Skip to main content
Log in

Residual stress and deformation in wire-feed electron beam additive manufactured aluminum components

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electron beam additive manufacturing (EBAM) has broad application prospects in the preparation of large structural components such as those in aerospace structures. It is of great significance to have a deep understanding of the residual stress distribution and deformation of EBAM. A three-dimensional transient thermal–mechanical coupling model was established for the comprehensive investigation of the deformation and residual stress of aluminum alloy components prepared by wire-feed EBAM for the first time. The reliability of the simulation model was verified by comparing the predicted temperature, stress and deformation with experimentally measured values. The influence of heat input on residual stress distribution and deformation was studied using the verified model. The simulation results indicate that reducing heat input is an efficient approach to reducing deformation and residual stress. The developed model can be a powerful tool to optimize process parameters to reduce the residual stress and deformation of EBAM aluminum alloy components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  ADS  CAS  Google Scholar 

  2. Pu Z, Du D, Wang KM, Liu G, Zhang DQ, Wang XB, Chang BH (2021) Microstructure, phase transformation behavior and tensile superelasticity of NiTi shape memory alloys fabricated by the wire-based vacuum additive manufacturing. Mat Sci Eng A-Struct 812:141077. https://doi.org/10.1016/j.msea.2021.141077

    Article  CAS  Google Scholar 

  3. Zhang DQ, Du D, Pu Z, Xue S, Qi JJ, Chang BH (2023) Interfacial microstructure and stress characteristics of laser-directed energy deposited AA2024 on Ti6Al4V substrate. Opt Laser Technol 164:109521. https://doi.org/10.1016/j.optlastec.2023.109521

    Article  CAS  Google Scholar 

  4. Liu G, Du D, Wang KM, Pu Z, Zhang DQ, Chang BH (2021) High-temperature oxidation behavior of a directionally solidified superalloy repaired by directed energy deposition. Corros Sci 193:109918. https://doi.org/10.1016/j.corsci.2021.109918

    Article  CAS  Google Scholar 

  5. Pu Z, Du D, Wang KM, Liu G, Zhang DQ, Zhang HY, Xi R, Wang XB, Chang B (2022) Study on the NiTi shape memory alloys in-situ synthesized by dual-wire-feed electron beam additive manufacturing. Addit Manuf 56:102886. https://doi.org/10.1016/j.addma.2022.102886

    Article  CAS  Google Scholar 

  6. Wu BT, Pan ZX, Ding DH, Cuiuri D, Li HJ, Xu J, Norrish J (2018) A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process 35:127–139. https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  7. Zhu ZG, Hu ZH, Seet HL, Liu TT, Liao WH, Ramamurty U, Nai SML (2023) Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. Int J Mach Tool Manu 190:104047. https://doi.org/10.1016/j.ijmachtools.2023.104047

    Article  Google Scholar 

  8. Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM (2017) 3D printing of high-strength aluminum alloys. Nat 549:365–369. https://doi.org/10.1038/nature23894

    Article  ADS  CAS  Google Scholar 

  9. Ghasemi A, Fereiduni E, Balbaa M, Jadhav SD, Elbestawi M, Habibi S (2021) Influence of alloying elements on laser powder bed fusion processability of aluminum: A new insight into the oxidation tendency. Addit Manuf 46:102145. https://doi.org/10.1016/j.addma.2021.102145

    Article  CAS  Google Scholar 

  10. Weingarten C, Buchbinder D, Pirch N, Meiners W, Wissenbach K, Poprawe R (2015) Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J Mater Process Technol 221:112–120. https://doi.org/10.1016/j.jmatprotec.2015.02.013

    Article  CAS  Google Scholar 

  11. Bian HK, Aoyagi K, Zhao YF, Maeda C, Mouri T, Chiba A (2020) Microstructure refinement for superior ductility of Al-Si alloy by electron beam melting. Addit Manuf 32:100982. https://doi.org/10.1016/j.addma.2019.100982

    Article  CAS  Google Scholar 

  12. Kenevisi MS, Lin F (2020) Selective electron beam melting of high strength Al2024 alloy; microstructural characterization and mechanical properties. J Alloy Compd 843:155866. https://doi.org/10.1016/j.jallcom.2020.155866

