Skip to main content
Log in

Biodegradable cutting fluids for sustainable manufacturing: a review of machining mechanisms and performance

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The application of biodegradable cutting fluids in metal cutting processes has raised interest among multidisciplinary researchers. Vegetable oils with long and polar fatty acid chains provide thick lubricant coatings that interact strongly with metallic surfaces, making them ideal biodegradable cutting fluids. In this review, the viscosity, oxidation performance, and machining performance of several vegetable oils, including palm, coconut, neem, and jatropha oils, were analysed and compared with conventional cutting fluids. The associated challenges in this field are discussed, and future research directions presented. Through this review, vegetable oils with particle additives, like alumina, silicon dioxide, molybdenum disulfide, and hexagonal boron nitride, were identified to be capable of improving the machining performance. The particles’ mending, polishing, and rolling effects are effective mechanisms for improving machining performance. Furthermore, chemical modification processes, such as transesterification and epoxidation, improve the anti-oxidation ability of vegetable oils by altering the carboxyl group (esterification/transesterification) or the fatty acid chain (epoxidation). Consequently, vegetable oils with particle additives and chemical modification surpass conventional cutting fluids in metal cutting operations and contribute to sustainable manufacturing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Abdelrazek AH, Choudhury IA, Nukman Y, Kazi SN (2020) Metal cutting lubricants and cutting tools: a review on the performance improvement and sustainability assessment. Int J Adv Manuf Technol 106(9–10):4221–4245. https://doi.org/10.1007/s00170-019-04890-w

    Article  Google Scholar 

  2. Brinksmeier E, Meyer D, Huesmann-Cordes AG, Herrmann C (2015) Metalworking fluids - mechanisms and performance. CIRP Ann - Manuf Technol 64(2):605–628. https://doi.org/10.1016/j.cirp.2015.05.003

    Article  Google Scholar 

  3. Syahrullail S, Kamitani S, Shakirin A (2013) Performance of vegetable oil as lubricant in extreme pressure condition. Procedia Eng 68:172–177. https://doi.org/10.1016/j.proeng.2013.12.164

    Article  CAS  Google Scholar 

  4. Biber-Freudenberger L, Ergeneman C, Förster JJ, Dietz T, Börner J (2020) Bioeconomy futures: expectation patterns of scientists and practitioners on the sustainability of bio-based transformation. Sustain Dev 28(5):1220–1235. https://doi.org/10.1002/sd.2072

    Article  Google Scholar 

  5. Rybárová D (2020) Assessing progress towards responsible consumption and production. SHS Web Conf 83:01059. https://doi.org/10.1051/shsconf/20208301059

    Article  Google Scholar 

  6. Waheed A, Zhang Q, Rashid Y, Tahir MS, Zafar MW (2020) Impact of green manufacturing on consumer ecological behavior: stakeholder engagement through green production and innovation. Sustain Dev 28(5):1395–1403. https://doi.org/10.1002/sd.2093

    Article  Google Scholar 

  7. Sala S, Castellani V (2019) The consumer footprint: monitoring sustainable development goal 12 with process-based life cycle assessment. J Clean Prod 240:118050. https://doi.org/10.1016/j.jclepro.2019.118050

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eisenmenger N, Pichler M, Krenmayr N, Noll D, Plank B, Schalmann E, Wandl MT, Gingrich S (2020) The Sustainable Development Goals prioritize economic growth over sustainable resource use: a critical reflection on the SDGs from a socio-ecological perspective. Sustain Sci 15(4):1101–1110. https://doi.org/10.1007/s11625-020-00813-x

    Article  Google Scholar 

  9. Renaud F, Zhou X, Bosher L, Barrett B, Huang S (2022) Synergies and trade-offs between sustainable development goals and targets: innovative approaches and new perspectives. Sustain Sci 17(4):1317–1322. https://doi.org/10.1007/s11625-020-00815-9

    Article  Google Scholar 

  10. Jacob-John J, D’souza C, Marjoribanks T, Singaraju S (2021) Synergistic interactions of sdgs in food supply chains: a review of responsible consumption and production. Sustain (Switzerland) 13(16):1–20. https://doi.org/10.3390/su13168809

    Article  Google Scholar 

  11. Gunawan J, Permatasari P, Tilt C (2020) Sustainable development goal disclosures: do they support responsible consumption and production? J Clean Prod 246:118989. https://doi.org/10.1016/j.jclepro.2019.118989

    Article  Google Scholar 

  12. Schroeder P, Anggraeni K, Weber U (2019) The relevance of circular economy practices to the sustainable development goals. J Ind Ecol 23(1):77–95. https://doi.org/10.1111/jiec.12732

    Article  Google Scholar 

  13. Pereira L, Asrar GR, Bhargava R, Fisher LH, Hsu A, Jabbour J, Nel J, Selomane O, Sitas N, Trisos C, Ward J, van den Ende M, Vervoort J, Weinfurter A (2021) Grounding global environmental assessments through bottom-up futures based on local practices and perspectives. Sustain Sci 16(6):1907–1922. https://doi.org/10.1007/s11625-021-01013-x

    Article  Google Scholar 

  14. Petry RA, Fadeeva Z, Fadeeva O, Hasslöf H, Hellström Å, Hermans J, Mochizuki Y, Sonesson K (2011) Educating for sustainable production and consumption and sustainable livelihoods: learning from multi-stakeholder networks. Sustain Sci 6(1):83–96. https://doi.org/10.1007/s11625-010-0116-y

    Article  Google Scholar 

  15. Rasool S, Rehman A, Cerchione R, Centobelli P (2021) Evaluating consumer environmental behavior for sustainable development: a confirmatory factor analysis. Sustain Dev 29(2):318–326. https://doi.org/10.1002/sd.2147

