Skip to main content
Log in

Exploring the influence of graphene incorporation on the characteristics of 3D-printed PLA

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Additive manufacturing has revolutionized the production of intricate components, allowing for diverse material utilization, mainly polymers. However, polymer parts typically exhibit around 85% of the mechanical strength of injection-molded parts. Fillers have the potential to improve the mechanical properties of polymer-based additively manufactured components to meet specific design requirements. However, their incorporation requires careful assessment due to potential interactions with other material properties, necessitating a comprehensive evaluation. This study aimed to investigate the influence of graphene addition on the chemical, thermal, electrical, and mechanical characteristics of polylactic acid (PLA). Chemical characterization was performed using X-ray diffraction (XRD), Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Thermal properties were analyzed via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Electrical properties were evaluated in terms of resistance, resistivity, and conductivity. Mechanical properties were assessed through tensile, flexural, notch sensitivity, and impact tests, as well as hardness measurements. Raman spectra of PLA graphene samples exhibited characteristic D, G, and 2D bands, while FTIR spectra showed no graphene-related peaks, indicating the lack of chemical interactions between graphene and the polymer matrix. XRD analysis indicated a low level of crystallinity, while DSC measurements unveiled alterations in the thermal characteristics. Graphene addition significantly influenced the fusion, crystallization, and crystallinity of PLA. Thermogravimetric analysis demonstrated the effect of graphene on the onset of thermal decomposition. Graphene imparted electrical conductivity to PLA making it conductive. Tensile and flexural tests demonstrated substantial improvements in strength, stiffness, and deformation. Single-edge notched bend and impact tests revealed changes in crack initiation, propagation, and fracture energy. Additionally, the incorporation of graphene increased PLA hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data and materials will be available upon request.

Notes

  1. It is clarified that the stress intensity factor quantifies the stress magnitude occurring at the crack tip.

References

  1. Wegrzyn M, Galindo B, Benedito A, Gimenez E (2015) Morphology, thermal, and electrical properties of polypropylene hybrid composites cofilled with multi-walled carbon nanotubes and graphene nanoplatelets. J Appl Polym Sci 132:42793. https://doi.org/10.1002/app.42793

    Article  CAS  Google Scholar 

  2. Chen J, Guo X, Tang Q, Zhuang C, Liu J, Wu S, Beakeb BD (2013) Nanomechanical properties of graphene on poly(ethylene terephthalate) substrate. Carbon 55:144–150. https://doi.org/10.1016/j.carbon.2012.12.020

    Article  CAS  Google Scholar 

  3. Wisitsoraat A, Mensing JP, Karuwan C, Sriprachuabwong C, Jaruwongrungsee K, Phokharatkul D, Daniels TM, Liewhiran C, Tuantranont A (2017) Printed organo-functionalized graphene for biosensing applications. Biosens Bioelectron 87:7–17. https://doi.org/10.1016/j.bios.2016.07.116

    Article  CAS  PubMed  Google Scholar 

  4. Cinti S, Arduini F (2016) Graphene-based sreen-printed electrochemical (bio)sensors and their applications: efforts and criticsms. Biosens Bioelectron 89:107–122. https://doi.org/10.1016/j.bios.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  5. Lahiri I, Verma VP, Choi W (2011) An all-graphene based transparent and exible field emission device. Carbon 49:1614–1619. https://doi.org/10.1016/j.carbon.2010.12.044

    Article  CAS  Google Scholar 

  6. Yin Z, Sun S, Salim T, Wu S, Huang X, He Q, Lam YM, Zhang H (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. Acsnano 4:5263–5268. https://doi.org/10.1021/nn1015874

    Article  CAS  Google Scholar 

  7. Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2:242–251. https://doi.org/10.1021/jz101639v

    Article  CAS  Google Scholar 

  8. Pinto A.M., Cabral J., Tanaka D.A.P, Mendes A.M., Magalhães F.D. (2012) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Soc Chem Indust 62:33-40. https://doi.org/10.1002/pi.4290.