    Article  CAS  Google Scholar 

  13. Utyaganova VR, Filippov AV, Shamarin NN, Vorontsov AV, Savchenko NL, Fortuna SV, Gurianov DA, Chumaevskii AV, Rubtsov VE, Tarasov SY (2020) Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy. Int J Adv Manuf Technol 108:2823–2838. https://doi.org/10.1007/s00170-020-05539-9

    Article  Google Scholar 

  14. Raute J, Biegler M, Rethmeier M (2023) Process Setup and Boundaries of Wire Electron Beam Additive Manufacturing of High-Strength Aluminum Bronze. Metals 13:1416. https://doi.org/10.3390/met13081416

    Article  CAS  Google Scholar 

  15. Pu Z, Du D, Zhang DQ, Li ZX, Xue S, Xi R, Wang XB, Chang BH (2023) Improvement of tensile superelasticity by aging treatment of NiTi shape memory alloys fabricated by electron beam wire-feed additive manufacturing. J Mater Sci Technol 145:185–196. https://doi.org/10.1016/j.jmst.2022.10.050

    Article  CAS  Google Scholar 

  16. Li ZX, Cui YN, Chang BH, Liu G, Pu Z, Zhang HY, Liang ZY, Liu CM, Du D (2022) Manipulating molten pool in in-situ additive manufacturing of Ti-22Al-25 Nb through alternating dual-electron beams. Addit Manuf 60:103230. https://doi.org/10.1016/j.addma.2022.103230

    Article  CAS  Google Scholar 

  17. Liang ZY, Chang BH, Zhang HY, Li ZX, Peng GD, Du D, Chang SH, Wang L (2022) Electric current evaluation for process monitoring in electron beam directed energy deposition. Int J Mach Tool Manu 176:103883. https://doi.org/10.1016/j.ijmachtools.2022.103883

    Article  Google Scholar 

  18. Prabhakar P, Sames WJ, Dehoff R, Babu SS (2015) Computational modeling of residual stress formation during the electron beam melting process for Inconel 718. Addit Manuf 7:83–91. https://doi.org/10.1016/j.addma.2015.03.003

    Article  CAS  Google Scholar 

  19. Simson T, Emmel A, Dwars A, Böhm J (2017) Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit Manuf 17:183–189. https://doi.org/10.1016/j.addma.2017.07.007

    Article  CAS  Google Scholar 

  20. Zhang WY, Guo D, Wang L, Davies CM, Mirihanage W, Tong MM, Harrison NM (2023) X-ray diffraction measurements and computational prediction of residual stress mitigation scanning strategies in powder bed fusion additive manufacturing. Addit Manuf 61:103275. https://doi.org/10.1016/j.addma.2022.103275

    Article  CAS  Google Scholar 

  21. Swain D, Sharma A, Selvan SK, Thomas BP, Govind PJ (2019) Residual stress measurement on 3-D printed blocks of Ti-6Al-4V using incremental hole drilling technique. Procedia Struct Integr 14:337–344. https://doi.org/10.1016/j.prostr.2019.05.042

    Article  Google Scholar 

  22. Sandmann P, Keller S, Kashaev N, Ghouse S, Hooper PA, Klusemann B, Davies CM (2022) Influence of laser shock peening on the residual stresses in additively manufactured 316L by Laser Powder Bed Fusion: A combined experimental–numerical study. Addit Manuf 60:103204. https://doi.org/10.1016/j.addma.2022.103204

    Article  CAS  Google Scholar 

  23. Shen C, Ma Y, Reid M, Pan ZX, Hua XM, Cuiuri D, Paradowska A, Wang L, Li HJ (2022) Neutron diffraction residual stress determinations in titanium aluminide component fabricated using the twin wire-arc additive manufacturing. J Manuf Process 74:141–150. https://doi.org/10.1016/j.jmapro.2021.12.009

    Article  Google Scholar 

  24. Nycz A, Lee Y, Noakes M, Ankit D, Masuo C, Simunovic S, Bunn J, Love L, Oancea V, Payzant A, Fancher CM (2021) Effective residual stress prediction validated with neutron diffraction method for metal large-scale additive manufacturing. Mater Des 205:109751. https://doi.org/10.1016/j.matdes.2021.109751

