Skip to main content
Log in

Research and developments of ceramic-reinforced steel matrix composites—a comprehensive review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Steel matrix composites are widely used in automotive, aerospace, wear, and cutting applications due to their superior mechanical properties, ease of manufacture, and low cost. However, there are still some limitations in the strength, reinforcement dispersion, and interface control of steel matrix composites, which are mainly achieved through different preparation processes and the addition of reinforced particles with mixed metal powders. Previous studies have demonstrated the enhanced ability of various reinforcing particles such as titanium carbide, silicon carbide, and alumina to enhance the wear performance of steel substrates, but there are still some challenges, such as uneven particle distribution, interface cracks, and unsatisfactory wettability. In this paper, the preparation methods of ceramic-reinforced metal matrix, ceramic reinforcement, steel matrix composition, microstructure, mechanical properties, and wear properties, as well as the parameters affecting their properties, are reviewed. The preparation processes of different ceramic-reinforced steel matrix composites are introduced, which are very suitable for overcoming challenges such as insufficient strength, poor dispersion, uneven distribution, and poor interfacial wettability. The influence of the morphology distribution and volume fraction of reinforcement on the wear rate of steel matrix composites was discussed. The importance of the microstructure of ceramic reinforcement in steel matrix and the interface between ceramic and matrix to improve the mechanical properties of steel matrix composites were emphasized. This review identifies the development trends in the field of research to fully illustrate the importance of more in-depth scientific research in steel matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials.

Abbreviations

Al:

Aluminum

AlN:

Aluminum nitrate

Al2O3 :

Aluminum oxide

B4C:

Boron carbide

Cu:

Copper

Cr:

Chromium

Cr3C2 :

Chromium carbide

CNT:

Carbon nanotube

CS:

Cold spraying

Fe:

Iron

Mg:

Magnesium

Mo:

Molybdenum

Mn:

Manganese

MoSi2 :

Molybdenum disilicide

MMCs:

Metal matrix composites

MMNCs:

Metal matrix nanocomposites

Ni:

Nickel

NbC:

Niobium carbide

NiCo:

Nickel cobalt

PCS:

Polycarbosilane

Si:

Silicon

SiO2 :

Silicon oxide

SiC:

Silicon carbide

SPS:

Spark plasma sintering

SHS:

Self-propagating high-temperature synthesis

SLM:

Selective laser melting

SS:

Stainless steel

SLD:

Supersonic laser deposition

Ti:

Titanium

TiC:

Titanium carbide

TiB2 :

Titanium diboride

WC:

Tungsten carbide

Zn:

Zinc

ZTA:

Zirconia toughened alumina

References

  1. Holmberg K, Erdemir A (2017) Influence of tribology on global energy consumption, costs and emissions. Friction 5:263–284. https://doi.org/10.1007/s40544-017-0183-5

    Article  CAS  Google Scholar 

  2. Bharathi P, Sampath kumar T. (2022) Latest research and developments of ceramic reinforced magnesium matrix composites—a comprehensive review. Proc Inst Mech Eng E: J Process Mech Eng. https://doi.org/10.1177/09544089221126044

    Article  Google Scholar 

  3. Mortensen A, Llorca J (2010) Metal matrix composites. Annu Rev Mater Res 40:243–270. https://doi.org/10.1146/annurev-matsci-070909-104511

    Article  ADS  CAS  Google Scholar 

  4. Siva Prasad D, Shoba C (2014) Damping behavior of metal matrix composites. Trans Indian Inst Met 68:161–167. https://doi.org/10.1007/s12666-014-0462-z

    Article  Google Scholar 

  5. Mileiko ST (2014) High-temperature metal matrix composites. J Appl Mech Tech Phys 55:136–146. https://doi.org/10.1134/s0021894414010167

    Article  ADS  CAS  Google Scholar 

  6. Nie C, Wang H, He J (2020) Evaluation of the effect of adding carbon nanotubes on the effective mechanical properties of ceramic particulate aluminum matrix composites. Mech Mater 142. https://doi.org/10.1016/j.mechmat.2019.103276

  7. Mohanavel V, Ravichandran M, Anandakrishnan V et al (2021) Mechanical properties of titanium diboride particles reinforced aluminum alloy matrix composites: a comprehensive review. Adv Mater Sci Eng 2021:1–18. https://doi.org/10.1155/2021/7602160

    Article  CAS  Google Scholar 

  8. Mistry JM, Gohil pp. (2016) An overview of diversified reinforcement on aluminum metal matrix composites: tribological aspects. Proc Inst Mech Eng J: J Eng Tribol 231:399–421. https://doi.org/10.1177/1350650116658572

    Article  CAS  Google Scholar 

  9. Guo X, Yang Y, Song K et al (2021) Arc erosion resistance of hybrid copper matrix composites reinforced with CNTs and micro-TiB2 particles. J Market Res 11:1469–1479. https://doi.org/10.1016/j.jmrt.2021.01.084

    Article  CAS  Google Scholar 

  10. Pan Y, Xiao S, Lu X et al (2019) Fabrication, mechanical properties and electrical conductivity of Al2O3 reinforced Cu/CNTs composites. J Alloy Compd 782:1015–1023. https://doi.org/10.1016/j.jallcom.2018.12.222

    Article  CAS  Google Scholar 

  11. Chen F, Ying J, Wang Y et al (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96:836–842. https://doi.org/10.1016/j.carbon.2015.10.023

    Article  CAS  Google Scholar 

  12. Ma G, Xiao H, Ye J et al (2020) Research status and development of magnesium matrix composites. Mater Sci Technol 36:645–653. https://doi.org/10.1080/02670836.2020.1732610

    Article  ADS  CAS  Google Scholar 

  13. Shen MJ, Wang XJ, Li CD et al (2013) Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites. Mater Des (1980-2015) 52:1011–1017. https://doi.org/10.1016/j.matdes.2013.05.067

    Article  CAS  Google Scholar 

  14. Dai Q, Peng S, Zhang Z et al (2021) Microstructure and mechanical properties of zinc matrix biodegradable composites reinforced by graphene. Front Bioeng Biotechnol 9:635338. https://doi.org/10.3389/fbioe.2021.635338

    Article  PubMed  PubMed Central  Google Scholar 

  15. Owoeye SS, Folorunso DO, Oji B et al (2018) Zinc-aluminum (ZA-27)-based metal matrix composites: a review article of synthesis, reinforcement, microstructural, mechanical, and corrosion characteristics. Int J Adv Manuf Technol 100:373–380. https://doi.org/10.1007/s00170-018-2760-9

    Article  Google Scholar 

  16. Qin Y, Wang Y, Miao W et al (2022) Interface modification and impact abrasive wear behavior of ZTA particle-reinforced iron-matrix composite. Wear 490–491. https://doi.org/10.1016/j.wear.2021.204205