  9. Xie SH, Liu YY, Li JY (2008) Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl Phys Lett 92:243121. https://doi.org/10.1063/1.2949074

    Article  CAS  ADS  Google Scholar 

  10. Gonçalves C, Pinto A, Machado AV, Moreira J, Gonçalves IC, Magalhães F (2016) Biocompatible reinforcement of poly (Lactic acid) with graphene nanoplatelets. Polym Compos 39:E308–E320. https://doi.org/10.1002/pc.24050

    Article  CAS  Google Scholar 

  11. Sabzi M, Jiang L, Nikfarjam N (2015) Graphene nanoplatelets as rheology modifiers for polylactic acid: graphene aspect-ratio dependent nonlinear rheological behavior. Indust Eng Chem Res 54:8175–8182. https://doi.org/10.1021/acs.iecr.5b01863

    Article  CAS  Google Scholar 

  12. Rostami A, Nazockdast H, Karimi M (2016) Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. Royal Soc Chem 6:49747–49759. https://doi.org/10.1039/C6RA08345E

    Article  CAS  Google Scholar 

  13. Salavagione HJ, Martinez G, Gomez MA (2009) Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J Mater Chem 19:5027–5032. https://doi.org/10.1039/B904232F

    Article  CAS  Google Scholar 

  14. Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) Printable graphene composites-supplementary information. Sci Rep 5:11181. https://doi.org/10.1038/srep11181

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  15. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530. https://doi.org/10.1021/ma100572e

    Article  CAS  ADS  Google Scholar 

  16. Zhang H, Zheng W, Yan Q, Yang Y, Wang J-W, Lu Z-H, Ji G-Y, Yu Z-Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196. https://doi.org/10.1016/j.polymer.2010.01.027

    Article  CAS  Google Scholar 

  17. Marconi S, Alaimo G, Mauri V, Torre M, Auricchio F (2017) Impact of graphene reinforcement on mechanical properties of PLA 3D-printed materials. In: International Microwave Workshop Series on Advanced Materials and Processes (IMWS-AMP 2017), 20-22 September 2017, Pavia, Italy. https://doi.org/10.1109/IMWS-AMP.2017.8247414

  18. Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One 37:e49365. https://doi.org/10.1371/journal.pone.0049365

    Article  CAS  ADS  Google Scholar 

  19. Norazlina H, Kamal Y (2015) Graphene modifications in polylactic acid nanocomposites: a review. Polym Bull 72:931–961. https://doi.org/10.1007/s00289-015-1308-5

    Article  CAS  Google Scholar 

  20. Wilhelm P, Lang TC, Läuchli AM (2021) Interplay of fractional Chern insulator and charge density wave phases in twisted bilayer graphene. Phys Rev B 103:125406. https://doi.org/10.1103/PhysRevB.103.125406

    Article  CAS  ADS  Google Scholar 

  21. Tan BH, Muiruri JK, Li Z, He C (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4:5370–5391. https://doi.org/10.1021/acssuschemeng.6b01713

    Article  CAS  Google Scholar 

  22. Dehnou KH, Norouzi GS, Majidipourc M (2023) A review: studying the effect of graphene nanoparticles on mechanical, physical and thermal properties of polylactic acid polymer. RSC Adv 13:3976–4006. https://doi.org/10.1039/D2RA07011A

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Martinez V, Cicero S, Arroyo B (2021) Effect of graphene on the fracture behaviour of 3D-printed PLA SENB specimens. Proc Struct Integ 33:89–96. https://doi.org/10.1016/j.prostr.2021.10.013

    Article  Google Scholar 

  24. Cicero S, Martínez-Mata V, Castanon-Jano, Alonso-Estebanez A, Arroyo B (2021) Analysis of notch effect in the fracture behaviour of additively manufactured PLA and graphene reinforced PLA. Theor Appl Fract Mech 114:103032. https://doi.org/10.1016/j.tafmec.2021.103032