    Article  Google Scholar 

  16. Shafi WK, Raina A, Ul Haq MI (2018) Friction and wear characteristics of vegetable oils using nanoparticles for sustainable lubrication. Tribol Mater Surf Interfaces 12(1):27–43. https://doi.org/10.1080/17515831.2018.1435343

    Article  ADS  Google Scholar 

  17. Bhowmik P, Kumar U, Arora G, Noida G (2015) Vegetable oil based cutting fluids–green and sustainable machining – I. J Mater Sci Mech Eng 2(9):1–5

    Google Scholar 

  18. Kazeem RA, Fadare DA, Abutu J, Lawal SA, Adesina OS (2020) Performance evaluation of jatropha oil-based cutting fluid in turning AISI 1525 steel alloy. CIRP J Manuf Sci Technol 31(2019):418–430. https://doi.org/10.1016/j.cirpj.2020.07.004

    Article  Google Scholar 

  19. Srinivas MS, Panneer R, Suvin PS, Kailas SV (2021) Synthesis and testing of novel neem oil-based cutting fluid with ionic liquid additives. In: Chakrabarti A, Arora M (eds) Industry 4.0 and advanced manufacturing. Lecture Notes in Mechanical Engineering. Springer, Singapore, pp 311–322. https://doi.org/10.1007/978-981-15-5689-0_27

  20. Guo Y, Cui X, Guo J (2020) Biomimetic integration of MQL and tool surface microstructure in intermittent machining. Int J Adv Manuf Technol 111(7–8):1847–1861. https://doi.org/10.1007/s00170-020-06247-0

    Article  Google Scholar 

  21. Mahadi MA, Choudhury IA, Azuddin M, Nukman Y (2017) Use of boric acid powder aided vegetable oil lubricant in turning AISI 431 steel. Procedia Eng 184:128–136. https://doi.org/10.1016/j.proeng.2017.04.077

    Article  CAS  Google Scholar 

  22. Saadatbakhsh MH, Imani H, Sadeghi MH, Sabbaghi Farshi S (2017) Experimental study of surface roughness and geometrical and dimensional tolerances in helical milling of AISI 4340 alloy steel. Int J Adv Manuf Technol 93(9–12):4063–4074. https://doi.org/10.1007/s00170-017-0782-3

    Article  Google Scholar 

  23. Cortes V, Sanchez K, Gonzalez R, Alcoutlabi M, Ortega JA (2020) The performance of SiO2 and TiO2 nanoparticles as lubricant additives in sunflower oil. Lubricants 8(1):1–10. https://doi.org/10.3390/lubricants8010010

    Article  Google Scholar 

  24. Chatha SS, Pal A, Singh T (2016) Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. J Clean Prod 137:537–545. https://doi.org/10.1016/j.jclepro.2016.07.139

    Article  CAS  Google Scholar 

  25. Bin KS, Park MS, Jang SP (2020) Radius effect on the thermal resistance of disk-shaped thin vapor chambers (TVCs) using Al2O3 nanofluids. Int J Heat Mass Transf 154:119769. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119769

    Article  CAS  Google Scholar 

  26. Lv T, Huang S, Liu E, Ma Y, Xu X (2018) Tribological and machining characteristics of an electrostatic minimum quantity lubrication (EMQL) technology using graphene nanolubricants as cutting fluids. J Manuf Process 34:225–237. https://doi.org/10.1016/j.jmapro.2018.06.016

    Article  Google Scholar 

  27. Pillay DS, Sidik NAC (2017) Tribological properties of biodegradable nano-lubricant. J Adv Res Fluid Mech Therm Sci 33(1):1–13

    Google Scholar 

  28. Sharma P, Sidhu BS, Sharma J (2015) Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication. J Clean Prod 108:72–79. https://doi.org/10.1016/j.jclepro.2015.07.122

    Article  CAS  Google Scholar 

  29. Talib N, Rahim EA (2018) Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining. Tribol Int 118:89–104. https://doi.org/10.1016/j.triboint.2017.09.016

    Article  CAS  Google Scholar 

  30. Zareh-Desari B, Davoodi B (2016) Assessing the lubrication performance of vegetable oilbased nano-lubricants for environmentally conscious metal forming processes. J Clean Prod 135:1198–1209. https://doi.org/10.1016/j.jclepro.2016.07.040

    Article  CAS  Google Scholar 

  31. Rani S, Joy ML, Nair KP (2015) Evaluation of physiochemical and tribological properties of rice bran oil - Biodegradable and potential base stoke for industrial lubricants. Ind Crops Prod 65:328–333. https://doi.org/10.1016/j.indcrop.2014.12.020

    Article  CAS  Google Scholar 

  32. Ajithkumar JP, Anthony Xavior M (2018) Influence of nano lubrication in machining operations-a review. Mater Today Proc 5(5):11185–11192. https://doi.org/10.1016/j.matpr.2018.01.142

    Article  CAS  Google Scholar 

  33. Awang NW, Ramasamy D, Kadirgama K, Samykano M, Najafi G, Sidik NAC (2019) An experimental study on characterization and properties of nano lubricant containing Cellulose Nanocrystal (CNC). Int J Heat Mass Transf 130:1163–1169. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.041

    Article  CAS  Google Scholar 

  34. Jeevan TP, Jayaram SR, Afzal A, Ashrith HS, Soudagar MEM, Mujtaba MA (2021) Machinability of AA6061 aluminum alloy and AISI 304L stainless steel using nonedible vegetable oils applied as minimum quantity lubrication. J Brazilian Soc Mech Sci Eng 43(3):1–18. https://doi.org/10.1007/s40430-021-02885-x

