Skip to main content
Log in

Metrological analysis of changes in the surface morphology of planer knives after working surface modification

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The article focuses on the analysis of changes in the surface morphology of planer knives modified with four different anti-wear coatings: multilayer, monolithic, monolithic-gradient, and gradient. The coatings described in the article affect the extension of planer tools service life in the range from 153 to 269%. The main objective of the paper was to determine the effect of vacuum-plasma modification of working surfaces of tools intended for machine processing of wooden parts on their geometric structure. The research was carried out on planer knives made of HS6-5–2 high-speed steel and used in industrial conditions. The present work sums up the knowledge resulting from the exploitation tests of modified knives with the features defining the morphology of their working surfaces. The paper comprehensively characterizes the 3D surface roughness parameters, as well as other characteristics such as isotropy and depths histogram. The knife surface modified with a gradient coating (longest life 269%) had a high level of anisotropy. Rose directions with texture directions present that this kind of coating generated structure with 4.23% value of isotropy. The distribution of ordinates was characterized by high clustering and an negative skewness (Ssk =  − 0.74). The results described can be used in the design and quality assessment of thin anti-wear coatings, as well as in preparation of substrates for their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

I :

Isotropy, %

Sa :

Arithmetical mean height of the surface, μm

St :

Maximum height of the surface, μm

Ssk :

Skewness of height distribution, –

SPc :

Area peak count, pks/mm2

Sds :

Density of summits of the surface, pks/mm2

Str :

Texture aspect ratio of the surface, –

Sdq :

Root mean square slope of the surface, μm/μm

Ssc :

Arithmetic mean summit curvature of the surface, 1/μm

Sdr :

Developed interfacial area ratio, %

Sbi :

Bearing index, –

Sci :

Core fluid retention index, –

Svi :

Valley fluid retention index,

References

  1. Nouveau C, Jorand E, Decès-Petit C, Labidi C, Djouadi MA (2005) Influence of carbide substrates on tribological properties of chromium and chromium nitride coatings: application to wood machining. Wear 258:157–165

    Article  CAS  Google Scholar 

  2. Soury E, Behravesh AH, Esfahani ER, Zolfaghari A (2009) Design, optimization and manufacturing of wood–plastic composite pallet. Mater Des 30:4183–4191

    Article  CAS  Google Scholar 

  3. Nadolny K, Kapłonek W, Sutowska M, Sutowski P, Myśliński P, Gilewicz A, Warcholiński B (2021) Experimental tests of PVD AlCrN coated planer knives on planning Scots pine (Pinus sylvestris L.) under industrial conditions. Eur J Wood Prod 79:645–665. https://doi.org/10.1007/s00107-021-01660-y

    Article  CAS  Google Scholar 

  4. Malkoçoğlu A (2007) Machining properties and surface roughness of various wood species planed in different conditions. Build Environ 42(7):2562–2567. https://doi.org/10.1016/j.buildenv.2006.08.028

    Article  Google Scholar 

  5. Myśliński P, Gilewicz A, Nadolny K, Warcholiński B, Sutowska M, Sutowski P, Mydłowska K (2022) Thermomechanical method in application to measurement of changes in stress states in substrate-PVD coating systems. Measurement 188:110380. https://doi.org/10.1016/j.measurement.2021.110380

    Article  Google Scholar 

  6. Kong Y, Tian X, Gong C, Chu PK (2018) Enhancement of toughness and wear resistance by CrN/CrCN multilayered coatings for wood processing. Surf Coat Technol 344:204–213

    Article  CAS  Google Scholar 

  7. Chayeuski V, Zhylinski V, Cernashejus O, Višniakov N, Mikalauskas G (2018) Structural and mechanical properties of the ZrC/Ni-nanodiamond coating synthesized by the PVD and electroplating processes for the cutting knifes. J Mater Eng Perform 28:1278–1285

    Article  Google Scholar 

  8. Lopez de Lacalle LN, Fernández-Larrinoa J, Rodríguez-Ezquerro A, Fernández-Valdivielso A, López-Blanco R, Azkona-Villaverde I (2015) On the cutting of wood for joinery applications. Proc Inst Mech Eng Part B: Journal of Engineering Manufacture 229(6):940–952. https://doi.org/10.1177/0954405414534431

    Article  Google Scholar 

  9. López de Lacalle N, Lamikiz A, Campa FJ, Valdivielso AFDZ, Etxeberria I (2009) Design and test of a multitooth tool for CFRP milling. J Compos Mater 43(26):3275–3290. https://doi.org/10.1177/0021998309345354

    Article  CAS  Google Scholar 

  10. Nadolny K, Kapłonek W, Sutowska M, Sutowski P, Myśliński P, Gilewicz A (2020) Experimental studies on durability of PVD-based CrCN/CrN-coated cutting blade of planer knives used in the pine wood planing process. Materials 13(10):2398. https://doi.org/10.3390/ma13102398

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  11. Nadolny K, Kapłonek W, Sutowska M, Sutowski P, Myśliński P, Gilewicz A, Warcholiński B (2021) Moving towards sustainable manufacturing by extending the tool life of the pine wood planing process using the AlCrBN coating. Sustain Mater Techno 28:e00259. https://doi.org/10.1016/j.susmat.2021.e00259

    Article  CAS  Google Scholar 

  12. Ratajski J, Gulbiński W, Staśkiewicz J, Walkowicz J, Myśliński P, Czyżniewski A, Suszko T, Gilewicz A, Warcholiński B (2009) Hard coatings for woodworking tools—a review. Manuf Eng 317:668–674

