Skip to main content
Log in

Transition of material removal mechanism in cutting of unidirectional SiCf/SiC composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

SiCf/SiC composites are difficult-to-machine materials with high hardness, high brittleness, and anisotropy. Exploring the material removal mechanism in depth is the key basic research to achieve high-quality machining of ceramic matrix composites. The results of orthogonal cutting experiments indicated that the brittle regime of ceramic matrix composites during cutting could be further subdivided into micro brittle fracture regime and macro brittle fracture regime, based on the different basic material units where fiber brittle fracture occurs. A critical cutting depth model for micro–macro brittle fracture transition of ceramic matrix composites was established based on orthogonal cutting theory and composite micromechanics. Comparison of experimental results and model calculation results indicated that the critical cutting depth model for micro–macro brittle fracture transition had high reliability. The critical cutting depth of micro–macro brittle fracture transition in the cutting of SiCf/SiC composites was less than 12 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang Y, Hu J, Zhou L, Zhang X, Yang J, Liao C, Kan Y, Dong S, Li Y (2022) Influence of fiber surface properties of SiCf/SiC composites on the interfacial debonding behavior. J Eur Ceram Soc 44(2):795–801. https://doi.org/10.1016/j.jeurceramsoc.2023.09.081

    Article  Google Scholar 

  2. Yin XW, Cheng LF, Zhang LT, Travitzky N, Greil P (2017) Fibre-reinforced multifunctional SiC matrix composite materials. Int Mater Rev 62(3):117–172. https://doi.org/10.1080/09506608.2016.1213939

    Article  Google Scholar 

  3. Binner J, Porter M, Baker B, Zou J, Venkatachalam V, Diaz VR, D’Angio A, Ramanujam P, Zhang T, Murthy TSRC (2020) Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs - a review. Int Materials Rev 65(7):389–444. https://doi.org/10.1080/09506608.2019.1652006

    Article  Google Scholar 

  4. Chen Y, Chen Y, Wang D, Ai S (2022) Generating 3D digital material twins for woven ceramic-matrix composites from μCT images. J Am Ceram Soc 105(1):481–497. https://doi.org/10.1111/jace.18044

    Article  Google Scholar 

  5. Huo S, Yan Q, Gao X, You Y (2017) Ceramic matrix composite turbine vane thermal simulation test and evaluation. J Int J Turbo Jet-Engines 37(3):0048. https://doi.org/10.1515/tjj-2017-0048

    Article  Google Scholar 

  6. Song C, Ye F, Cheng L, Liu Y, Zhang Q (2022) Long-term ceramic matrix composite for aeroengine. J Adv Ceram 11:1343–1374. https://doi.org/10.1007/s40145-022-0611-5

    Article  Google Scholar 

  7. Panakarajupally RP, Mirza F, El Rassi J, Morscher GN, Abdi F, Choi S (2021) Solid particle erosion behavior of melt-infiltrated SiC/SiC ceramic matrix composites (CMCs) in a simulated turbine engine environment. Compos B Eng 216:108860. https://doi.org/10.1016/j.compositesb.2021.108860

    Article  Google Scholar 

  8. Katoh Y, Snead LL (2019) Silicon carbide and its composites for nuclear applications-historical overview. J Nucl Mater 526:151849. https://doi.org/10.1016/j.jnucmat.2019.151849

    Article  Google Scholar 

  9. Takaaki K, Yutai K, Takashi N (2020) Design and strategy for next-generation silicon carbide composites for nuclear energy. J Nucl Mater 540:152375. https://doi.org/10.1016/j.jnucmat.2020.152375

    Article  Google Scholar 

  10. Braun J, Sauder C (2022) Mechanical behavior of SiC/SiC composites reinforced with new Tyranno SA4 fibers: effect of interphase thickness and comparison with Tyranno SA3 and Hi-Nicalon S reinforced composites. J Nucl Mater 558:153367. https://doi.org/10.1016/j.jnucmat.2021.153367

    Article  Google Scholar 

  11. Porter MT, Binner J, Cinibulk MK, Stern KE, Yakovlev VV (2023) Computational characterisation of microwave heating of fibre preforms for CVI of SiCf/SiC composites. J Eur Ceram Soc 43(5):1808–1827. https://doi.org/10.1016/j.jeurceramsoc.2022.12.035

    Article  Google Scholar 

  12. Liu R, Wang F, Zhang J, Chen J, Wan F, Wang Y (2021) Effects of CVI SiC amount and deposition rates on properties of SiCf/SiC composites fabricated by hybrid chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) routes. Ceram Int 47(19):26971–26977. https://doi.org/10.1016/j.ceramint.2021.06.110

    Article  Google Scholar 

  13. Song C, Liu Y, Ye F, Cheng L, Zhang P, Chai N (2021) Enhanced mechanical property and tunable dielectric property of SiCf/SiC-SiBCN composites by CVI combined with PIP. J Adv Ceram 10:758–767. https://doi.org/10.1007/s40145-021-0470-5

