Skip to main content

Advertisement

Log in

Online simulation at machine level: a systematic review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The importance of simulation at the machine level in industrial environments is steadily increasing especially in the design and commissioning phase. Using models during the operation phase together with the real machine or plant is referred to as online simulation. Online simulation is used for system monitoring, predictive analyses, decision support, or online optimization and therefore has various advantages and a wide field of applications. This paper aims to characterize online simulation at the machine level in industrial automation focusing on key technologies and common applications. Therefore, a set of 65 relevant publications, which are focusing on this subject, is found by database search, expert consultation, and snowballing. As key technological aspects, the used model types, interfaces, and platforms, and the aspects of initialization and synchronization are further investigated. The results are interpreted and limitations, knowledge gaps, and future prospects are discussed. The potential of online simulation at the machine level especially arises due to the increasing availability of component and machine models from the design and commissioning phase, which can be reused for online simulation. The remaining challenges are identified concerning implementation, simulation platforms, model maintenance, and especially in the field of synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nakaya M, Fukano G, Onoe Y et al (2006) On-line simulator for plant operation. In: Proceedings of the World Congress on Intelligent Control and Automation (WCICA), pp 7882 – 7885. https://doi.org/10.1109/WCICA.2006.1713505

  2. Nakabayashi A, Fukano G, Onoe Y et al (2006) Application of tracking simulator to reforming process. In: 2006 SICE-ICASE International Joint Conference, IEEE, pp 1871–1875

  3. Pantelides CC, Renfro JG (2013) The online use of first-principles models in process operations: review, current status and future needs. Comput Chem Eng 51:136–148

    Article  CAS  Google Scholar 

  4. Tjahjono B, Teixeira ELS, Alfaro SCA (2013) An online simulation to link asset condition monitoring and operations decisions in through-life engineering services. In: 2013 Winter Simulations Conference (WSC), IEEE, pp 159–168

  5. Nakaya M, Kawaguchi K, Onoe Y et al (2007) Parameter estimation of PEMFC by on-line tracking simulator. In: SICE Annual Conference 2007, IEEE, pp 2946–2949

  6. Ruusu R, Santillán Martínez G, Karhela T, et al (2017) Sliding mode SISO control of model parameters for implicit dynamic feedback estimation of industrial tracking simulation systems. In: IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp 6927–6932

  7. Davis WJ (1998) On-line simulation: need and evolving research requirements. Handbook of simulation 465:516

    Google Scholar 

  8. Kain S, Heuschmann C, Schiller F (2008) Von der virtuellen Inbetriebnahme zur Betriebsparallelen Simulation. atp edition 50(08):48–52

  9. Nakaya M, Seki T, Kawaguchi K et al (2008) Model parameter estimation by tracking simulator for the innovation of plant operation. IFAC Proceedings Volumes 41(2):2168–2173

    Article  Google Scholar 

  10. Fagervik K, Konstari O, von Schalien R (1988) Control of batch evaporative crystallization of sugar by means of adaptive simulation. In: 1988 American Control Conference, IEEE, pp 677–683

  11. Friman M, Airikka P (2012) Tracking simulation based on PI controllers and autotuning. IFAC Proceedings Volumes 45(3):548–553

    Article  Google Scholar 

  12. Santillán Martínez G, Karhela TA, Ruusu RJ et al (2018) An integrated implementation methodology of a lifecycle-wide tracking simulation architecture. IEEE Access 6:15391–15407

    Article  Google Scholar 

  13. Ferro R, Ordóñez REC, Anholon R (2017) Analysis of the integration between operations management manufacturing tools with discrete event simulation. Production Engineering 11:467–476

    Article  Google Scholar 

  14. Zipper H (2021) Real-time-capable synchronization of Digital Twins. IFAC-PapersOnLine 54(4):147–152

    Google Scholar 

  15. Kalman RE (1960) A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering 82(Series D):35–45

  16. Santillán Martínez G, Sierla S, Karhela T et al (2018) Automatic generation of a simulation-based digital twin of an industrial process plant. In: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp 3084–3089

  17. Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MIS quarterly pp xiii–xxiii

  18. Papaioannou D, Sutton A, Booth A (2016) Systematic approaches to a successful literature review. Systematic approaches to a successful literature review pp 1–336

  19. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Annals of internal medicine 151(4):W–65

  20. Krishnamurthi M, Vasudevan S (1993) Domain-based on-line simulation for real-time decision support. In: Proceedings of the 25th conference on Winter simulation, pp 1304–1312