    Article  CAS  Google Scholar 

  25. Plymill A, Minneci R, Greeley AD, Gritton J, Alexander D, Greeley D (2016) Graphene and carbon nanotube PLA composite feedstock development for fused deposition modeling. Thesis. University of Tennessee

    Google Scholar 

  26. Bustillos J, Montero D, Nautiyal P, Loganathan A, Boesl B, Agarwal A (2017) Integration of graphene in poly(lactic) acid by 3D printing to develop creep and wear-resistant hierarchical nanocomposites. Polym Compos 24:1–12. https://doi.org/10.1002/pc.24422

    Article  CAS  Google Scholar 

  27. Caminero MA, Chacon JM, García-Plaza E, Núnez PJ, Reverte JM, Becar JP (2019) Additive manufacturing of PLA-based composites using fused filament fabrication: effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers 11:799. https://doi.org/10.3390/polym11050799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Yao X, Zhou X, Pan Z, Gu Q (2011) Poly(lactic acid)/graphene nanocomposites prepared via solution blending using chloroform as a mutual solvent. J Nanosci Nanotechnol 11:7813–7819. https://doi.org/10.1166/jnn.2011.4732

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Yao X, Gu Q, Pan Z (2013) Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites. J Polym Eng 33:163–171. https://doi.org/10.1515/polyeng-2012-0124

    Article  CAS  Google Scholar 

  30. Chartarrayawadee W, Molloy R, Ratchawet A, Janmee N, Butsamran M, Panpai K (2017) Fabrication of poly(lactic acid)/graphene oxide/stearic acid composites with improved tensile strength. Polym Compos 38:2272–2282. https://doi.org/10.1002/pc.23809

    Article  CAS  Google Scholar 

  31. Valapa RB, Pugazhenthi G, Katiyar V (2015) Effect of graphene content on the properties of poly(lactic acid) nanocomposites. RSC Adv 5:28410–28423. https://doi.org/10.1039/c4ra15669b

    Article  CAS  ADS  Google Scholar 

  32. Kim SW, Choi HM (2016) Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films. Korean J Chem Eng 33:330–336. https://doi.org/10.1007/s11814-015-0142-7

    Article  CAS  Google Scholar 

  33. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366. https://doi.org/10.1016/j.addr.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  34. Ivanov E, Kotsilkova R, Xia H, Chen Y, Donato RK, Donato K, Godoy AP, Di Maio R, Silvestre C, Cimmino S, Angelov V (2019) PLA/graphene/MWCNT composites with improved electrical and thermal properties suitable for FDM 3D printing applications. Appl Sci 9:1209. https://doi.org/10.3390/app9061209

    Article  CAS  Google Scholar 

  35. Shaohong S, Mingyao D, Xingyu T, Fengxia W, Jianping S, Yinghong C (2022) 3D-printed polylactic acid/graphene nanocomposites with tailored multifunctionality towards superior thermal management and high-efficient electromagnetic interference shielding. Chem Eng J 450:138248. https://doi.org/10.1016/j.cej.2022.138248

    Article  CAS  Google Scholar 

  36. Guo R, Ren Z, Bi H, Xu M, Cai L (2019) Electrical and thermal conductivity of polylactic acid (PLA)-based biocomposites by incorporation of nano-graphite fabricated with fused deposition modeling. Polymers 11(3):549. https://doi.org/10.3390/polym11030549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang H-D, Ren P-G, Xu J-Z, Xu L, Zhong G-J, Hsiao BS, Li Z-M (2014) Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. J Membr Sci 464:110–118. https://doi.org/10.1016/j.memsci.2014.04.009

    Article  CAS  Google Scholar 

  38. Cao W-Q, Lu M-M, Wen B, Chen Y-L, Li H-B, Yuan J, Cao M-S (2011) MWCNTs/SiO2 composite system: carrier transmission, twin-percolation and dielectric properties. Chin Phys Lett 28:107701. https://doi.org/10.1088/0256-307X/28/10/107701