    Article  CAS  Google Scholar 

  35. Talib N, Rahim EA (2015) Performance evaluation of chemically modified crude jatropha oil as a bio-based metalworking fluids for machining process. Procedia CIRP 26:346–350. https://doi.org/10.1016/j.procir.2014.07.155

    Article  Google Scholar 

  36. Sen B, Mia M, Krolczyk GM, Mandal UK, Mondal SP (2021) Eco-friendly cutting fluids in minimum quantity lubrication assisted machining: a review on the perception of sustainable manufacturing. Int J Precis Eng Manuf Green Technol 8(1):249–280

    Article  Google Scholar 

  37. Naveed M, Arslan A, Javed HMA, Manzoor T, Quazi MM, Imran T, Zulfattah ZM, Khurram M, Fattah IMR (2021) State-of-the-art and future perspectives of environmentally friendly machining using biodegradable cutting fluids. Energies 14:4816

    Article  CAS  Google Scholar 

  38. Shaikh VA, Boubekri N (2020) Using vegetable-oil-based sustainable metal working fluids to promote green manufacturing. Int J Manuf Mater Mech Eng 10(1):1–19. https://doi.org/10.4018/IJMMME.2020010101

    Article  Google Scholar 

  39. Venkatesh K, Sriram G, Sai Raj Pavan S, Suresh S (2018) Effect of biodegradable metal cutting fluids in machining applications - a Review. IOP Conf Ser Mater Sci Eng 390(1):012083. https://doi.org/10.1088/1757-899X/390/1/012083

    Article  Google Scholar 

  40. Osama M, Singh A, Walvekar R, Khalid M, Gupta TCSM, Yin WW (2017) Recent developments and performance review of metal working fluids. Tribol Int 114:389–401. https://doi.org/10.1016/j.triboint.2017.04.050

    Article  CAS  Google Scholar 

  41. Mao C, Tang X, Zou H, Zhou Z, Yin W (2012) Experimental investigation of surface quality for minimum quantity oil-water lubrication grinding. Int J Adv Manuf Technol 59(1–4):93–100. https://doi.org/10.1007/s00170-011-3491-3

    Article  Google Scholar 

  42. Gharaibeh N (2016) Vegetable and mineral used oils as cutting fluids: effect on surface roughness of aluminum alloy. J Surf Eng Mater Adv Technol 06(04):176–182. https://doi.org/10.4236/jsemat.2016.64016

    Article  CAS  Google Scholar 

  43. Chakule RR, Chaudhari SS, Talmale PS (2017) Evaluation of the effects of machining parameters on MQL based surface grinding process using response surface methodology. J Mech Sci Technol 31(8):3907–3916. https://doi.org/10.1007/s12206-017-0736-6

    Article  Google Scholar 

  44. Sharma KA, Tiwari AK, Dixit AR (2015) Improved machining performance with nanoparticle enriched cutting fluids under minimum quantity lubrication (MQL) technique: a review. Mater Today Proc 2(4–5):3545–3551. https://doi.org/10.1016/j.matpr.2015.07.066

    Article  CAS  Google Scholar 

  45. Rahmati B, Sarhan AAD, Sayuti M (2014) Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining. J Clean Prod 66:685–691. https://doi.org/10.1016/j.jclepro.2013.10.048

    Article  CAS  Google Scholar 

  46. Shen B, Kalita P, Malshe AP, Shih AJ (2008) Performance of novel MoS2 nanoparticles based grinding fluids in minimum quantity lubrication grinding. Trans North Am Manuf Res Inst SME 36:357–364

    Google Scholar 

  47. Yan J, Zhang Z, Kuriyagawa T (2010) Tool wear control in diamond turning of high-strength mold materials by means of tool swinging. CIRP Ann - Manuf Technol 59(1):109–112. https://doi.org/10.1016/j.cirp.2010.03.067

    Article  Google Scholar 

  48. Yan J, Zhang Z, Kuriyagawa T (2011) Effect of nanoparticle lubrication in diamond turning of reaction-bonded SiC. Int J Autom Technol 5(3):307–312. https://doi.org/10.20965/ijat.2011.p0307

    Article  Google Scholar 

  49. Marko M, Kyle J, Branson B, Terrell E (2015) Tribological improvements of dispersed nanodiamond additives in lubricating mineral oil. J Tribol 137(1):1–7. https://doi.org/10.1115/1.4028554

    Article  CAS  Google Scholar 

  50. Wickramasinghe KC, Perera GIP, Heralth HMCM (2016) Formulation and performance evaluation of a novel coconut oil-based metalworking fluid. Mater Manuf Process 32(9):1026–1033

    Article  Google Scholar 

  51. Behera BC, Alemayehu H, Ghosh S, Rao PV (2017) A comparative study of recent lubricoolant strategies for turning of Ni-based superalloy. J Manuf Process 30:541–552. https://doi.org/10.1016/j.jmapro.2017.10.027

    Article  Google Scholar 

  52. Tang L, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu B, Zhang N, Said Z, Debnath S, Jamil M, Ali HM (2022) Biological stability of water - based cutting fluids : progress and application. Chin J Mech Eng 35(1):3. https://doi.org/10.1186/s10033-021-00667-z

    Article  CAS  Google Scholar 

  53. Shaikh MBN, Ali M (2021) Turning of steels under various cooling and lubrication techniques: a review of literature, sustainability aspects, and future scope. Eng Res Express 3(4):042001. https://doi.org/10.1088/2631-8695/ac2e10