  21. Kain S, Dominka S, Merz M et al (2009) Reuse of HiL simulation models in the operation phase of production plants. In: 2009 IEEE International Conference on Industrial Technology, IEEE, pp 1–6

  22. Zupan H, Šimic M, Herakovič N (2021) Realization of an optimal production plan in a smart factory with on-line simulation. In: Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future: Proceedings of SOHOMA 2020, Springer, pp 485–495

  23. Jahn G (1996) Modeling concepts for data reduction in control of manufacturing systems. Cybernetics & Systems 27(3):223–234

    Article  Google Scholar 

  24. Bessey T (2004) Implementation of on-line simulation with the colored Petri net simulator RENEW. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), IEEE, pp 5019–5024

  25. Svensson B, Danielsson F, Lennartson B (2012) Time-synchronised hardware-in-the-loop simulation-applied to sheet-metal press line optimisation. Control Engineering Practice 20(8):792–804

    Article  Google Scholar 

  26. Nakaya M, Nakabayashi A, Ohtani T et al (2009) A new estimation method by utilizing on-line tracking simulator. In: 2009 ICCAS-SICE, IEEE, pp 3274–3277

  27. Bergs C, Heizmann M (2019) Kombination unterschiedlicher Modellierungsansätze für die betriebsbegleitende Simulation industrieller Prozesse. at-Automatisierungstechnik 67(3):183–192

  28. Santillán Martínez G, Karhela T, Ruusu R, et al (2017) Towards a systematic path for dynamic simulation to plant operation: OPC UA-enabled model adaptation method for tracking simulation. In: IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp 5503–5508

  29. Nakabayashi A, Nakaya M, Ohtani T et al (2010) A process simulator based on hybrid model of physical model and just-in-time model. In: Proceedings of SICE Annual Conference 2010, IEEE, pp 1497–1501

  30. Nakaya M, Ikegaya Y, Nakabayashi A et al (2011) Online process simulator with hybrid model of physical model and just-in-time model. IFAC Proceedings Volumes 44(1):1640–1645

    Article  Google Scholar 

  31. Saptoro A (2014) State of the art in the development of adaptive soft sensors based on just-in-time models. Procedia Chemistry 9:226–234

    Article  CAS  Google Scholar 

  32. Nakaya M, li X (2013) On-line tracking simulator with a hybrid of physical and just-in-time models. J Proc Control 23:171–178. https://doi.org/10.1016/j.jprocont.2012.06.007

  33. Krotil S, Richter C, Reinhart G (2016) Online-simulation of fluidic processes in early design of plant development using SPH. CIRP Annals 65(1):161–164

    Article  Google Scholar 

  34. Fowler JW, Rose O (2004) Grand challenges in modeling and simulation of complex manufacturing systems. Simulation 80(9):469–476

    Article  Google Scholar 

  35. Hanisch A, Tolujew J, Schulze T (2005) Initialization of online simulation models. In: Proceedings of the Winter Simulation Conference, 2005., IEEE, pp 9–pp

  36. Altaf MS, Liu H, Al-Hussein M et al (2015) Online simulation modeling of prefabricated wall panel production using RFID system. In: 2015 Winter Simulation Conference (WSC), IEEE, pp 3379–3390

  37. Cardin O, Castagna P (2009) Using online simulation in Holonic manufacturing systems. Eng Appl Artif Intell 22(7):1025–1033

    Article  Google Scholar 

  38. Cardin O, Castagna P (2012) Myopia of service oriented manufacturing systems: benefits of data centralization with a discrete-event observer. Service Orientation in Holonic and Multi-Agent Manufacturing Control pp 197–210

  39. Santillán Martínez G, Karhela T, Niemistö H, et al (2015) A hybrid approach for the initialization of tracking simulation systems. In: 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), IEEE, pp 1–8

  40. Hotz I, Hanisch A, Schulze T (2006) Simulation-based early warning systems as a practical approach for the automotive industry. In: Proceedings of the 2006 Winter Simulation Conference, IEEE, pp 1962–1970

  41. Bergmann S, Stelzer S, Straßburger S (2011) Initialization of simulation models using CMSD. In: Proceedings of the 2011 Winter Simulation Conference (WSC), IEEE, pp 2223–2234

  42. Zipper H, Auris F, Strahilov A et al (2018) Keeping the digital twin up-to-date-process monitoring to identify changes in a plant. In: 2018 IEEE International Conference on Industrial Technology (ICIT), IEEE, pp 1592–1597