  17. Ma X, Li L-f, Zhang F et al (2018) Microstructure and wear characteristics of ATZ ceramic particle reinforced gray iron matrix surface composites. China Foundry 15:167–172. https://doi.org/10.1007/s41230-018-7211-6

    Article  Google Scholar 

  18. Bhattacharjee D, Muthusamy K, Ramanujam S (2014) Effect of load and composition on friction and dry sliding wear behavior of tungsten carbide particle-reinforced iron composites. Tribol Trans 57:292–299. https://doi.org/10.1080/10402004.2013.870272

    Article  CAS  Google Scholar 

  19. Sabahi Namini A, Shahedi Asl M, Delbari SA (2019) Influence of sintering temperature on microstructure and mechanical properties of Ti–Mo–B4C composites. Met Mater Int 27:1092–1102. https://doi.org/10.1007/s12540-019-00469-y

    Article  CAS  Google Scholar 

  20. Hayat MD, Singh H, He Z et al (2019) Titanium metal matrix composites: an overview. Compos A Appl Sci Manuf 121:418–438. https://doi.org/10.1016/j.compositesa.2019.04.005

    Article  CAS  Google Scholar 

  21. Kim SH, Kim DH, Rhee WH et al (2019) Hardness and transverse rupture strength of TiC-reinforced SKD11 steel matrix composite. Met Mater Int 26:302–309. https://doi.org/10.1007/s12540-019-00341-z

    Article  CAS  Google Scholar 

  22. Hwang J-I, Kim SH, Heo Y-U et al (2018) Tempering behavior of TiC-reinforced SKD11 steel matrix composite. Met Mater Int 24:644–651. https://doi.org/10.1007/s12540-018-0065-z

    Article  CAS  Google Scholar 

  23. Wang BG, Wang GD, Misra RDK et al (2021) Increased hot-formability and grain-refinement by dynamic recrystallization of ferrite in an in situ TiB2 reinforced steel matrix composite. Mater Sci Eng: A 812. https://doi.org/10.1016/j.msea.2021.141100

  24. Kan WH, Bhatia V, Dolman K et al (2018) A study on novel AISI 304 stainless steel matrix composites reinforced with (Nb0.75, Ti0.25)C. Wear 398–399:220–226. https://doi.org/10.1016/j.wear.2017.12.011

    Article  CAS  Google Scholar 

  25. Saxena A, Dwivedi SP, Srivastava AK et al (2022) Micro-mechanical finite element analysis on mechanical behavior of EN31 steel-based metal matrix composite. Trans Indian Inst Met. https://doi.org/10.1007/s12666-022-02691-6

    Article  Google Scholar 

  26. Sarkar S, Gao Y, Huang S et al (2020) Back-stress and its evolution during primary creep in particle strengthened nickel superalloys. Crystals 10. https://doi.org/10.3390/cryst10040306

  27. Yan C, Kang Y, Kong L et al (2016) Tribological properties of Ni3Al matrix composite sliding against Si3N4, SiC and Al2O3 at elevated temperatures. J Mater Eng Perform 26:168–176. https://doi.org/10.1007/s11665-016-2456-y

    Article  CAS  Google Scholar 

  28. Gao W, Zhou Y, Wu S et al (2022) Preparation, microstructure and mechanical properties of steel matrix composites reinforced by a 3D network TiC ceramics. Ceram Int 48:20848–20857. https://doi.org/10.1016/j.ceramint.2022.04.074

    Article  CAS  Google Scholar 

  29. Dadbakhsh S, Mertens R, Hao L et al (2019) Selective laser melting to manufacture “in situ” metal matrix composites: a review. Adv Eng Mater 21. https://doi.org/10.1002/adem.201801244

  30. Lin T, Guo Y, Wang Z et al (2018) Effects of chromium sources on the microstructure and properties of TiC-steel composites. Powder Metall 61:334–341. https://doi.org/10.1080/00325899.2018.1496006

    Article  ADS  CAS  Google Scholar 

  31. Wu CL, Xu TZ, Wang ZY et al (2022) Laser surface alloying of FeCoCrAlNiTi high entropy alloy composite coatings reinforced with TiC on 304 stainless steel to enhance wear behavior. Ceram Int 48:20690–20698. https://doi.org/10.1016/j.ceramint.2022.04.049

    Article  CAS  Google Scholar 

  32. Bacon DH, Edwards L, Moffatt JE et al (2011) Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles. Acta Mater 59:3373–3383. https://doi.org/10.1016/j.actamat.2011.02.012

    Article  ADS  CAS  Google Scholar 

  33. Sahoo S, Jha BB, Mahata TS et al (2018) Impression creep behaviour of TiB2particles reinforced steel matrix composites. Mater Sci Technol 34:1965–1975. https://doi.org/10.1080/02670836.2018.1497130

    Article  ADS  CAS  Google Scholar 

  34. Chen R, Li B, Xu K (2022) Effect of particle morphology on fatigue crack propagation mechanism of TiB2-reinforced steel matrix composites. Eng Fract Mech 274. https://doi.org/10.1016/j.engfracmech.2022.108752

  35. Ozsoy A, Aydogan E, Dericioglu AF (2022) Selective laser melting of Nano-TiN reinforced 17–4 PH stainless steel: densification, microstructure and mechanical properties. Mater Sci Eng A: Struct Mater Prop Microstruct Process 836. https://doi.org/10.1016/j.msea.2021.142574

  36. Kumar JK, Rao TB, Krishna KR (2023) The microstructural properties and tribological performance of Al2O3 and TiN nanoparticles reinforced Ti-6Al-4V composite coating deposited on AISI304 steel by TIG cladding. J Tribol-Trans ASME 145. https://doi.org/10.1115/1.4055488

  37. Radhamani AV, Lau HC, Ramakrishna S (2018) CNT-reinforced metal and steel nanocomposites: a comprehensive assessment of progress and future directions. Compos A Appl Sci Manuf 114:170–187. https://doi.org/10.1016/j.compositesa.2018.08.010

    Article  CAS  Google Scholar 

  38. Pang L, Xing D, Zhang A et al (2010) Carbon nanotube reinforced intermetallic. Adv Compos Mater 19:261–267. https://doi.org/10.1163/092430409x12605406698354

    Article  CAS  Google Scholar 

  39. Keshri AK, Lahiri D, Agarwal A (2011) Carbon nanotubes improve the adhesion strength of a ceramic splat to the steel substrate. Carbon 49:4340–4347. https://doi.org/10.1016/j.carbon.2011.06.010

    Article  CAS  Google Scholar 

  40. Azarniya A, Safavi M, Sovizi S et al (2017) Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites. Metals 7. https://doi.org/10.3390/met7100384