    Google Scholar 

  13. Sutowski P, Nadolny K, Sutowska M, Myśliński P, Gilewicz A, Warcholiński B (2022) Influence of regeneration process parameters on geometry and defects of clearance surface of planer knives used in wood planing process. Arch Civ Mech Eng 22:43. https://doi.org/10.1007/s43452-021-00332-1.J.C

    Article  Google Scholar 

  14. Sadowski Ł, Mathia TG (2016) Multi-scale metrology of concrete surface morphology: fundamentals and specificity. Constr Build Mater 113(15):613–621. https://doi.org/10.1016/j.conbuildmat.2016.03.099

    Article  CAS  Google Scholar 

  15. Stępień P (2010) Micro-geometrical characteristics of the cutting edge as the intersection of two rough surfaces. Wear 269(3–4):249–261. https://doi.org/10.1016/j.wear.2010.04.005

    Article  CAS  Google Scholar 

  16. Gilewicz A, Warcholinski B, Myslinski P, Szymański W (2010) Anti-wear multilayer coatings based on chromium nitride for wood machining tools. Wear 270:32–38. https://doi.org/10.1016/j.wear.2010.09.002

    Article  CAS  Google Scholar 

  17. Warcholinski B, Gilewicz A, Ratajski J (2011) Cr2N/CrN multilayer coatings for wood machining tools. Tribol Int 44:1076–1082. https://doi.org/10.1016/j.triboint.2011.05.004

    Article  CAS  Google Scholar 

  18. Szymański W, Gilewicz A, Pinkowski G, Beer P (2009) Durability of blades covered by multilayer anti-wear coatings during wood milling. Annals WULS–SGGW. For Wood Technol 69:353–357

    Google Scholar 

  19. Gilewicz A, Warcholinski B, Szymański W, Grimm W (2013) CrCN/CrN+ta-C multilayer coating for applications in wood processing. Tribol Int 57:1–7. https://doi.org/10.1016/j.triboint.2012.07.006

    Article  CAS  Google Scholar 

  20. Krella A, Czyzniewski A, Gilewicz A, Krupa A (2017) Cavitation erosion of CrN/CrCN multilayer coating. Wear 386:80–89. https://doi.org/10.1016/j.wear.2017.06.007

    Article  CAS  Google Scholar 

  21. Warcholinski B, Gilewicz A, Kuklinski Z, Myslinski P (2010) Hard CrCN/CrN multilayer coatings for tribological applications. Surf Coat Technol 204:2289–2293

    Article  CAS  Google Scholar 

  22. Warcholinski B, Gilewicz A (2011) Multilayer coatings on tools for woodworking. Wear 271:2812–2820

    Article  CAS  Google Scholar 

  23. Warcholinski A (2011) Gilewicz, The properties of multilayer CrCN/CrN coatings dependent on their architecture. Plasma Process Polym 8:333–339

    Article  CAS  Google Scholar 

  24. Warcholinski B, Gilewicz A, Myslinski P, Dobruchowska E, Murzynski D, Kuznetsova T (2020) Effect of silicon concentration on the properties of Al-Cr-Si-N coatings deposited using cathodic arc evaporation. Materials 13:4717

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  25. Sutowska M, Kapłonek W, Pimenov DY, Gupta MK, Mia M, Sharma S (2020) Influence of variable radius of cutting head trajectory on quality of cutting kerf in the abrasive water jet process for soda–lime glass. Materials 13(10):4277. https://doi.org/10.3390/ma13194277

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  26. Deltombe R, Kubiak KJ, Bigerelle M (2014) How to select the most relevant 3D roughness parameters of a surface. Scanning 36(1):150–160. https://doi.org/10.1002/sca.21113

    Article  PubMed  CAS  Google Scholar 

  27. EN ISO 25178–2: 2021 Geometrical product specifications (GPS), surface texture: areal, part 2: terms, definitions and surface texture parameters

  28. F Blateyron (2013) The areal field parameters. In: Leach, R. (eds) Characterisation of areal surface texture. Springer, Berlin, Heidelberg 15–43. https://doi.org/10.1007/978-3-642-36458-7_2.

  29. F Blateyron (2013) The areal feature parameters. In: Leach, R. (eds) Characterisation of areal surface texture. Springer, Berlin, Heidelberg 45–65 https://doi.org/10.1007/978-3-642-36458-7_3

  30. Pawlus P, Reizer R, Wieczorowski M (2023) Parametric characterization of machined textured surfaces. Materials 16(1):163. https://doi.org/10.3390/ma16010163

    Article  ADS  CAS  Google Scholar 

  31. Pawlus P, Reizer R, Wieczorowski M (2021) Functional importance of surface texture parameters. Materials 14(18):5326. https://doi.org/10.3390/ma14185326

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

Download references

Funding

This document is the result of a research project funded by the Polish National Centre for Research and Development, project number BIOSTRATEG3/344303/14/NCBR/2018: Improvement of Process and Material Efficiency in Sawmill Industry under the BIOSTRATEG: Natural Environment, Agriculture and Forestry program.

Author information

Authors and Affiliations

Authors

Contributions

Marzena Sutowska: conceptualization, investigation, software, visualization, data curation, writing—original draft. Czesław Łukianowicz: formal analysis, validation, writing—review and editing. Bogdan Warcholiński: formal analysis, validation, writing—review and editing. Krzysztof Nadolny: methodology, supervision, resources, writing—review and editing.

Corresponding author

Correspondence to Krzysztof Nadolny.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutowska, M., Łukianowicz, C., Warcholiński, B. et al. Metrological analysis of changes in the surface morphology of planer knives after working surface modification. Int J Adv Manuf Technol 131, 355–367 (2024). https://doi.org/10.1007/s00170-024-13134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13134-5

Keywords

Navigation