  43. Pietilä J, Kaartinen J, Reinsalo AM (2013) Parameter estimation for a flotation process tracking simulator. IFAC Proceedings Volumes 46(16):122–127

    Article  Google Scholar 

  44. Amos BD, Easterling DR, Watson LT et al (2020) Algorithm 1007: QNSTOP - quasi-Newton algorithm for stochastic optimization. ACM Transactions on Mathematical Software (TOMS) 46(2):1–20

    Article  MathSciNet  Google Scholar 

  45. Broyden CG (1965) A class of methods for solving nonlinear simultaneous equations. Mathematics of computation 19(92):577– 593

  46. Härle C, Barth M, Fay A (2021) Operation-parallel adaptation of a co-simulation for discrete manufacturing plants. In: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, pp 1–8

  47. Seki T, Fukano G, Kawaguchi K et al (2008) Innovative plant operations by using tracking simulator. In: 2008 SICE Annual Conference, IEEE, pp 2100–2103

  48. Zipper H, Diedrich C (2019) Synchronization of industrial plant and digital twin. In: 2019 24th IEEE international conference on emerging technologies and factory automation (ETFA), IEEE, pp 1678–1681

  49. Zipper H (2021) Method for synchronisation of online-simulation. at-Automatisierungstechnik 69(11):1020–1021

    Google Scholar 

  50. Ebner A, Ganchev M, Gragger JV et al (2006) Real time platform for rapid prototyping and on-line simulation of digital controllers for electrical drives. SAE Transactions pp 120–125

  51. Ishimaru S, Nakaya M, Ohtani T (2010) An application of tracking simulator to depropanizer process. In: Proceedings of SICE Annual Conference 2010, IEEE, pp 1486–1489

  52. Petschnigg C, Breitenhuber G, Breiling B et al (2018) Online simulation for flexible robotic manufacturing. In: Int. Conf. Ind. Technol. Manag, pp 88–92

  53. Hofmann W, Lang S, Reichardt P et al (2022) A brief introduction to deploy Amazon Web Services for online discrete-event simulation. Procedia Computer Science 200:386–393

    Article  Google Scholar 

  54. Kádár B, Lengyel A, Monostori L et al (2010) Enhanced control of complex production structures by tight coupling of the digital and the physical worlds. CIRP annals 59(1):437–440

    Article  Google Scholar 

  55. Müller M, Mielke J, Pavlovskyi Y et al (2021) Real-time combination of material flow simulation, digital twins of manufacturing cells, an AGV and a mixed-reality application. Procedia CIRP 104:1607–1612

    Article  Google Scholar 

  56. Lim Y, Lee YK, Yoo J et al (2022) An open source-based digital twin broker interface for interaction between real and virtual assets. In: 2022 13th international conference on information and communication technology convergence (ICTC), IEEE, pp 1657–1659

  57. Cardin O, Castagna P (2011) Proactive production activity control by online simulation. Int J Simul Proc Modell 6(3):177–186

    Google Scholar 

  58. Bessey T (2003) Needs and proposals for theoretical research on on-line simulation. In: Summer computer simulation conference, society for computer simulation international; 1998, pp 459–466

  59. Pujo P, Pedetti M, Ounnar F (2004) Pilotage proactif des lignes de production kanban par modelisation DEVS et simulation temps reel. In: 5e Conference Francophone de MOdelisation et SIMulation - Modelisation et simulation pour l’analyse et l’optimisation des systemes industriels et logistiqes, MOSIM’04, Nantes, France

  60. Manivannan S, Banks J (1991) Real-time control of a manufacturing cell using knowledge-based simulation. In: 1991 winter simulation conference proceedings., pp 251–260, https://doi.org/10.1109/WSC.1991.185622

  61. Bessey T (2003) On-line simulation: towards new statistical approaches. In: Summer computer simulation conference, society for computer simulation international; 1998, pp 453–458

  62. Meng X, Zhang L, Wang M (2013) Symbiotic simulation of assembly quality control in large gas turbine manufacturing. In: AsiaSim 2013: 13th international conference on systems simulation, Singapore, November 6-8, 2013. Proceedings 13, Springer, pp 298–309

  63. Scheer R, Straßburger S, Knapp M, (2021) Digital-physische Verbundkonzepte: Gegen-überstellung. Cuvillier Verlag, Nutzeffekte und kritische Hürden, p 11