    Article  MathSciNet  ADS  Google Scholar 

  54. Henrietta HM, Kalaiyarasi K, Raj AS (2022) Coconut tree (Cocos nucifera) products: a review of global cultivation and its benefits. J Sustain Environ Manag 1:257–264. https://doi.org/10.3126/josem.v1i2.45377

    Article  Google Scholar 

  55. Syahza A (2019) The potential of environmental impact as a result of the development of palm oil plantation. Manag Environ Qual An Int J 30:1072–1094. https://doi.org/10.1108/MEQ-11-2018-0190

    Article  Google Scholar 

  56. Kumar S, Singh N, Devi LS et al (2022) Neem oil and its nanoemulsion in sustainable food preservation and packaging: current status and future prospects. J Agric Food Res 7:100254. https://doi.org/10.1016/j.jafr.2021.100254

    Article  Google Scholar 

  57. Baral NR, Neupane P, Ale BB et al (2020) Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal. Renew Sustain Energy Rev 120:109619. https://doi.org/10.1016/j.rser.2019.109619

    Article  Google Scholar 

  58. Mannekote JK, Kailas SV, Venkatesh K, Kathyayini N (2018) Environmentally friendly functional fluids from renewable and sustainable sources-a review. Renew Sustain Energy Rev 81:1787–1801. https://doi.org/10.1016/j.rser.2017.05.274

    Article  CAS  Google Scholar 

  59. Sankaranarayanan R, Krolczyk GM (2021) A comprehensive review on research developments of vegetable-oil based cutting fluids for sustainable machining challenges. J Manuf Process 67:286–313

    Article  Google Scholar 

  60. Zhang Y, Li HN, Li C, Huang C, Ali HM, Xu X, Mao C, Ding W, Cui X, Yang M, Yu T, Jamil M, Gupta MK, Jia D, Said Z (2022) Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction 10(6):803–841

    Article  CAS  Google Scholar 

  61. Bedi SS, Behera GC, Datta S (2020) Effects of cutting speed on MQL machining performance of AISI 304 stainless steel using uncoated carbide insert: application potential of coconut oil and rice bran oil as cutting fluids. Arab J Sci Eng 45(11):8877–8893. https://doi.org/10.1007/s13369-020-04554-y

    Article  CAS  Google Scholar 

  62. Padmini R, Vamsi Krishna P, Krishna Mohana Rao G (2016) Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribol Int 94:490–501. https://doi.org/10.1016/j.triboint.2015.10.006

    Article  CAS  Google Scholar 

  63. Krishna PV, Srikant RR, Parimala N (2018) Experimental investigation on properties and machining performance of CNT suspended vegetable oil nanofluids. Int J Automot Mech Eng 15(4):5957–5975

    Article  CAS  Google Scholar 

  64. Senevirathne SWMAI, Punchihewa HKG, Kosgahakumbura KNMDSK, Dissanayake DMPP, Sahathevan T (2016) Tool wear in machining AISI D2 steel with minimum quantity lubrication using alternative cutting fluids. In 2016 Manuf Ind Eng Symp (MIES). IEEE, pp 1–6. https://doi.org/10.1109/MIES.2016.7780253

  65. Chinchanikar S, Salve AV, Netake P et al (2014) Comparative evaluations of surface roughness during hard turning under dry and with water-based and vegetable oil-based cutting fluids. Procedia Mater Sci 5:1966–1975

    Article  CAS  Google Scholar 

  66. Debnath S, Anwar M, Basak AK, Pramanik A (2020) Use of palm olein as cutting fluid 41 during turning of mild steel. Aust J Mech Eng 00(00):1–11. https://doi.org/10.1080/14484846.2020.1842156

    Article  Google Scholar 

  67. Ahmad Yasir MS, Ana Salwa R, Zailan K, Cindy C (2017) Feasibility study on application of palm oil as cutting fluid in machining of aerospace materials. Int J Appl Eng Res 12(24):14603–14607

    Google Scholar 

  68. Yakubu SO, Bello MY (2015) Evaluation of neem seed oil as a cutting fluid in orthogonal machining of aluminum manganese alloy (Al-Mn) in turning operation. Eur J Eng Technol 3(3):15–24

    Google Scholar 

  69. Abd Rahim E, Sasahara H (2017) Performance of palm oil as a biobased machining lubricant when drilling inconel 718. MATEC Web Conf 101:0–4. https://doi.org/10.1051/matecconf/201710103015

  70. Jabba EU, Aminu E, Usman B (2018) Effects of using neem oil as base in cutting fluid for machining operations in Adamawa State Polytechnic. Yola IOSR J Mech Civ Eng 15(2):16–20. https://doi.org/10.9790/1684-1502031620

    Article  Google Scholar 

  71. Monsur O, Yekini B, Olaitan AJ (2015) Evaluating the performance of different types of cutting fluid in the machining of aluminium-manganese alloy in turning operation. Int J Innovation Sci Res 4:355–360

    Google Scholar 

  72. Safie SS, Murad MN, Lih TC (2021) Performance of castor oil and neem oil as metal cutting fluids in drilling Inconel 718 using MQL technique on tool wear and surface roughness. J Phys Conf Ser 2129(1):012070. https://doi.org/10.1088/1742-6596/2129/1/012070

    Article  Google Scholar 

  73. Agrawal N, Katna R (2018) Study of temperature with biodegradable cutting fluids–a step towards green manufacturing. Int J Appl Eng Res 13(6):224–229

    Google Scholar 

  74. Jeevan TP, Jayaram SR (2018) Performance evaluation of Jatropha and Pongamia oil based environmentally friendly cutting fluids for turning AA 6061. Adv Tribol 2018:1–9. https://doi.org/10.1155/2018/2425619