    Article  CAS  ADS  Google Scholar 

  39. Lu M-M, Yuan J, Wen B, Liu J, Cao W-Q, Cao M-S (2013) Carbon materials with quasi-graphene layers: the dielectric, percolation properties and the electronic transport mechanism. Chinese Physics B 22:037701. https://doi.org/10.1088/1674-1056/22/3/037701

    Article  CAS  ADS  Google Scholar 

  40. Kashi S, Gupta RK, Kao N, Hadigheh SA, Bhattacharya SN (2018) Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices. J Mater Sci Technol 34:1026–1034. https://doi.org/10.1016/j.jmst.2017.10.013

    Article  CAS  Google Scholar 

  41. Salmoria GV, Ahrens CH, Villamizar FAY, Sabino Netto AC (2008) Influência do Desempenho Térmico de Moldes Fabricados com Compósito Epóxi/Alumínio nas Propriedades de PP Moldado por Injeção. Polímeros: Ciência e Tecnologia 18:262–269. https://doi.org/10.1590/S0104-14282008000300013

    Article  CAS  Google Scholar 

  42. Wang CY, Chuang SS (2004) Influence of crystallinity and morphology on the mechanical properties of polylactides. Polymer 45:5161–5169. https://doi.org/10.1590/1980-5373-MR-2015-0453

    Article  Google Scholar 

  43. Camargo JC, Machado AR, Almeida ER, Silva EFMS (2019) Mechanical properties of PLA-graphene filament for FDM 3D printing. Int J Adv Manuf Technol 103:2423–2443. https://doi.org/10.1007/s00170-019-03532-5

    Article  Google Scholar 

  44. Camargo JC, Machado AR, Almeida EC, Almeida VHM (2022) Mechanical and electrical behavior of ABS polymer reinforced with graphene manufactured by the FDM process. Int J Adv Manuf Technol 119:1019–1033. https://doi.org/10.1007/s00170-021-08288-5

    Article  Google Scholar 

  45. Paydayesh A, Azar AA, Arani AJ (2015) Investigation the effect of graphene on the morphology, mechanical and thermal properties of PLA/PMMA blends. Ciência e Natura 37:15–22

    Article  Google Scholar 

  46. Chen J, Jiang S, Gao Y, Sun F (2018) Reducing volumetric shrinkage of photopolymerizable materials using reversible disulfide-bond reactions. J Mater Sci 53:16169–16181. https://doi.org/10.1007/s10853-018-2778-2

    Article  CAS  ADS  Google Scholar 

  47. Moreno AJD, Freire PTC, Guedes I, Melo FEA, Mendes-Filho J, Sanjurjo JA (1999) Raman scattering studies of monohydrated L-asparagine. Braz J Phys 29:380–387. https://doi.org/10.1590/S0103-97331999000200019

    Article  CAS  ADS  Google Scholar 

  48. Cuiffo MA, Snyder J, Elliott AM, Romero N, Kannan S, Halada GP (2017) Impact of the fused deposition (FDM) printing process on polylactic acid (PLA) chemistry and structure. Appl Sci 7:579. https://doi.org/10.3390/app7060579

    Article  CAS  Google Scholar 

  49. Yuniarto K, Purwanto YA, Purwanto S, Welt BA, Purwadaria HK, Sunarti TC (2016) Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. AIP Conf Proc 1725:020101. https://doi.org/10.1063/1.4945555

    Article  Google Scholar 

  50. López-Díaz D, Delgado-Notario JA, Clericò V, Diez E, Merchán MD, Velázquez MM (2020) Towards understanding the Raman spectrum of graphene oxide: the effect of the chemical composition. Coatings 10:524. https://doi.org/10.3390/coatings10060524

    Article  CAS  Google Scholar 

  51. Rabelo LH, Munhoz RA, Marinib J, Maestrelli SC (2022) Development and characterization of PLA composites with high contents of a Brazilian refractory clay and improved fire performance. Mater Res 25:e20210444. https://doi.org/10.1590/1980-5373-MR-2021-0444