  64. Iassinovski S, Artiba A, Fagnart C (2008) SD Builder®: a production rules-based tool for on-line simulation, decision making and discrete process control. Eng Appl Artif Intell 21(3):406–418

    Article  Google Scholar 

  65. Yoshitani N, Naganuma Y, Yanai T (1991) Optimal slab heating control for reheating furnaces. In: 1991 American Control Conference, IEEE, pp 3030–3035

  66. Sekler P, Verl A (2009) Real-time computation of the system behaviour of lightweight machines. In: 2009 First International Conference on Advances in System Simulation, IEEE, pp 144–147

  67. Sekler P, Voß M, Verl A (2012) Model-based calculation of the system behavior of machine structures on the control device for vibration avoidance. Int J Adv Manuf Technol 58(9–12):1087–1095

    Article  Google Scholar 

  68. Luo W, Hu T, Zhang C et al (2019) Digital twin for CNC machine tool: modeling and using strategy. J Ambient Intell Humanized Comput 10:1129–1140

    Article  Google Scholar 

  69. Schumann M, Witt M, Klimant P (2013) A real-time collision prevention system for machine tools. Procedia CIRP 7:329–334

    Article  Google Scholar 

  70. Hoher S, Neher P, Verl A (2013) Collision: Impossible - Echtzeitfähige 3D-Kollisionskontrolle bei mehrkanaliger Bearbeitung. SPS IPC Drives 2013

  71. Klingel L, Verl A (2023) Simulationsbasierte Online-Absicherung von CNC-gesteuerten Industrierobotern. Fortschritt-Berichte VDI pp 74–82

  72. Bergmann S, Straßburger S (2020) Automatische fg Modellgenerierung – stand, Klassifizierung und ein Anwendungsbeispiel. Ablaufsimulation in der Automobilindustrie pp 333–347

  73. Dammasch K, Kaupp H, Rabuser M (2010) Eine Automatische Modellgenerierung zur simulationsgestützten Planung und Optimierung von robotergesteuerten Fertigungsprozessen. Technik, Organisation und Personal KIT Scientific Publishing, Karlsruhe, Integrationsaspekte der Simulation, pp 53–60

    Google Scholar 

  74. Lee Y, Kim S, Yoon K (2023) Class abstraction and upcasting for self-evolving digital twin system. In: 2023 International Conference on Electronics, Information, and Communication (ICEIC), pp 1–3. https://doi.org/10.1109/ICEIC57457.2023.10049945

  75. Lin TY, Jia Z, Yang C et al (2021) Evolutionary digital twin: a new approach for intelligent industrial product development. Adv Eng Inform 47

  76. Edington L, Dervilis N, Ben Abdessalem A et al (2023) A time-evolving digital twin tool for engineering dynamics applications. Mech Syst Signal Proc 188:109971. https://doi.org/10.1016/j.ymssp.2022.109971

    Article  Google Scholar 

  77. Lugaresi G, Matta A (2018) Real-time simulation in manufacturing systems: challenges and research directions. In: 2018 Winter Simulation Conference (WSC), IEEE, pp 3319–3330

  78. Rosen R, Jäkel J, Barth M et al (2020) Simulation und digitaler Zwilling im Anlagenlebenszyklus. VDI Statusreport 1

  79. Kritzinger W, Karner M, Traar G et al (2018) Digital Twin in manufacturing: a categorical literature review and classification. Ifac-PapersOnline 51(11):1016–1022

    Article  Google Scholar 

  80. Velázquez de la Hoz JL, Cheng K (2021) Development of an intelligent quality management system for micro laser welding: an innovative framework and its implementation perspectives. Machines 9(11):252

    Article  Google Scholar 

  81. Cheng K, Bateman RJ (2008) e-Manufacturing: characteristics, applications and potentials. Prog Natural Sci 18(11):1323–1328

    Article  Google Scholar 

Download references

Funding

The work presented in this paper has been partly funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under the project 13IK001ZF “Software-Defined Manufacturing for the automotive and supplying industry https://www.sdm4fzi.de/”.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Darius Deubert and Lars Klingel. The first draft of the manuscript was written by Darius Deubert and was reviewed by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Darius Deubert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deubert, D., Klingel, L. & Selig, A. Online simulation at machine level: a systematic review. Int J Adv Manuf Technol 131, 977–998 (2024). https://doi.org/10.1007/s00170-024-13065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13065-1

Keywords

Navigation