    Article  CAS  Google Scholar 

  25. Sun JM, Hensel J, Köhler M, Dilger K (2021) Residual stress in wire and arc additively manufactured aluminum components. J Manuf Process 65:97–111. https://doi.org/10.1016/j.jmapro.2021.02.021

    Article  Google Scholar 

  26. Zhao ZY, Wang JB, Du WB, Bai PK, Wu XY (2023) Numerical simulation and experimental study of the 7075 aluminum alloy during selective laser melting. Opt Laser Technol 167:109814. https://doi.org/10.1016/j.optlastec.2023.109814

    Article  CAS  Google Scholar 

  27. Caiazzo F, Alfieri V, Bolelli G (2021) Residual stress in laser-based directed energy deposition of aluminum alloy 2024: simulation and validation. Int J Adv Manuf Technol 118:1197–1211. https://doi.org/10.1007/s00170-021-07988-2

    Article  Google Scholar 

  28. Vastola G, Zhang G, Pei QX, Zhang YW (2016) Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling. Addit Manuf 12:231–239. https://doi.org/10.1016/j.addma.2016.05.010

    Article  CAS  Google Scholar 

  29. Chen Z, Ye H, Xu HY (2018) Distortion control in a wire-fed electron-beam thin-walled Ti-6Al-4V freeform. J Mater Process Technol 258:286–295. https://doi.org/10.1016/j.jmatprotec.2018.04.008

    Article  ADS  CAS  Google Scholar 

  30. Cao J, Gharghouri MA, Nash P (2016) Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates. J Mater Process Technol 237:409–419. https://doi.org/10.1016/j.jmatprotec.2016.06.032

    Article  CAS  Google Scholar 

  31. Raghavan N, Dehoff R, Pannala S, Simunovic S, Kirka M, Turner J, Carlson N, Babu SS (2016) Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing. Acta Mater 112:303–314. https://doi.org/10.1016/j.actamat.2016.03.063

    Article  ADS  CAS  Google Scholar 

  32. Denlinger ER, Heigel JC, Michaleris P (2015) Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V. P I Mech Eng B J Eng 229:1803–1813. https://doi.org/10.1177/0954405414539494

    Article  CAS  Google Scholar 

  33. Chen GQ, Shu X, Liu JP, Zhang BG, Feng JC (2020) A new method for distortion calculations in additive manufacturing: contact analysis between a workpiece and clamps. Int J Mech Sci 171:105362. https://doi.org/10.1016/j.ijmecsci.2019.105362

    Article  Google Scholar 

  34. Kruth JP, Deckers J, Yasa E, Wauthlé R (2012) Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. P I Mech Eng B J Eng 226:980–991. https://doi.org/10.1177/0954405412437085

    Article  Google Scholar 

  35. Zhao L, Macías JGS, Dolimont A, Simar A, Rivière-Lorphèvre E (2020) Comparison of residual stresses obtained by the crack compliance method for parts produced by different metal additive manufacturing techniques and after friction stir processing. Addit Manuf 36:101499. https://doi.org/10.1016/j.addma.2020.101499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editorial department and the reviewers.

Funding

This work was supported by the Joint Funds of China Academy of Launch Vehicle Technology and University (CALT 2021–24) and the Fund of the State Key Laboratory of Tribology in Advanced Equipment (SKLT2022C20).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Baohua Chang, Dongqi Zhang; methodology: Dong Du, Ze Pu; software: Dongqi Zhang, Yingying Tang; validation: Shuai Xue, Junjie Qi; formal analysis: Dongqi Zhang; investigation: Dongqi Zhang; resources: Yunpeng Lu, Baohua Chang; data curation: Dongqi Zhang; writing-original draft preparation: Dongqi Zhang; writing-review and editing: Baohua Chang; visualization: Baohua Chang; supervision: Dong Du; project administration: Dong Du, Yunpeng Lu; funding acquisition: Baohua Chang.

Corresponding author

Correspondence to Baohua Chang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Du, D., Xue, S. et al. Residual stress and deformation in wire-feed electron beam additive manufactured aluminum components. Int J Adv Manuf Technol 131, 1665–1676 (2024). https://doi.org/10.1007/s00170-024-13169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13169-8

Keywords

Navigation