  41. Zhang Y, Zhang HL, Wu JH et al (2011) Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles. Scripta Mater 65:1097–1100. https://doi.org/10.1016/j.scriptamat.2011.09.028

    Article  CAS  Google Scholar 

  42. Garcia J, Ferreira AR, Silva FS et al (2019) Production and tribological characterization of a textured diamond-reinforced copper-beryllium alloy. Tribol Int 140. https://doi.org/10.1016/j.triboint.2019.105843

  43. Li G, Lyu S, Zheng R et al (2019) Strengthening 2024Al alloy by novel core-shell structured Ti/B4C composite particles. Mater Sci Eng, A 755:231–234. https://doi.org/10.1016/j.msea.2019.04.021

    Article  CAS  Google Scholar 

  44. Baradeswaran A, Elaya PA (2013) Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos B Eng 54:146–152. https://doi.org/10.1016/j.compositesb.2013.05.012

    Article  CAS  Google Scholar 

  45. Bhowmik A, Dey D, Biswas A (2021) Characteristics study of physical, mechanical and tribological behaviour of SiC/TiB2 dispersed aluminium matrix composite. SILICON 14:1133–1146. https://doi.org/10.1007/s12633-020-00923-2

    Article  CAS  Google Scholar 

  46. Dileep BP, Sridhar BR (2018) A comparative study on mechanical properties of heat treated steel EN24 and its MMC with SiC. Indian J Eng Mater Sci 25:291–294

    CAS  Google Scholar 

  47. Tang SS, Shao SY, Liu HY et al (2021) Microstructure and mechanical behaviors of 6061 Al matrix hybrid composites reinforced with SiC and stainless steel particles. Mater Sci Eng A: Struct Mater Prop Microstruct Process 804. https://doi.org/10.1016/j.msea.2021.140732

  48. Bhowmik A, Dey D, Biswas A (2022) Characteristics study of physical, mechanical and tribological behaviour of SiC/TiB2 dispersed aluminium matrix composite. SILICON 14:1133–1146. https://doi.org/10.1007/s12633-020-00923-2

    Article  CAS  Google Scholar 

  49. Chlewicka M, Dobkowska A, Sitek R et al (2022) Microstructure and corrosion resistance characteristics of Ti-AlN composite produced by selective laser melting. Mater Corros - Werkst Korros 73:451–459. https://doi.org/10.1002/maco.202112703

    Article  CAS  Google Scholar 

  50. Arreola-Fernandez C, Lemus-Ruiz J, Jimenez-Aleman O et al (2022) Wear behavior of AZ91E/AlN metal matrix composites. Mater Lett 317. https://doi.org/10.1016/j.matlet.2022.132080

  51. Travessa DN, Silva MJ, Cardoso KR (2017) Niobium carbide-reinforced Al matrix composites produced by high-energy ball milling. Metall and Mater Trans B 48:1754–1762. https://doi.org/10.1007/s11663-017-0959-z

    Article  ADS  CAS  Google Scholar 

  52. Wang J, Li C, Zeng M et al (2020) Microstructural evolution and wear behaviors of NbC-reinforced Ti-based composite coating. Int J Adv Manuf Technol 107:2397–2407. https://doi.org/10.1007/s00170-020-05198-w

    Article  Google Scholar 

  53. Cao Y-b, Ren H-t, Hu C-s et al (2015) In-situ formation behavior of NbC-reinforced Fe-based laser cladding coatings. Mater Lett 147:61–63. https://doi.org/10.1016/j.matlet.2015.02.026

    Article  CAS  Google Scholar 

  54. Casati R, Fabrizi A, Timelli G et al (2016) Microstructural and mechanical properties of Al-based composites reinforced with in-situ and ex-situ Al2O3 nanoparticles. Adv Eng Mater 18:550–558. https://doi.org/10.1002/adem.201500297

    Article  CAS  Google Scholar 

  55. Zhou H, Zhang Y, Hua X et al (2014) High-temperature anti-wear behavior of alumina-reinforced Ti–Zr–Mo alloy composites. Wear 319:184–190. https://doi.org/10.1016/j.wear.2014.08.003

    Article  CAS  Google Scholar 

  56. Javidi MJ, Hosseini SM, Khodabakhshi F et al (2023) Laser powder bed fusion of 316L stainless steel/Al2O3 nanocomposites: Taguchi analysis and material characterization. Opt Laser Technol 158. https://doi.org/10.1016/j.optlastec.2022.108883

  57. Wu Y, Xiong H, Gan X et al (2019) Microstructure and mechanical properties of TiN-based cermet reinforced by Cr3C2 addition. Int J Appl Ceram Technol 16:1184–1192. https://doi.org/10.1111/ijac.13098

    Article  CAS  Google Scholar 

  58. Corrochano J, Lieblich M, Ibáñez J (2011) The effect of ball milling on the microstructure of powder metallurgy aluminium matrix composites reinforced with MoSi2 intermetallic particles. Compos A Appl Sci Manuf 42:1093–1099. https://doi.org/10.1016/j.compositesa.2011.04.014

    Article  CAS  Google Scholar 

  59. Corrochano J, Hidalgo P, Lieblich M et al (2010) Matrix grain characterisation by electron backscattering diffraction of powder metallurgy aluminum matrix composites reinforced with MoSi2 intermetallic particles. Mater Charact 61:1294–1298. https://doi.org/10.1016/j.matchar.2010.08.010

    Article  CAS  Google Scholar 

  60. Tokova LV, Zaitsev AA, Kurbatkina VV et al (2014) The features of influence of ZrO2 and WC nanodispersed additives on the properties of metal matrix composite. Russ J Non-Ferr Met 55:186–190. https://doi.org/10.3103/s1067821214020205

    Article  Google Scholar 

  61. Gu D, Ma J, Chen H et al (2018) Laser additive manufactured WC reinforced Fe-based composites with gradient reinforcement/matrix interface and enhanced performance. Compos Struct 192:387–396. https://doi.org/10.1016/j.compstruct.2018.03.008

    Article  Google Scholar 

  62. Liu CY, Wang Q, Jia YZ et al (2013) Evaluation of mechanical properties of 1060-Al reinforced with WC particles via warm accumulative roll bonding process. Mater Des 43:367–372. https://doi.org/10.1016/j.matdes.2012.07.019

    Article  ADS  CAS  Google Scholar 

  63. Lajarin SF, Nikhare CP, Marcondes PVP (2018) Dependence of plastic strain and microstructure on elastic modulus reduction in advanced high-strength steels. J Braz Soc Mech Sci Eng 40. https://doi.org/10.1007/s40430-018-1008-9