    Article  CAS  Google Scholar 

  75. D’Amato R, Wang C, Calvo R, Valášek P, Ruggiero A (2019) Characterization of vegetable oil as cutting fluid. Procedia Manuf 41(145–152):42. https://doi.org/10.1016/j.promfg.2019.07.040

    Article  Google Scholar 

  76. Talib N, Sasahara H, Rahim EA (2017) Evaluation of modified jatropha-based oil with hexagonal boron nitride particle as a biolubricant in orthogonal cutting process. Int J Adv Manuf Technol 92(1–4):371–391. https://doi.org/10.1007/s00170-017-0148-x

    Article  Google Scholar 

  77. Xavior MA, Adithan M (2009) Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. J Mater Process Technol 209(2):900–909. https://doi.org/10.1016/j.jmatprotec.2008.02.068

    Article  CAS  Google Scholar 

  78. Siddiqui TU, Singh MK (2020) Experimental investigations on the performance of nanoboric acid suspensions in coconut oil during milling operation on Al 6061–T6 alloy. IOP Conf Ser Mater Sci Eng 988(1):012006. https://doi.org/10.1088/1757-899X/988/1/012006

    Article  CAS  Google Scholar 

  79. Belgharza M, El Azzouzi EH, Hassanain I, Rochdi R, El Hamidi A, Ellouzi I, Makhoukhi F, El Belghiti MA (2014) Viscosity of rapeseed and argan vegetable oils, and their comparison with the mineral oil. Adv Environ Biol 8(12):225–227

    Google Scholar 

  80. Sen B, Gupta MK, Mia M, Pimenov DY, Mikolajczyk T (2021) Performance assessment of minimum quantity castor-palm oil mixtures in hard-milling operation. Materials 14(1):1–13. https://doi.org/10.3390/ma14010198

    Article  CAS  Google Scholar 

  81. Jyothi PN, Susmitha M, Sharan P (2017) Performance evaluation of NEEM oil and HONGE oil as cutting fluid in drilling operation of mild steel. IOP Conf Ser Mater Sci Eng 191(1):012026. https://doi.org/10.1088/1757-899X/191/1/012026

    Article  Google Scholar 

  82. Susmitha M, Sharan P, Jyothi PN (2016) Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel. IOP Conf Ser Mater Sci Eng 149(1):012037. https://doi.org/10.1088/1757-899X/149/1/012037

    Article  Google Scholar 

  83. Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97. https://doi.org/10.1016/j.ijmachtools.2017.06.002

    Article  Google Scholar 

  84. Yin Q, Li C, Dong L, Bai X, Zhang Y, Yang M, Jia D, Li R, Liu Z (2021) Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. Int J Precis Eng Manuf - Green Technol 8:1629–1647. https://doi.org/10.1007/s40684-021-00318-7

    Article  Google Scholar 

  85. Talib N, Sani ASA, Hamzah NA (2019) Modified jatropha nano-lubricant as metalworking fluid for machining process. J Tribol 23:90–96

    Google Scholar 

  86. Katna R, Suhaib M, Agrawal N, Singh K, Jain S, Maji S (2019) Green machining: studying the impact of viscosity of green cutting fluid on surface quality in straight turning. J Phys Conf Ser 1276(1):012036. https://doi.org/10.1088/1742-6596/1276/1/012036

    Article  CAS  Google Scholar 

  87. Chandrakar JK, Suhane A (2014) The prospects of vegetable based oils as metal working fluids in manufacturing application –a review. Int J Eng Res Technol 3(2014):2196–2203

    Google Scholar 

  88. Habibullah M, Masjuki HH, Kalam MA et al (2015) Tribological characteristics of Calophyllum inophyllum–based TMP (Trimethylolpropane) ester as energy-saving and biodegradable lubricant. Tribol Trans 58(2015):1002–1011. https://doi.org/10.1080/10402004.2015.1025934

    Article  CAS  Google Scholar 

  89. Sajeeb A, Rajendrakumar PK (2019) Experimental studies on viscosity and tribological characteristics of blends of vegetable oils with CuO nanoparticles as additive. Micro Nano Lett 14(11):1121–1125. https://doi.org/10.1049/mnl.2018.5595

    Article  CAS  Google Scholar 

  90. EspitiaCubillos AA, Delgado-Tobón AE, AperadorChaparro WA (2019) Comparative study of the thermal properties of sesame oil and two mineral oils of different viscosity. Inge Cuc 15(2):99–109. https://doi.org/10.17981/ingecuc.15.2.2019.10

    Article  Google Scholar 

  91. Idris MN, Usman M, Igbafe IA (2018) Experimental studies on neem seed (Azadirachta Indica) as a possible engineering lubricating fluid. Int J Agric Earth Sci 4(2):25–34

    Google Scholar 

  92. Nik Roselina NR, Mohamad NS, Kasolang S (2020) Evaluation of TiO2 nanoparticles as viscosity modifier in palm oil bio-lubricant. IOP Conf Ser Mater Sci Eng 834:012032. https://doi.org/10.1088/1757-899X/834/1/012032

    Article  Google Scholar 

  93. Stanciu I (2020) Viscosity index for oil used as biodegradable lubricant. Indian J Sci Technol 13(3):352–359. https://doi.org/10.17485/ijst/2020/v13i03/147759

    Article  CAS  Google Scholar 

  94. Farfan-Cabrera LI, Gallardo-Hernández EA, Gómez-Guarneros M, Pérez-González J, Godínez-Salcedo JG (2020) Alteration of lubricity of Jatropha oil used as bio-lubricant for engines due to thermal ageing. Renew Energy 149(2020):1197–1204. https://doi.org/10.1016/j.renene.2019.10.116

