, Li GX, Xie ZJ (2022) Surface and subsurface analysis of TC18 titanium alloy subject to longitudinal-torsional ultrasonic vibration-assisted end milling. J Alloys Compd 929:167259. https://doi.org/10.1016/j.jallcom.2022.167259

    Article  Google Scholar 

  36. Wang TZ, Quan QQ, Zhang KQ, Tang DW, Deng ZQ (2022) Development of a generator for percussive ultrasonic drills used in asteroid exploration based on impedance characteristics analysis. Ultrasonics 126:106835. https://doi.org/10.1016/j.ultras.2022.106835

    Article  Google Scholar 

  37. Ni CB, Zhu LD (2020) Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economicalenvironmental MQL technology. J Mater Process Technol 278:116518. https://doi.org/10.1016/j.jmatprotec.2019.116518

    Article  Google Scholar 

  38. Wang ZY, He YJ, Yu TB (2022) Surface quality and milling force of SiCp/Al ceramic for ultrasonic vibration-assisted milling. Ceram Int 48:33819–33834. https://doi.org/10.1016/j.ceramint.2022.07.331

    Article  Google Scholar 

  39. Ni CB, Zhu LD, Liu CF, Yang ZC (2018) Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V. Int J Mech Sci 142-143:97–111. https://doi.org/10.1016/j.ijmecsci.2018.04.037

    Article  Google Scholar 

  40. Üsame AU, Mahir U, Serhat Ş, Mustafa K, Khaled G, Danil YP, Szymon W (2022) Tool wear, surface roughness, cutting temperature and chips morphology evaluation of Al/TiN coated carbide cutting tools in milling of Cu–B–CrC based ceramic matrix composites. J Mater Res Technol 16:1243–1259. https://doi.org/10.1016/j.jmrt.2021.12.063

    Article  Google Scholar 

  41. Shen XH (2011) Ultrasonic Vibration-Assisted Milling Technology and Mechanism Research, Dissertation. Shandong University, China. https://doi.org/10.7666/d.y1939096

    Book  Google Scholar 

  42. Wang T, Xie LJ, Wang XB, Jiao L, Shen JW, Xu H (2013) Surface integrity of high speed milling of Al/SiC/65p aluminum matrix composites. Procedia CIRP 8:475–480. https://doi.org/10.1016/j.procir.2013.06.136

    Article  Google Scholar 

  43. Li SC, Xiao GJ, Chen BQ, Zhuo XQ, Xu JY, Huang Y (2022) Surface formation modeling and surface integrity research of normal ultrasonic assisted flexible abrasive belt grinding. J Manuf Process 80:232–246. https://doi.org/10.1016/j.jmapro.2022.05.045

    Article  Google Scholar 

  44. Peng ZL, Zhang XY, Zhang DY (2021) Improvement of Ti–6Al–4V surface integrity through the use of high-speed ultrasonic vibration cutting. Tribol Int 160:107025. https://doi.org/10.1016/j.triboint.2021.107025

    Article  Google Scholar 

  45. Zhao WD, Liu DX, Chiang RC, Qin HF, Zhang XH, Zhang H, Liu J, Ren ZC, Zhang RX, Doll GL, Vasudevan VK, Dong YL, Ye C (2020) Effects of ultrasonic nanocrystal surface modification on the surface integrity, microstructure, and wear resistance of 300M martensitic ultra-high strength steel. J Mater Process Technol 285:116767. https://doi.org/10.1016/j.jmatprotec.2020.116767

    Article  Google Scholar 

  46. Khaliq W, Zhang C, Jamil M, Khan AM (2020) Tool wear, surface quality, and residual stresses analysis of micro-machined additive manufactured Ti–6Al–4V under dry and MQL conditions. Tribol Int 151:106408. https://doi.org/10.1016/j.triboint.2020.106408

    Article  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (2020YFB2010500) and Graduate Research and Innovation Foundation of Chongqing, China (Grant No. CYB23017).

Author information

Authors and Affiliations

Authors

Contributions

Jin Zhang: Conceptualization; Investigation; Methodology; Validation; Roles/Writing-original draft. Xuefeng Huang: Software. Yu Fu: Data curation. Qianyue Wang: Review & editing. Guibao Tao: Project administration; Funding acquisition. Huajun Cao: Supervision; Writing-review & editing; Project administration; Funding acquisition; Resources.

Corresponding author

Correspondence to Huajun Cao.

Ethics declarations

Ethics approval

The manuscript has not been submitted to any other journal for simultaneous consideration. The submitted work is original and has not been published elsewhere in any form or language.

Consent to participate

All authors voluntarily agree to participate in this research study.

Consent for publication

All authors voluntarily agree to publish in this research study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The effect of milling parameters on the measured milling force

No.

n (r/min)

fz(mm/z)

Force Fx (N)

Force Fy (N)

Force Fz (N)

CM

LALUVAM

CM

LALUVAM

CM

LALUVAM

1

1200

0.02

94.09

74.46

96.85

82.81

37.17

33.83

2

1200

0.03

98.34

90.50

99.94

94.78

40.14

36.43

3

1200

0.04

111.10

97.23

102.20

96.74

41.83

38.77

4

1200

0.05

123.10

114.30

113.20

107.97

42.57

39.65

5

1600

0.02

97.73

93.14

104.90

99.01

39.18

38.20

6

1600

0.03

105.30

93.08

107.80

98.52

43.02

39.05

7

1600

0.04

120.70

105.40

116.20

101.70

43.47

39.27

8

1600

0.05

113.00

107.70

114.80

98.90

38.88

37.39

9

2000

0.02

76.37

47.47

66.00

42.91

21.59

13.67

10

2000

0.03

69.69

60.53

60.86

54.06

20.58

15.55

11

2000

0.04

79.15

73.08

62.34

56.88

22.68

17.94

12

2000

0.05

84.17

83.13

62.00

60.63

20.29

17.52

13

2400

0.02

81.75

73.48

71.34

65.75

23.38

18.93

14

2400

0.03

95.92

81.05

78.28

72.17

26.49

19.27

15

2400

0.04

95.48

89.76

81.29

77.4

28.08

25.38

16

2400

0.05

105.8

98.02

83.17

78.04

27.77

26.65

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, X., Fu, Y. et al. Design and surface analysis in large-amplitude longitudinal ultrasonic vibration-assisted milling of TC4 titanium alloy under dry conditions. Int J Adv Manuf Technol (2024). https://doi.org/10.1007/s00170-024-13765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-024-13765-8

Keywords

Navigation