  64. Garcia CI (2017) 6 - High strength low alloyed (HSLA) steels. Automotive Steels 145–167. https://doi.org/10.1016/B978-0-08-100638-2.00006-7

  65. Gao YH, Liu SZ, Hu XB et al (2019) A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness. Mater Sci Eng, A 759:298–302. https://doi.org/10.1016/j.msea.2019.05.039

    Article  CAS  Google Scholar 

  66. Duan YT, Zhu WT, Liu WS et al (2023) A novel strategy for preparing high-performance powder metallurgical low alloy ultrahigh strength steel. Mater Sci Eng A: Struct Mater Prop Microstruct Process 864. https://doi.org/10.1016/j.msea.2023.144585

  67. Li B, Xu K, Chen R et al (2020) On the fatigue crack propagation mechanism of a TiB2-reinforced high-modulus steel. Compos B: Eng 190. https://doi.org/10.1016/j.compositesb.2020.107960

  68. Chen S, Seda P, Krugla M et al (2016) High-modulus steels reinforced with ceramic particles through ingot casting process. Mater Sci Technol 32:992–1003. https://doi.org/10.1080/02670836.2015.1104082

    Article  ADS  CAS  Google Scholar 

  69. Chen H, Lu Y, Sun Y et al (2020) Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding. Surf Coat Technol 395. https://doi.org/10.1016/j.surfcoat.2020.125867

  70. Zhao S, Shen X, Yang J et al (2018) Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser melting. Opt Laser Technol 103:239–250. https://doi.org/10.1016/j.optlastec.2018.01.005

    Article  ADS  CAS  Google Scholar 

  71. Sahoo S, Jha BB, Mahata T et al (2019) Mechanical and wear behaviour of hot-pressed 304 stainless steel matrix composites containing TiB2 particles. Trans Indian Inst Met 72:1153–1165. https://doi.org/10.1007/s12666-019-01588-1

    Article  CAS  Google Scholar 

  72. Diler EA (2021) A modified model for the prediction of yield strength of nano-ZrO2 particle-reinforced austenitic steel matrix nanocomposites. Measurement 180. https://doi.org/10.1016/j.measurement.2021.109299

  73. Chen W, Xu LY, Zhang YK et al (2022) Additive manufacturing of high-performance 15–5PH stainless steel matrix composites. Virtual Phys Prototyp 17:366–381. https://doi.org/10.1080/17452759.2021.2019793

    Article  Google Scholar 

  74. Yang ZY, Fan JZ, Liu YQ et al (2021) Effect of the particle size and matrix strength on strengthening and damage process of the particle reinforced metal matrix composites. Materials 14. https://doi.org/10.3390/ma14030675

  75. Kan WH, Proust G, Bhatia V et al (2019) Slurry erosion, sliding wear and corrosion behavior of martensitic stainless steel composites reinforced in-situ with NbC particles. Wear 420–421:149–162. https://doi.org/10.1016/j.wear.2018.09.013

    Article  CAS  Google Scholar 

  76. Kim DH, Seong Y, Kim JG et al (2020) Analysis of bending behavior of TiN particle-reinforced martensitic steel using micro-digital image correlation. Mater Sci Eng A: Struct Mater Prop Microstruct Process 794. https://doi.org/10.1016/j.msea.2020.139965

  77. Sahoo S, Jha BB, Mandal A (2021) Powder metallurgy processed TiB2-reinforced steel matrix composites: a review. Mater Sci Technol 37:1153–1173. https://doi.org/10.1080/02670836.2021.1987705

    Article  ADS  CAS  Google Scholar 

  78. Oke SR, Ige OO, Falodun OE et al (2019) Powder metallurgy of stainless steels and composites: a review of mechanical alloying and spark plasma sintering. Int J Adv Manuf Technol 102:3271–3290. https://doi.org/10.1007/s00170-019-03400-2

    Article  Google Scholar 

  79. Oke SR, Ige OO, Falodun OE et al (2019) Influence of TiN nanoparticle addition on microstructure and properties of Fe22Cr alloy fabricated by spark plasma sintering. Int J Adv Manuf Technol 103:4529–4540. https://doi.org/10.1007/s00170-019-03873-1

    Article  Google Scholar 

  80. Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58:383–502. https://doi.org/10.1016/j.pmatsci.2012.10.001

    Article  CAS  Google Scholar 

  81. Tehrani F, Golozar MA, Abbasi MH et al (2012) Characterization of nanostructured high nitrogen Fe–18Cr–xMn–4Mo austenitic stainless steel prepared by mechanical alloying. Mater Sci Eng, A 534:203–208. https://doi.org/10.1016/j.msea.2011.11.059

    Article  CAS  Google Scholar 

  82. Liu J, Wu M, Chen J et al (2021) Effects of Mn and Al contents on microstructure and mechanical properties of TiB2/Fe-15Cr-Mn-Al composites. Trans Indian Inst Met 75:161–170. https://doi.org/10.1007/s12666-021-02406-3

    Article  CAS  Google Scholar 

  83. Nurminen J, Näkki J, Vuoristo P (2009) Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int J Refract Metal Hard Mater 27:472–478. https://doi.org/10.1016/j.ijrmhm.2008.10.008

    Article  CAS  Google Scholar 

  84. Kang N, Ma W, Li F et al (2018) Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite. Vacuum 154:69–74. https://doi.org/10.1016/j.vacuum.2018.04.044

    Article  ADS  CAS  Google Scholar 

  85. Guo YX, Liu QB, Shang XJ (2020) In situ TiN-reinforced CoCr(2)FeNiTi(0.5)high-entropy alloy composite coating fabricated by laser cladding. Rare Met 39:1190–1195. https://doi.org/10.1007/s12598-018-1194-8

    Article  CAS  Google Scholar 

  86. Cui C, Schulz A, Uhlenwinkel V et al (2010) Spray forming of stainless steel matrix composites with injection of hard particulates. Materialwiss Werkstofftech 41:524–531. https://doi.org/10.1002/mawe.201000638

    Article  CAS  Google Scholar 

  87. Kaewsai D, Watcharapasorn A, Singjai P et al (2010) Thermal sprayed stainless steel/carbon nanotube composite coatings. Surf Coat Technol 205:2104–2112. https://doi.org/10.1016/j.surfcoat.2010.08.113

    Article  CAS  Google Scholar 

  88. Chu X, Che H, Vo P et al (2017) Understanding the cold spray deposition efficiencies of 316L/Fe mixed powders by performing splat tests onto as-polished coatings. Surf Coat Technol 324:353–360. https://doi.org/10.1016/j.surfcoat.2017.05.083

    Article  CAS  Google Scholar 

  89. Moridi A, Hassani-Gangaraj SM, Guagliano M et al (2014) Cold spray coating: review of material systems and future perspectives. Surf Eng 30:369–395. https://doi.org/10.1179/1743294414y.0000000270