    Article  CAS  Google Scholar 

  95. Rao PN, Zhang J, Eckman M (2013) Experimental study and regression modeling of tool wear in CNC turning operation using soybean based cutting fluid. J Mech Eng 10(1):85–102

    Google Scholar 

  96. Jayadas NH, Nair KP (2006) Coconut oil as base oil for industrial lubricants-evaluation and modification of thermal, oxidative and low temperature properties. Tribol Int 39(9):873–878. https://doi.org/10.1016/j.triboint.2005.06.006

    Article  CAS  Google Scholar 

  97. Mahadi MA, Choudhury IA, Azuddin M, Yusoff N, Yazid AA, Norhafizan A (2019) Vegetable oil-based lubrication in machining: issues and challenges. IOP Conf Ser Mater Sci Eng 530(1):012003. https://doi.org/10.1088/1757-899X/530/1/012003

    Article  CAS  Google Scholar 

  98. Sharafadeen KK, Jamiu KO (2013) Performance evaluation of vegetable oil-based cutting fluids in mild steel machining. Chem Mater Res 3(9):35–46

    Google Scholar 

  99. Marsh KN, Kandil ME (2010) Review of thermodynamic properties of refrigerants + lubricant oils. Fluid Phase Equilib 199(1–2):319–334. https://doi.org/10.1016/S0378-3812(02)00025-0

    Article  Google Scholar 

  100. Valeru SB, Srinivas Y, Suman KNS (2018) An attempt to improve the poor performance characteristics of coconut oil for industrial lubricants. J Mech Sci Technol 32(4):1733–1737. https://doi.org/10.1007/s12206-018-0329-z

    Article  Google Scholar 

  101. Sen B, Mia M, Mandal UK, Mondal SP (2020) Synergistic effect of silica and pure palm oil on the machining performances of Inconel 690: a study for promoting minimum quantity nano doped-green lubricants. J Clean Prod 258:120755. https://doi.org/10.1016/j.jclepro.2020.120755

    Article  CAS  Google Scholar 

  102. Zhang J, Posinasetti N, Eckman M (2012) Experimental evaluation of a bio-based cutting fluid using multiple machining characteristics. Int J Modern Eng 12:35–44

    Google Scholar 

  103. Wu X, Li C, Zhou Z, Nie X, Chen Y, Zhang Y, Cao H, Liu B (2021) Circulating purification of cutting fluid : an overview. Int J Adv Manuf Technol 117:2565–2600

    Article  PubMed  PubMed Central  Google Scholar 

  104. Drambi LJ, Mohammed Y (2020) Effects of neem, straight and soluble oils as cutting fluids on tool wearing during metalwork practicals in technical colleges in Kano State Nigeria. Int J Eng Technol Manag Res 6(6):166–177. https://doi.org/10.29121/ijetmr.v6.i6.2019.405

    Article  Google Scholar 

  105. Kumar BS, Padmanabhan G, Krishna PV (2016) Performance assessment of vegetable oil based cutting fluids with extreme pressure additive in machining. J Adv Res Mater Sci 19(1):1–13

    Google Scholar 

  106. Kumar BS, Padmanabhan G, Krishna PV (2015) Experimental investigations of vegetable oil based cutting fluids with extreme pressure additive in machining of AISI 1040 steel. Manuf Sci Technol 3(1):1–9. https://doi.org/10.13189/mst.2015.030101

    Article  Google Scholar 

  107. Bierla A, Fromentin G, Minfray C, Martin JM, Le Mogne T, Genet N (2012) Mechanical and physico-chemical study of sulfur additives effect in milling of high strength steel. Wear 286:116–123. https://doi.org/10.1016/j.wear.2011.05.007

    Article  CAS  Google Scholar 

  108. Baba M, Tumba JC, Issa AK (2018) Formulation and performance assessment of fixed oils based cutting fluids in machining operation. Int J Mech Eng 7(6):11–22

    Google Scholar 

  109. Ghani JA, Kian YS, Harun CHC (2015) Performance of commercial and palm oil lubricants in turning FCD700 ductile cast iron using carbide tools. J Tribol 7:1–9

    Google Scholar 

  110. Wang Y, Li C, Zhang Y, Yang M, Li BK, Dong L, Wang J (2018) Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. Int J Precis Eng Manuf - Green Technol 5:327–339. https://doi.org/10.1007/s40684-018-0035-4

    Article  CAS  Google Scholar 

  111. Tan SX, Andriyana A, Ong HC, Lim S, Pang YL, Ngoh GC (2022) A comprehensive review on the emerging roles of nanofillers and plasticizers towards sustainable starchbased bioplastic fabrication. Polymers 14(664):1–27

    CAS  Google Scholar 

  112. Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M, Zhang N, Wu Q, Han Z, Sun K (2017) Heat transfer performance of MQL grinding with different nano fl uids for Ni-based alloys using vegetable oil. J Clean Prod 154:1–11. https://doi.org/10.1016/j.jclepro.2017.03.213

    Article  CAS  Google Scholar 

  113. Choudhury AR, Kumar R, Sahoo AK, Panda A, Malakar A (2020) Machinability investigation on novel incoloy 330 super alloy using coconut oil based SiO2 nano fluid. Int J Integr Eng 12(4):145–160. https://doi.org/10.30880/ijie.2020.12.04.014

    Article  Google Scholar 

  114. Talib N, Rao NRS, Jamaluddin NA, Abdullah H, Saleh A, Lee WK, Ahmad S (2021) The performance of modified jatropha-based nanofluid during turning process. AIP Conf Proc 2339:020093. https://doi.org/10.1063/5.0044283