    Article  Google Scholar 

  14. Lv H, Ge M, Zhang H, Zhang H, Yu S, Chen M, Zhang W (2023) Microstructure, thermophysical properties and oxidation resistance of SiCf/SiC-YSi2-Si composite fabricated through reactive melt infiltration. J Eur Ceram Soc 43(14):5950–5960. https://doi.org/10.1016/j.jeurceramsoc.2023.06.070

    Article  Google Scholar 

  15. Diaz OG, Luna GG, Liao Z, Axinte D (2019) The new challenges of machining ceramic matrix composites (CMCs): review of surface integrity. Int J Mach Tools Manuf 139:24–36. https://doi.org/10.1016/j.ijmachtools.2019.01.003

    Article  Google Scholar 

  16. An Q, Chen J, Ming W, Chen M (2021) Machining of SiC ceramic matrix composites: a review. Chinese J Aeronaut 34(4):540–567. https://doi.org/10.1016/j.cja.2020.08.001

    Article  Google Scholar 

  17. Qu S, Yao P, Gong Y, Chu D, Yang Y, Li C, Wang Z, Zhang X, Hou Y (2022) Environmentally friendly grinding of C/SiCs using carbon nanofluid minimum quantity lubrication technology. J Clean Prod 366:132898. https://doi.org/10.1016/j.jclepro.2022.132898

    Article  Google Scholar 

  18. Qu S, Yao P, Gong Y, Yang Y, Chu D, Zhu Q (2022) Modelling and grinding characteristics of unidirectional C-SiCs. Ceram Int 48(6):8314–8324. https://doi.org/10.1016/j.ceramint.2021.12.036

    Article  Google Scholar 

  19. Luna GG, Axinte D, Novovic D (2022) Engineered grinding tools reimplemented by precise sharpening: a case study on an ultrahard ceramic matrix composite (CMC). CIRP Ann 71(1):289–292. https://doi.org/10.1016/j.cirp.2022.04.011

    Article  Google Scholar 

  20. He J, Qian N, Su H, Fu Y, Ding W, Xu J (2023) Wear behavior and machining quality of novel high-sharp brazed diamond abrasive core drills during drilling SiCf/SiC composite micro-holes. Int J Adv Manuf Technol 128:3801–3816. https://doi.org/10.1007/s00170-023-12146-x

    Article  Google Scholar 

  21. Bie W, Chen F, Wang X, Chen S, Fu Z, Zhao B (2023) Longitudinal-torsional coupled rotary ultrasonic machining end surface grinding of SiCf/SiC composites: a mechanical model of cutting force. Int J Adv Manuf Technol 129:1227–1248. https://doi.org/10.1007/s00170-023-12360-7

    Article  Google Scholar 

  22. Dong Z, Zhang H, Bao Y, Yang F, Wang Z, Kang R (2023) Material removal behavior of ultrasonic vibration helical grinding of SiCf/SiC composites. J Manuf Sci Eng 145(5):051008. https://doi.org/10.1115/1.4056595

    Article  Google Scholar 

  23. Zhang B, Du Y, Liu H, Xin L, Yang Y, Li L (2021) Experimental study on high-speed milling of SiCf/SiC composites with PCD and CVD diamond tools. Materials 14(13):3470. https://doi.org/10.3390/ma14133470

    Article  Google Scholar 

  24. Diaz OG, Axinte DA, Butler-Smith P, Novovic D (2019) On understanding the microstructure of SiC/SiC ceramic matrix composites (CMCs) after a material removal process. Mater Sci Eng A 743:1–11. https://doi.org/10.1016/j.msea.2018.11.037

    Article  Google Scholar 

  25. Chen J, An Q, Ming W, Chen M (2019) Hole exit quality and machined surface integrity of 2D Cf/SiC composites drilled by PCD tools. J Eur Ceram Soc 39(14):4000–4010. https://doi.org/10.1016/j.jeurceramsoc.2019.05.057

    Article  Google Scholar 

  26. Zou F, Chen J, An Q, Cai X, Chen M (2020) Influences of clearance angle and point angle on drilling performance of 2D Cf/SiC composites using polycrystalline diamond tools. Ceram Int 46(4):4371–4380. https://doi.org/10.1016/j.ceramint.2019.10.161

    Article  Google Scholar 

  27. Chen J, Ming W, An Q, Chen M (2020) Mechanism and feasibility of ultrasonic-assisted milling to improve the machined surface quality of 2D Cf/SiC composites. Ceram Int 46(10):15122–15136. https://doi.org/10.1016/j.ceramint.2020.03.047