    Article  CAS  Google Scholar 

  90. Travitzky N (2013) Processing of ceramic–metal composites. Adv Appl Ceram 111:286–300. https://doi.org/10.1179/1743676111y.0000000073

    Article  Google Scholar 

  91. Kračun A, Kafexhiu F, Tehovnik F et al (2020) Effective casting technique of nano-particles alloyed austenitic stainless steel. Metals 10. https://doi.org/10.3390/met10101287

  92. Shi Z, Han F (2015) The microstructure and mechanical properties of micro-scale Y2O3 strengthened 9Cr steel fabricated by vacuum casting. Mater Des 1980–2015(66):304–308. https://doi.org/10.1016/j.matdes.2014.10.075

    Article  CAS  Google Scholar 

  93. Zhang WW, Cao XC, Zhang JY et al (2023) B4C-based hard and tough ceramics densified via spark plasma sintering using a novel Mg2Si sintering aid. Ceram Int 49:145–153. https://doi.org/10.1016/j.ceramint.2022.08.323

    Article  CAS  Google Scholar 

  94. Chen B, Shen J, Ye X et al (2017) Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon 114:198–208. https://doi.org/10.1016/j.carbon.2016.12.013

    Article  CAS  Google Scholar 

  95. Akhtar F (2014) Ceramic reinforced high modulus steel composites: processing, microstructure and properties. Can Metall Q 53:253–263. https://doi.org/10.1179/1879139514y.0000000135

    Article  CAS  Google Scholar 

  96. Sulima I, Boczkal S, Jaworska L (2016) SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB2. Mater Charact 118:560–569. https://doi.org/10.1016/j.matchar.2016.07.005

    Article  CAS  Google Scholar 

  97. Batista CD, Fernandes A, Vieira MTF et al (2021) From machining chips to raw material for powder metallurgy-a review. Materials 14. https://doi.org/10.3390/ma14185432

  98. Sadeghi B, Cavaliere P (2021) Progress of flake powder metallurgy research. Metals 11. https://doi.org/10.3390/met11060931

  99. Sulima I, Klimczyk P, Malczewski P (2014) Effect of TiB2 particles on the tribological properties of stainless steel matrix composites. Acta Metall Sin (English Letters) 27:12–18. https://doi.org/10.1007/s40195-013-0002-6

    Article  CAS  Google Scholar 

  100. S.C. Tjong KCL. (2000) Abrasion resistance of stainless-steel composites reinforced with hard TiB2 particles. Compos Sci Technol 60:1141–1146. https://doi.org/10.1016/S0266-3538(00)00008-7

    Article  Google Scholar 

  101. Chen L, Yao Y (2014) Processing, microstructures, and mechanical properties of magnesium matrix composites: a review. Acta Metall Sin (English Letters) 27:762–774. https://doi.org/10.1007/s40195-014-0161-0

    Article  CAS  Google Scholar 

  102. Dias M, Guerreiro F, Correia JB et al (2015) Consolidation of W-Ta composites: hot isostatic pressing and spark and pulse plasma sintering. Fusion Eng Des 98–99:1950–1955. https://doi.org/10.1016/j.fusengdes.2015.06.178

    Article  CAS  Google Scholar 

  103. Xu M, Yin YG, Li CM et al (2023) A comparative study on Sn macrosegregation behavior of ternary Al-Sn-Cu alloys prepared by gravity casting and squeeze casting. China Foundry 20:63–70. https://doi.org/10.1007/s41230-023-2046-1

    Article  Google Scholar 

  104. Shan AL, Xing SM, Zhao BW et al (2023) Study on the subcritical quenching process of high-chromium cast iron prepared by squeeze casting. Metals 13. https://doi.org/10.3390/met13030570

  105. Lu D, Wang J, Yu J et al (2018) Influence of adding Ti powder in preform on microstructure and mechanical properties of Al2O3p/steel composites by squeeze casting. J Wuhan Univ Technol Mater Sci Ed 33:164–170. https://doi.org/10.1007/s11595-018-1801-4

    Article  CAS  Google Scholar 

  106. Vetter J, Beneder S, Kandler M et al (2023) Impact of particle size distribution in the preform on thermal conductivity, Vickers hardness and tensile strength of copper-infiltrated AISI H11 tool steel. Materials 16. https://doi.org/10.3390/ma16072659

  107. Zhang ZJ, He XB, Zhang T et al (2023) Reach on the preparation process of diamond/SiC composites with bimodal diamond particle. Compos Commun 39. https://doi.org/10.1016/j.coco.2023.101569

  108. Jiang JP, Li DY (2023) Preparation and properties of in situ formed TiCx/high chromium white iron composite with honeycomb structure. Mater Lett 342. https://doi.org/10.1016/j.matlet.2023.134341

  109. Cho S, Lee Y-H, Ko S et al (2020) Enhanced high-temperature compressive strength of TiC reinforced stainless steel matrix composites fabricated by liquid pressing infiltration process. J Alloys Compd 817. https://doi.org/10.1016/j.jallcom.2019.152714

  110. Bahraini M, Schlenther E, Kriegesmann J et al (2010) Influence of atmosphere and carbon contamination on activated pressureless infiltration of alumina–steel composites. Compos A Appl Sci Manuf 41:1511–1515. https://doi.org/10.1016/j.compositesa.2010.06.013

    Article  CAS  Google Scholar 

  111. Zhang X, Li X, Liu L et al (2023) Interface regulation strategy of Al-CNTs composite induced by Al-Si eutectic reaction and its strengthening mechanism. J Mater Sci Technol 151:1–9. https://doi.org/10.1016/j.jmst.2022.11.041

    Article  CAS  Google Scholar 

  112. Malaki M, Fadaei Tehrani A, Niroumand B et al (2021) Wettability in metal matrix composites. Metals 11. https://doi.org/10.3390/met11071034

  113. Schlenther E, Özcoban H, Jelitto H et al (2014) Fracture toughness and corrosion behaviour of infiltrated Al2O3|P – Steel composites. Mater Sci Eng, A 590:132–139. https://doi.org/10.1016/j.msea.2013.10.007

    Article  CAS  Google Scholar 

  114. Abakay E, Sen S, Sen U (2014) Wear properties of the surface alloyed AISI 1020 steel with vanadium and boron by TIG welding technique. Acta Phys Pol, A 125:251–253. https://doi.org/10.12693/APhysPolA.125.251

    Article  ADS  Google Scholar 

  115. Chen J, Niu P, Wei T et al (2015) Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J Alloy Compd 649:630–634. https://doi.org/10.1016/j.jallcom.2015.07.125