    Article  CAS  Google Scholar 

  52. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2014) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6:93–104. https://doi.org/10.3390/polym6010093

    Article  CAS  Google Scholar 

  53. Santana L, Alves JL, Netto ACS, Merlini C (2018) Estudo comparativo entre PETG e PLA para Impressão 3D através de caracterização térmica, química e mecânica. Revista Matéria 23:e12267. https://doi.org/10.1590/S1517-707620180004.0601

    Article  Google Scholar 

  54. Sánchez-Rodríguez C, Avilés M-D, Pamies R, Carrión-Vilches F-J, Sanes J, Bermúdez M-D (2021) Extruded PLA nanocomposites modified by graphene oxide and ionic liquid. Polymers 13:655. https://doi.org/10.3390/polym13040655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alfaro MEC, Stares SL, Barra GMO, Hotza D (2022) Effects of accelerated weathering on properties of 3D-printed PLA scaffolds. Mater Today Commun 33:104821. https://doi.org/10.1016/j.mtcomm.2022.104821

    Article  CAS  Google Scholar 

  56. Choksi N, Desa H (2017) Synthesis of biodegradable polylactic acid polymer by using lactic acid monomer. Int J Appl Chem 13:377–384

    Google Scholar 

  57. Viskadourakis Z, Perrakis G, Symeou E, Giapintzakis J, Kenanakis K (2019) Transport properties of 3D-printed polymer nanocomposites for potential thermoelectric applications. Applied Physics A 125:159. https://doi.org/10.1007/s00339-019-2469-0

    Article  CAS  Google Scholar 

  58. Keramati M, Ghasemi I, Karrabi M, Azizi H, Sabzi M (2016) Incorporation of surface modified graphene nanoplatelets for development of shape memory PLA nanocomposite. Fibers Polym 17:1062–1068. https://doi.org/10.1007/s12221-016-6329-7

    Article  CAS  Google Scholar 

  59. Matos BDM, Rocha V, da Silva EJ et al (2019) Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. J Therm Anal Calorim 137:555–562. https://doi.org/10.1007/s10973-018-7967-3

    Article  CAS  Google Scholar 

  60. Vyavahare O, Ng D, Hsu SL (2014) Analysis of structural rearrangements of poly(lactic acid) in the presence of water. J Phys Chem B 118:4185–4193. https://doi.org/10.1021/jp500219j

    Article  CAS  PubMed  Google Scholar 

  61. Na B, Zou S, Lv R, Luo M, Pan H, Yin Q (2011) Unusual cold crystallization behavior in physically aged poly(l-lactide). J Phys Chem B 115:10844–10848. https://doi.org/10.1021/jp2060816

    Article  CAS  PubMed  Google Scholar 

  62. Pluta M, Galeski A, Alexandre M, Paul M-A, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci 86:1497–1506. https://doi.org/10.1002/app.11309

    Article  CAS  Google Scholar 

  63. Shanshan L, Jiyou G, Jun C, Haiyan T, Yanhua Z (2015) Effect of annealing on the thermal properties of poly (lactic acid)/starch blends. Int J Biol Macromol 74:297–303. https://doi.org/10.1016/j.ijbiomac.2014.12.022

    Article  CAS  Google Scholar 

  64. Rahman M, Brazel CS (2018) The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Progr Polym Sci(Oxford) 29(2004):1223–1248. https://doi.org/10.1016/j.progpolymsci.2004.10.001

    Article  CAS  Google Scholar 

  65. Mojtaba S, Hamzeh S (2022) The study of mechanical, thermal, and antibacterial properties of pla/graphene oxide/tio2 hybrid nanocomposites. Iran J Chem Chem Eng 41:7999–7807