    Article  CAS  Google Scholar 

  115. Maisarah KO, Liew PJ, Chang SY, MohdShukor S, Raja I, Wang J (2022) Experimental study of quarry dust and aluminium oxide suspension as cutting fluid for drilling of titanium alloy. J Adv Res Fluid Mech Therm Sci 91(2):145–153. https://doi.org/10.37934/arfmts.91.2.145153

    Article  Google Scholar 

  116. Şirin Ş, Kıvak T (2021) Effects of hybrid nanofluids on machining performance in MQL-milling of Inconel X-750 superalloy. J Manuf Process 70:163–176. https://doi.org/10.1016/j.jmapro.2021.08.038

    Article  Google Scholar 

  117. Muthuvel S, Naresh Babu M, Muthukrishnan N (2020) Copper nanofluids under minimum quantity lubrication during drilling of AISI 4140 steel. Aust J Mech Eng 18:151–164. https://doi.org/10.1080/14484846.2018.1486694

    Article  Google Scholar 

  118. Rajaganapathy C, Vasudevan D (2021) Tribological and thermo-physical properties of jatropha oil containing TiO2 nanoparticles. Trans Canadian Soc Mech Eng 45(2):262–272

    Article  Google Scholar 

  119. Liew PJ, Maisarah KO, Juoi JM, Wang J (2019) Milling of titanium alloy using hexagonal boron nitride (hBN) nanofluid as a coolant. J Adv Manuf Technol 13(3):61–71

    Google Scholar 

  120. Liew PJ, Shaaroni A, Razak JA, Abu Bakar MH (2018) Comparison between carbon nanofiber (CNF) nanofluid with deionized water on tool life and surface roughness in turning of D2 steel. J Adv Res Fluid Mech Therm Sci 46(1):169–174

    Google Scholar 

  121. Liew PJ, Shaaroni A, Razak JA et al (2017) Optimization of cutting condition in the turning of AISI D2 steel by using carbon nanofiber nanofluid. Int J Appl Eng Res 12(10):2243–2252

    Google Scholar 

  122. Zhang Y, Li C, Jia D et al (2015) Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J Clean Prod 87:930–940. https://doi.org/10.1016/j.jclepro.2014.10.027

    Article  CAS  Google Scholar 

  123. Reeves CJ, Menezes PL, Lovell MR, Jen TC (2013) The size effect of boron nitride particles on the tribological performance of biolubricants for energy conservation and sustainability. Tribol Lett 51(3):437–452. https://doi.org/10.1007/s11249-013-0182-2

    Article  CAS  Google Scholar 

  124. Sayuti M, Sarhan AAD, Salem F (2014) Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J Clean Prod 67:265–276. https://doi.org/10.1016/j.jclepro.2013.12.052

    Article  CAS  Google Scholar 

  125. Cui X, Li C, Ding W, Chen Y, Mao C, Xu X, Liu B, Wang D, Li HN, Zhang Y, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2021) Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chin J Aeronautics 35(11):85–112. https://doi.org/10.1016/j.cja.2021.08.011

    Article  Google Scholar 

  126. Sen B, Gupta MK, Mia M, Mandal UK, Mondal SP (2020) Wear behaviour of TiAlN coated solid carbide end-mill under alumina enriched minimum quantity palm oil-based lubricating condition. Tribol Int 148:106310. https://doi.org/10.1016/j.triboint.2020.106310

    Article  CAS  Google Scholar 

  127. Venkatesan K, Devendiran S, Ghazaly NM (2019) Application of TaguchiResponse surface analysis to optimize the cutting parameters on turning of Inconel X-750 using Nanofluids suspended Al2O3 in coconut oil. Procedia Manuf 30:90–97. https://doi.org/10.1016/j.promfg.2019.02.014

    Article  Google Scholar 

  128. Pasam VK, Srikant Revuru R, Gugulothu S (2018) Comparing the performance & viability of nano and microfluids in minimum quantity lubrication for machining AISI1040 steel. Mater Today Proc 5(2):8016–8024. https://doi.org/10.1016/j.matpr.2017.11.486

    Article  CAS  Google Scholar 

  129. Revuru RS, Pasam VK, Syed I, Paliwal UK (2018) Development of finite element based model for performance evaluation of nano cutting fluids in minimum quantity lubrication. CIRP J Manuf Sci Technol 21:75–85. https://doi.org/10.1016/j.cirpj.2018.02.005

    Article  Google Scholar 

  130. Leong KY, Ku Ahmad KZ, Ong HC, Ghazali MJ, Baharum A (2017) Synthesis and thermal conductivity characteristic of hybrid nanofluids – a review. Renew Sustain Energy Rev 75:868–878. https://doi.org/10.1016/j.rser.2016.11.068

    Article  CAS  Google Scholar 

  131. Sohrabpoor H, Khanghah SP, Teimouri R (2015) Investigation of lubricant condition and machining parameters while turning of AISI 4340. Int J Adv Manuf Technol 76(9–12):2099–2116. https://doi.org/10.1007/s00170-014-6395-1

    Article  Google Scholar 

  132. Fernando WLR, Sarmilan N, Wickramasinghe KC, Herath HMCM, Perera GIP (2019) Experimental investigation of minimum quantity lubrication (MQL) of coconut oil based Metal Working Fluid. Mater Today Proc 23:23–26. https://doi.org/10.1016/j.matpr.2019.06.079