    Article  CAS  Google Scholar 

  116. Razumov NG, Popovich AA, Wang Q (2018) Thermal plasma spheroidization of high-nitrogen stainless steel powder alloys synthesized by mechanical alloying. Met Mater Int 24:363–370. https://doi.org/10.1007/s12540-018-0040-8

    Article  CAS  Google Scholar 

  117. AlMangour B, Grzesiak D, Yang J-M (2017) Selective laser melting of TiB2/316L stainless steel composites: the roles of powder preparation and hot isostatic pressing post-treatment. Powder Technol 309:37–48. https://doi.org/10.1016/j.powtec.2016.12.073

    Article  CAS  Google Scholar 

  118. Li WJ, Zhang L, Chen ZY et al (2022) In situ fabrication and static contact resistance of CdMoO4 reinforced Cu matrix composites. Materials 15. https://doi.org/10.3390/ma15207206

  119. Li PF, Yang QT, Li LL et al (2023) Microstructure evolution and mechanical properties of in situ synthesized ceramic reinforced 316L/IN718 matrix composites. J Manuf Process 93:214–224. https://doi.org/10.1016/j.jmapro.2023.02.063

    Article  Google Scholar 

  120. Li B, Liu Y, Li J et al (2010) Effect of sintering process on the microstructures and properties of in situ TiB2–TiC reinforced steel matrix composites produced by spark plasma sintering. J Mater Process Technol 210:91–95. https://doi.org/10.1016/j.jmatprotec.2009.08.008

    Article  CAS  Google Scholar 

  121. Zeng XG (2015) Reaction synthesis of ultrafine titanium diborides and nitrides reinforced steel matrix compositesin situby spark plasma sintering. Powder Metall 58:193–196. https://doi.org/10.1179/1743290114y.0000000120

    Article  ADS  CAS  Google Scholar 

  122. Liang Y, Zhao Q, Han Z et al (2015) Microstructures and wear behavior of the TiC ceramic particulate locally reinforced steel matrix composites from a Cu–Ti–C system. ISIJ Int 55:319–325. https://doi.org/10.2355/isijinternational.55.319

    Article  CAS  Google Scholar 

  123. Liu HF, Tan CKI, Meng TL et al (2022) Direct deposition of low-cost carbon fiber reinforced stainless steel composites by twin-wire arc spray. J Mater Process Technol 301. https://doi.org/10.1016/j.jmatprotec.2021.117440

  124. Li B, Yao J, Zhang Q et al (2015) Microstructure and tribological performance of tungsten carbide reinforced stainless steel composite coatings by supersonic laser deposition. Surf Coat Technol 275:58–68. https://doi.org/10.1016/j.surfcoat.2015.05.040

    Article  CAS  Google Scholar 

  125. Liu JH, Zhou J, Wu HB et al (2023) Segregation and solidification mechanism in spray-formed M3 high-speed steel. Acta Metall Sin 59:599–610. https://doi.org/10.11900/0412.1961.2021.00282

    Article  CAS  Google Scholar 

  126. Wang ZQ, Zhang X, Liu MY et al (2023) Microstructure characterization and mechanical properties of the 304SS-(NiTif/FeAl) metal-intermetallic laminate composites. J Alloys Compd 943. https://doi.org/10.1016/j.jallcom.2023.169117

  127. Xiong K, Gu DD, Wang R et al (2023) Microstructure evolution and mechanical properties of high-content TiC reinforced Inconel 718 composites fabricated by laser-directed energy deposition. J Laser Appl 35. https://doi.org/10.2351/7.0000944

  128. Zhang L, Wang WQ, Gao X et al (2023) Additive manufacturing of continuous carbon fiber reinforced high entropy ceramic matrix composites via paper laminating, direct slurry writing, and precursor infiltration and pyrolysis. Ceram Int 49:7833–7841. https://doi.org/10.1016/j.ceramint.2022.10.286

    Article  CAS  Google Scholar 

  129. Zhong L, Guo LJ, Huang JG et al (2023) Ablation behavior of the ZrC coating on C/C composite with the construction of thermal dispersal network. Ceram Int 49:13903–13915. https://doi.org/10.1016/j.ceramint.2022.12.270

    Article  CAS  Google Scholar 

  130. Gao X, Peng MY, Zhang XX et al (2023) Profound strengthening and toughening effect of reinforcement aspect ratio in composite with network architecture. J Alloys Compd 931. https://doi.org/10.1016/j.jallcom.2022.167444

  131. Olszowka-Myalska A, Wrzesniowski P, Myalska-Glowacka H et al (2023) Multiwalled carbon nanotubes as an additive to Mg-Mg2Si in situ composite obtained by powder sintering. J Alloys Compd 931. https://doi.org/10.1016/j.jallcom.2022.167548

  132. Zhu LP, Pan Y, Liu YJ et al (2023) Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing. Int J Miner Metall Mater 30:697–706. https://doi.org/10.1007/s12613-021-2371-6

    Article  CAS  Google Scholar 

  133. Ge J, Pillay S, Ning HB (2023) Post-process treatments for additive-manufactured metallic structures: a comprehensive review. J Mater Eng Perform. https://doi.org/10.1007/s11665-023-08051-9

    Article  Google Scholar 

  134. Ma XJ, Wang HM, Cheng X et al (2023) Rapid W/SiC reaction induced by laser surface remelting within SiCf/Ti17 composites. Mater Lett 333. https://doi.org/10.1016/j.matlet.2022.133505

  135. Fu YQ, Zhang YL, Yan H et al (2023) Microstructure and evolution of hafnium carbide whiskers via polymer-derived ceramics: a novel formation mechanism. J Adv Ceram 12:578–586. https://doi.org/10.26599/JAC.2023.9220706

    Article  CAS  Google Scholar 

  136. Delcamp JH, Martin KL, Posey ND et al (2023) Preceramic polymers grafted to SiO2 nanoparticles via metal coordination pyrolyzing with high ceramic yields: implications for aerospace propulsion and biomedical coatings. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.2c05394

    Article  Google Scholar 

  137. Akbarzadeh S, Paint Y, Olivier MG (2023) A comparative study of different sol-gel coatings for sealing the plasma electrolytic oxidation (PEO) layer on AA2024 alloy. Electrochim Acta 443. https://doi.org/10.1016/j.electacta.2023.141930

  138. Li J, Li TS, Yuwono JA et al (2023) Developing levodopa-modified sol-gel coating with enhanced anticorrosion performance on Mg alloy AZ31. Anti-Corros Methods Mater 70:129–138. https://doi.org/10.1108/ACMM-03-2023-2765

    Article  CAS  Google Scholar 

  139. Feng JJ, Zhang YR, Ma MS et al (2023) Current status and development trend of cold sintering process. J Inorg Mater 38:125–136. https://doi.org/10.15541/jim20220338