    Article  Google Scholar 

  28. Chen J, An Q, Gong Q, Zeng D, Chen M (2023) Machinability improvement in milling of SiCf/SiC composites based on laser controllable ablation pretreatment. J Eur Ceram Soc 43(4):1352–1365. https://doi.org/10.1016/j.jeurceramsoc.2022.11.070

    Article  Google Scholar 

  29. Wang C, Chen J, Zhang X, Wang T, Yang L, An Q, Ming W, Chen M (2023) Effects of ultrasonic vibration assisted milling with laser ablation pretreatment on fatigue performance and machining efficiency of SiCf/SiC composites. J Eur Ceram Soc 43(4):5925–5939. https://doi.org/10.1016/j.jeurceramsoc.2023.06.033

    Article  Google Scholar 

  30. Li C, Piao Y, Zhang F, Zhang Y, Hu Y, Wang Y (2023) Understand anisotropy dependence of damage evolution and material removal during nanoscratch of MgF2 single crystals. Int J Extreme Manuf 5:015101. https://doi.org/10.1088/2631-7990/ac9eed

    Article  Google Scholar 

  31. Li C, Hu Y, Wei Z, Wu C, Peng Y, Zhang F, Geng Y (2024) Damage evolution and removal behaviors of GaN crystals involved in double-grits grinding. Int J Extreme Manuf 6:025103. https://doi.org/10.1088/2631-7990/ad207f

    Article  Google Scholar 

  32. Qu S, Wei C, Yang Y, Yao P, Chu D, Gong Y, Zhao D, Zhang X (2024) Grinding mechanism and surface quality evaluation strategy of single crystal 4H-SiC. Tribol Int 194:109515. https://doi.org/10.1016/j.triboint.2024.109515

    Article  Google Scholar 

  33. Chen J, An Q, Chen M (2020) Transformation of fracture mechanism and damage behavior of ceramic-matrix composites during nano-scratching. Compos A Appl Sci Manuf 130:105756. https://doi.org/10.1016/j.compositesa.2019.105756

    Article  Google Scholar 

  34. Guerra-Silva R, Teicher U, Ihlenfeldt S, González-Zamora A (2021) Finite element analysis of orthogonal cutting of cellular metals: influence of cutting conditions on chip formation and surface damage. Int J Adv Manuf Technol 113(5):1267–1280. https://doi.org/10.1007/s00170-021-06689-0

    Article  Google Scholar 

  35. Harzallah M, Pottier T, Gilblas R, Landon Y, Mousseigne M, Senatore J (2020) Thermomechanical coupling investigation in Ti-6Al-4V orthogonal cutting: experimental and numerical confrontation. Int J Mech Sci 169:105322. https://doi.org/10.1016/j.ijmecsci.2019.105322

    Article  Google Scholar 

  36. Li HN, Wang JP, Wu CQ, Zhao Y, Xu J, Liu X, Zhu W (2020) Damage behaviors of unidirectional CFRP in orthogonal cutting: a comparison between single-and multiple-pass strategies. Compos B Eng 185:107774. https://doi.org/10.1016/j.compositesb.2020.107774

    Article  Google Scholar 

  37. Song C, Jin X (2020) Shearing-buckling mechanism in orthogonal cutting of unidirectional carbon fiber reinforced polymer. J Mater Process Technol 280:116612. https://doi.org/10.1016/j.jmatprotec.2020.116612

    Article  Google Scholar 

  38. Shen G, Hu G, Liu B (2013) Mechanics of composite materials (second edition). Tsinghua University publishing house co., ltd, Beijing

    Google Scholar 

  39. Xu W, Zhang L (2016) Mechanics of fibre deformation and fracture in vibration-assisted cutting of unidirectional fibre-reinforced polymer composites. Int J Mach Tools Manuf 103:40–52. https://doi.org/10.1016/j.ijmachtools.2016.01.002

    Article  Google Scholar 

  40. Seeholzer L, Scheuner D, Wegener K (2020) Analytical force model for drilling out unidirectional carbon fibre reinforced polymers (CFRP). J Mater Process Technol 278:116489. https://doi.org/10.1016/j.jmatprotec.2019.116489

    Article  Google Scholar 

  41. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge Cambridgeshire

    Book  Google Scholar 

  42. Hetényi M (1946) Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering. University of Michigan Press, M. Hetényi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jie Chen: conceptualization, methodology, investigation, data curation, formal analysis, visualization, writing—original draft, and writing—review and editing. Qinghong Gong: resources. Ge Song: methodology. Wenchang Zhou: supervision. Tingyu Zhang: data curation. Qinglong An: conceptualization and funding acquisition. Ming Chen: project administration.

Corresponding author

Correspondence to Wenchang Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Gong, Q., Song, G. et al. Transition of material removal mechanism in cutting of unidirectional SiCf/SiC composites. Int J Adv Manuf Technol (2024). https://doi.org/10.1007/s00170-024-13761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-024-13761-y

Keywords

Navigation