    Article  CAS  Google Scholar 

  133. Vardhaman A, Amarnath M, Jhodkar D, Ramkumar J, Chelladurai H (2015) Examining the role of cutting fluids in machining AISI 1040 steel using tungsten carbide insert under minimal quantity lubrication condition. In 3rd Int Conf Adv Eng Sci Appl Math (ICAESAM 2015), pp 80–83. https://doi.org/10.15242/iie.e0315066

  134. Zhang S, Li JF, Wang YW (2012) Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. J Clean Prod 32:81–87. https://doi.org/10.1016/j.jclepro.2012.03.014

    Article  CAS  Google Scholar 

  135. Liu N, Zou X, Yuan J, Wu S, Chen Y (2020) Performance evaluation of castor oil-ethanol blended coolant under minimum quantity lubrication turning of difficult-to-machine materials. J Manuf Process 58:1–10. https://doi.org/10.1016/j.jmapro.2020.07.058

    Article  CAS  Google Scholar 

  136. Perera GIP, Herath HMCM, Perera IMSJ, Medagoda MGHMMP (2015) Investigation on white coconut oil to use as a metal working fluid during turning. Proc Inst Mech Eng Part B J Eng Manuf 229(1):38–44. https://doi.org/10.1177/0954405414525610

    Article  Google Scholar 

  137. Puttaswamy JT, Ramachandra JS (2018) Experimental investigation on the performance of vegetable oil based cutting fluids in drilling aisi 304l using taguchi technique. Tribol Online 13(2):50–56. https://doi.org/10.2474/trol.13.50

    Article  Google Scholar 

  138. Awode EI, Abolarin MS, Lawal SA, Adedipe O (2020) Performance evaluation of jatropha seed oil and mineral oil-based cutting fluids in turning AISI 304 alloy steel. CIRP J Manuf Sci Technol 31:418–430. https://doi.org/10.1016/j.cirpj.2020.07.004

    Article  Google Scholar 

  139. Ali Ademoh N, Hussein Didam J, King Garba D (2016) Comperative peformance of neem seed, water melon seed and soluble oils as metal cutting fluids. Am J Mech Eng 4(4):142–152. https://doi.org/10.12691/ajme-4-4-3

    Article  Google Scholar 

  140. Jamaluddin NA, Talib N, Sani ASA (2021) Experimental investigation of modified jatropha based oil nanofluids in orthogonal cutting process. Evergreen 8(2):461–468. https://doi.org/10.5109/4480729

    Article  CAS  Google Scholar 

  141. Katna R, Singh K, Agrawal N, Jain S (2017) Green manufacturing—performance of a biodegradable cutting fluid. Mater Manuf Process 32(13):1522–1527. https://doi.org/10.1080/10426914.2017.1328119

    Article  CAS  Google Scholar 

  142. Gugulothu S, Pasam VK (2019) Performance evaluation of CNT/MoS2 hybrid nanofluid in machining for surface roughness. Int J Automot Mech Eng 16(4):7413–7429. https://doi.org/10.15282/ijame.16.4.2019.15.0549

    Article  CAS  Google Scholar 

  143. Odusote J, Moshood M (2016) Production and determination of the effect of vegetable oil- based cutting fluids on AISI 1033 steel in a turning operation. J Prod Eng 19(1):35–40

    Google Scholar 

  144. Dennison MS, Meji MA, Nelson AJR, Balakumar S, Prasath K (2019) A comparative study on the surface finish achieved during face milling of AISI 1045 steel components using ecofriendly cutting fluids in near dry condition. Int J Mach Mach Mater 21(5–6):337–356. https://doi.org/10.1504/IJMMM.2019.103128

    Article  Google Scholar 

  145. Schuch Bork CA, Souza Gonçalves JF, Gomes JO (2015) The Jatropha curcas vegetable base soluble cutting oil as a renewable source in the machining of aluminum alloy 7050–T7451. Ind Lubr Tribol 67(2):181–195. https://doi.org/10.1108/ILT-09-2014-0090

    Article  Google Scholar 

  146. Talib N, Rahim EA, Nasir RM (2017) Tribological evaluation of hexagonal boron nitride in modified jatropha oil as sustainable metalworking fluid. AIP Conf Proc 1902:020047. https://doi.org/10.1063/1.5010664

    Article  CAS  Google Scholar 

  147. Li H, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu B, Zhang N, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2022) Extreme pressure and antiwear additives for lubricant: academic insights and perspectives. Int J Adv Manuf Technol 120:1–27. https://doi.org/10.1007/s00170-021-08614-x

    Article  Google Scholar 

  148. Zhang X, Li C, Zhou Z, Liu B, Zhang Y, Yang M, Gao T, Liu M, Zhang N, Said Z, Sharma S, Ali HM (2023) Vegetable oil-based nanolubricants in machining: from physicochemical properties to application. Chin J Mech Eng 36(1):76

    Article  CAS  Google Scholar 

  149. Polajnar M, Čoga L, Kalin M (2023) Base lubricants for green stamping: the effects of their structure and viscosity on tribological performance. Friction 11:1741–1754. https://doi.org/10.1007/s40544-022-0706-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledged the facility support from Universiti Teknikal Malaysia Melaka (UTeM).

Author information

Authors and Affiliations

Authors

Contributions

Chin Ket Gan: writing original draft.

Pay Jun Liew: review and editing, supervision.

Kin Yuen Leong: review and editing.

Jiwang Yan: review and editing.

Corresponding author

Correspondence to Pay Jun Liew.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors permit the publisher to publish the work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, C.K., Liew, P.J., Leong, K.Y. et al. Biodegradable cutting fluids for sustainable manufacturing: a review of machining mechanisms and performance. Int J Adv Manuf Technol 131, 955–975 (2024). https://doi.org/10.1007/s00170-024-13132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13132-7

Keywords

Navigation