    Article  Google Scholar 

  140. Le Godec Y, Le Floch S (2023) Recent developments of high-pressure spark plasma sintering: an overview of current applications, challenges and future directions. Materials 16. https://doi.org/10.3390/ma16030997

  141. Mao YW, Cai C, Zhang JK et al (2023) Effect of sintering temperature on binder jetting additively manufactured stainless steel 316L: densification, microstructure evolution and mechanical properties. J Mater Res Technol 22:2720–2735. https://doi.org/10.1016/j.jmrt.2022.12.096

    Article  CAS  Google Scholar 

  142. Rajabi A, Ghazali MJ, Daud AR (2015) Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet – a review. Mater Des 67:95–106. https://doi.org/10.1016/j.matdes.2014.10.081

    Article  CAS  Google Scholar 

  143. Yang Y-F, Wang H-Y, Zhao R-Y et al (2009) In situ TiC/TiB2 particulate locally reinforced steel matrix composites fabricated via the SHS reaction of Ni-Ti-B4C system. Int J Appl Ceram Technol 6:437–446. https://doi.org/10.1111/j.1744-7402.2008.02282.x

    Article  CAS  Google Scholar 

  144. Yuan X, Liu G, Jin H et al (2011) In situ synthesis of TiC reinforced metal matrix composite (MMC) coating by self propagating high temperature synthesis (SHS). J Alloy Compd 509:L301–L303. https://doi.org/10.1016/j.jallcom.2011.04.150

    Article  CAS  Google Scholar 

  145. Xue D, Jia Y, Zhang X et al (2019) Effect of ZTA volume fractions on the microstructure and properties of ZTAp/high manganese steel composites. Mater Res Express 6. https://doi.org/10.1088/2053-1591/aafbf2

  146. Hu SW, Zhao YG, Wang Z et al (2013) Fabrication of in situ TiC locally reinforced manganese steel matrix composite via combustion synthesis during casting. Mater Des 44:340–345. https://doi.org/10.1016/j.matdes.2012.07.063

    Article  CAS  Google Scholar 

  147. Salman OO, Gammer C, Eckert J et al (2019) Selective laser melting of 316L stainless steel: influence of TiB2 addition on microstructure and mechanical properties. Mater Today Commun 21. https://doi.org/10.1016/j.mtcomm.2019.100615

  148. Zhou DS, Qiu F, Wang HY et al (2014) Manufacture of nano-sized particle-reinforced metal matrix composites: a review. Acta Metall Sin-Engl 27:798–805. https://doi.org/10.1007/s40195-014-0154-z

    Article  CAS  Google Scholar 

  149. Lee SH, Hong SM, Han BS et al (2010) Homogeneous dispersion of TiC nano particles in a cast carbon steel matrix. J Nanosci Nanotechnol 10:258–262. https://doi.org/10.1166/jnn.2010.1529

    Article  PubMed  CAS  Google Scholar 

  150. Lee S-H, Park J-J, Hong S-M et al (2011) Fabrication of cast carbon steel with ultrafine TiC particles. Trans Nonferrous Met Soc China 21:s54–s57. https://doi.org/10.1016/s1003-6326(11)61060-1

    Article  Google Scholar 

  151. Kiviö M, Holappa L, Yoshikawa T et al (2012) Interfacial phenomena in Fe-TiC systems and the effect of Cr and Ni. High Temp Mater Processes (London) 31:645–656. https://doi.org/10.1515/htmp-2012-0102

    Article  CAS  Google Scholar 

  152. Li G, Yang H, Lyu Y et al (2019) Effect of Fe–Mo–Cr pre-alloyed powder on the microstructure and mechanical properties of TiC–high-Mn-steel cermet. Int J Refract Met Hard Mater 84. https://doi.org/10.1016/j.ijrmhm.2019.105031

  153. Fedrizzi A, Pellizzari M, Zadra M et al (2013) Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB2 particles. Mater Charact 86:69–79. https://doi.org/10.1016/j.matchar.2013.09.012

    Article  CAS  Google Scholar 

  154. Sahoo S, Jha BB, Sahoo TK et al (2017) Influence of reinforcement and processing on steel-based composites: microstructure and mechanical response. Mater Manuf Processes 33:564–571. https://doi.org/10.1080/10426914.2017.1364865

    Article  CAS  Google Scholar 

  155. Madzivhandila T, Bhero S, Varachia F (2018) The influence of titanium addition on wettability of high-chromium white cast iron-matrix composites. J Compos Mater 53:1567–1576. https://doi.org/10.1177/0021998318804616

    Article  CAS  Google Scholar 

  156. Zhao X, Wei QS, Gao N et al (2019) Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing. J Mater Process Technol 270:8–19. https://doi.org/10.1016/j.jmatprotec.2019.01.028

    Article  CAS  Google Scholar 

  157. Li C, Goei R, Li Y et al (2022) Fabrication and wear property of NiCo coated ZrO2–Al2O3 ceramic particles reinforced high manganese steel-based composites. Wear 492–493. https://doi.org/10.1016/j.wear.2022.204235

  158. Ru J, He H, Jiang Y et al (2019) Wettability and interaction mechanism for Ni-modified ZTA particles reinforced iron matrix composites. J Alloy Compd 786:321–329. https://doi.org/10.1016/j.jallcom.2019.01.342

    Article  CAS  Google Scholar 

  159. Zheng B, Li W, Tu X et al (2020) Effect of titanium binder addition on the interface structure and three-body abrasive wear behavior of ZTA ceramic particles-reinforced high chromium cast iron. Ceram Int 46:13798–13806. https://doi.org/10.1016/j.ceramint.2020.02.169

    Article  CAS  Google Scholar 

  160. Zhang XQ, Yang DY, Jia YD et al (2023) Microstructure and nanoindentation behavior of FeCoNiAlTi high-entropy alloy-reinforced 316L stainless steel composite fabricated by selective laser melting. Materials 16. https://doi.org/10.3390/ma16052022

  161. Li C-L, Qiu F, Chang F et al (2018) Simultaneously enhanced strength, toughness and ductility of cast 40Cr steels strengthened by trace biphase TiCx-TiB2 nanoparticles. Metals 8. https://doi.org/10.3390/met8090707

  162. Guan D, He X, Zhang R et al (2017) Microstructure and tensile properties of in situ polymer-derived particles reinforced steel matrix composites produced by powder metallurgy method. Mater Sci Eng: A 705:231–238. https://doi.org/10.1016/j.msea.2017.07.084

    Article  CAS  Google Scholar 

  163. Sulima I, Jaworska L, Karwan-Baczewska J (2015) Effect of boron sinter-aid on the microstructure and properties of austenitic stainless steel- TIB2 composites / Wpływ Dodatku Boru Na Mikrostrukturę I W Łaściwosci Kompozytów Stal Austenityczna-TIB2. Arch Metall Mater 60:2619–2624. https://doi.org/10.1515/amm-2015-0423

    Article  CAS  Google Scholar 

  164. Park SJ, Jeong Y, Kim CW et al (2019) Superior tensile fracture strength of hot isostatically pressed TiC–steel metallic composite fabricated by a novel infiltration. Mater Sci Eng: A 764. https://doi.org/10.1016/j.msea.2019.138260

  165. Zhai W, Zhou W, Nai SML (2022) Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting. Mater Sci Eng: A 832. https://doi.org/10.1016/j.msea.2021.142460

  166. Rana R, Liu C (2014) Effects of ceramic particles and composition on elastic modulus of low density steels for automotive applications. Can Metall Q 53:300–316. https://doi.org/10.1179/1879139514y.0000000130

    Article  CAS  Google Scholar 

  167. Baron C, Springer H, Raabe D (2016) Effects of Mn additions on microstructure and properties of Fe–TiB2 based high modulus steels. Mater Des 111:185–191. https://doi.org/10.1016/j.matdes.2016.09.003

    Article  CAS  Google Scholar 

  168. Aparicio-Fernández R, Springer H, Szczepaniak A et al (2016) In-situ metal matrix composite steels: Effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels. Acta Mater 107:38–48. https://doi.org/10.1016/j.actamat.2016.01.048

    Article  ADS  CAS  Google Scholar 

  169. Sulima I, Putyra P, Hyjek P et al (2015) Effect of SPS parameters on densification and properties of steel matrix composites. Adv Powder Technol 26:1152–1161. https://doi.org/10.1016/j.apt.2015.05.010

    Article  CAS  Google Scholar 

  170. Wang X, Leng H, Han B et al (2019) Solidified microstructures and elastic modulus of hypo-eutectic and hyper-eutectic TiB2-reinforced high-modulus steel. Acta Mater 176:84–95. https://doi.org/10.1016/j.actamat.2019.06.052

    Article  ADS  CAS  Google Scholar 

  171. Parashivamurthy KI, Mallikarjuna C (2013) Effect of manganese on the microstructure and TiC precipitation in hypoeutectoid steel. Mater Manuf Processes 28:1161–1165. https://doi.org/10.1080/10426914.2013.792410

    Article  CAS  Google Scholar 

  172. Lee Y-H, Kim N, Lee S-B et al (2020) Microstructure and mechanical properties of lightweight TiC-steel composite prepared by liquid pressing infiltration process. Mater Charact 162. https://doi.org/10.1016/j.matchar.2020.110202

  173. Wittig D, Aneziris CG, Graule T et al (2009) Mechanical properties of three-dimensional interconnected alumina/steel metal matrix composites. J Mater Sci 44:572–579. https://doi.org/10.1007/s10853-008-3072-5

    Article  ADS  CAS  Google Scholar 

  174. Moghaddam EG, Karimzadeh N, Varahram N et al (2013) Impact–abrasion wear characteristics of in-situ VC-reinforced austenitic steel matrix composite. Mater Sci Eng, A 585:422–429. https://doi.org/10.1016/j.msea.2013.07.082

    Article  CAS  Google Scholar 

  175. Cui C, Schulz A, Uhlenwinkel V (2011) Spray-formed stainless steel matrix composites with Co-injected carbide particles. Metall Mater Trans B 2442–2455. https://doi.org/10.1007/s11661-011-0633-z

  176. Baron C, Werner H, Springer H (2021) On the effect of carbon content and tempering on mechanical properties and stiffness of martensitic Fe–18.8Cr–1.8B–xC high modulus steels. Mater Sci Eng: A 809. https://doi.org/10.1016/j.msea.2021.141000

  177. Veinthal R, Tarbe R, Kulu P et al (2009) Abrasive erosive wear of powder steels and cermets. Wear 267:1838–1844. https://doi.org/10.1016/j.wear.2009.02.021

    Article  CAS  Google Scholar 

  178. Krishna KG, Divakar C, Venkatesh K et al (2009) Tribological studies of polymer based ceramic–metal composites processed at ambient temperature. Wear 266:878–883. https://doi.org/10.1016/j.wear.2008.08.013

    Article  CAS  Google Scholar 

  179. Verezub O, Kálazi Z, Buza G et al (2009) In-situ synthesis of a carbide reinforced steel matrix surface nanocomposite by laser melt injection technology and subsequent heat treatment. Surf Coat Technol 203:3049–3057. https://doi.org/10.1016/j.surfcoat.2009.03.024

    Article  CAS  Google Scholar 

  180. Ma W, Lu D, Tang L et al (2021) Effect of matrix hardness on the impact abrasive wear performance of ZTAp/steel architecture composite. Mater Res Express 8. https://doi.org/10.1088/2053-1591/abe019

  181. Sadhasivam M, Mohan N, Sankaranarayanan SR et al (2020) Investigation on mechanical and tribological behaviour of titanium diboride reinforced martensitic stainless steel. Mater Res Express 7. https://doi.org/10.1088/2053-1591/ab6488

  182. Liang Y, Han Z, Zhang Z et al (2012) Effect of Cu content in Cu–Ti–B4C system on fabricating TiC/TiB2 particulates locally reinforced steel matrix composites. Mater Des 40:64–69. https://doi.org/10.1016/j.matdes.2012.03.023

    Article  CAS  Google Scholar 

  183. Lin C-M (2015) Functional composite metal for WC-dispersed 304L stainless steel matrix composite with alloying by direct laser: microstructure, hardness and fracture toughness. Vacuum 121:96–104. https://doi.org/10.1016/j.vacuum.2015.07.023

    Article  ADS  CAS  Google Scholar 

  184. Db P (2018) A comparative study on mechanical properties of heat treated steel EN24 and its MMC with SiC. Indian J Eng Mater Sci 25:291–294

    Google Scholar 

  185. Lartigue-Korinek S, Walls M, Haneche N et al (2015) Interfaces and defects in a successfully hot-rolled steel-based composite Fe–TiB 2. Acta Mater 98:297–305. https://doi.org/10.1016/j.actamat.2015.07.024

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZH: resources, project administration, methodology, software, data curation, writing—original draft, writing—review and editing. HY: methodology, funding acquisition, conceptualization, writing—review and editing. ML: project administration, methodology, writing—review and editing. JL: resources, writing—review and editing. HZ: supervision, formal analysis.

Corresponding author

Correspondence to Huijun Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Yin, H., Li, M. et al. Research and developments of ceramic-reinforced steel matrix composites—a comprehensive review. Int J Adv Manuf Technol 131, 125–149 (2024). https://doi.org/10.1007/s00170-024-13123-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13123-8

Keywords

Navigation