    Google Scholar 

  66. Mothé CG, Azevedo AD (2009) Análise Térmica de Materiais. Artliber, São Paulo

    Google Scholar 

  67. Srithep Y, Nealey P, Turng L (2013) Effects of annealing time and temperature on the crystallinity and heat resistance behaviour of injection-molded poly(lactic acid). Polym Eng Sci 53:580–588. https://doi.org/10.1002/pen.23304

    Article  CAS  Google Scholar 

  68. Teixeira S, Eblagon KM, Miranda FR, Pereira MF, Figueiredo JL (2021) Towards controlled degradation of poly(lactic) acid in technical applications. J Carb Res 7:42. https://doi.org/10.3390/c7020042

    Article  CAS  Google Scholar 

  69. Zambiazi PJ, Moraes ATN, de Kogachi RR, Aparecido GO, Formiga ALB, Bonacin JA (2020) Performance of water oxidation by 3D-printed electrodes modified by Prussian blue analogues. J Braz Chem Soc 31:1–12. https://doi.org/10.21577/0103-5053.20200088

    Article  CAS  Google Scholar 

  70. Kim H, Lee S (2020) Characterization of electrical heating of graphene/PLA honeycomb structure composite manufactured by CFDM 3D printer. Fashion Text 7:1–18. https://doi.org/10.1186/s40691-020-0204-2

    Article  Google Scholar 

  71. Kim M, Jeong JH, Lee J-Y, Capasso A, Bonaccorso F, Kang S-H, Lee Y-K, Lee G-H (2019) Electrically conducting and mechanically strong graphene− polylactic acid composites for 3D printing. ACS Appl Mater Interfaces 11:11841–11848. https://doi.org/10.1021/acsami.9b03241

    Article  CAS  PubMed  Google Scholar 

  72. Spinelli G, Kotsilkova R, Ivanov E, Petrova-Doycheva I, Menseidov D, Georgiev V, Di Maio R, Silvestre C (2020) Effects of filament extrusion, 3D printing and hot-pressing on electrical and tensile properties of poly(lactic) acid composites filled with carbon nanotubes and graphene. Nanomaterials 10:35. https://doi.org/10.3390/nano10010035

    Article  CAS  Google Scholar 

  73. Thomas D (2021) Enhancing the electrical and mechanical properties of graphene nanoplatelet composites for 3D-printed microsatellite structures. Addit Manuf 47:102215. https://doi.org/10.1016/j.addma.2021.102215

    Article  CAS  Google Scholar 

  74. Garcia A, Spim JA, Santos CA (2012) Ensaios dos Materiais, 2ND edn. Editora LTC, Rio de Janeiro

    Google Scholar 

  75. He H, Tay TE, Wang Z, Duan Z (2019) The strengthening of woven jute fiber/polylactide biocomposite without loss of ductility using rigid core–soft shell nanoparticles. J Mater Sci 54:4984–4996. https://doi.org/10.1007/s10853-018-03206-9

    Article  CAS  ADS  Google Scholar 

  76. Takayama T, Todo M, Tsuji H (2011) Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends. J Mech Behav Biomed Mater 4:255–260. https://doi.org/10.1016/j.jmbbm.2010.10.003

    Article  PubMed  Google Scholar 

  77. Wang X, Zhao L, Fuh JYH, Lee HP (2019) Effect of porosity on mechanical properties of 3D-printed polymers: experiments and micromechanical modeling based on X-ray computed tomography analysis. Polymers 11:1154. https://doi.org/10.3390/polym11071154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mousavi SR, Nejad SF, Jafari M, Paydayesh A (2021) Polypropylene/ethylene propylene diene monomer/cellulose nanocrystal ternary blend nanocomposites: effects of different parameters on mechanical, rheological, and thermal properties. Polym Compos 42:4187–4198. https://doi.org/10.1002/pen.25315

    Article  CAS  Google Scholar 

  79. Jacob GC, Starbuck JM, Fellers JF, Simunovic S, Boeman GR (2005) The effect of loading rate on the fracture toughness of fiber reinforced polymer composites. J Appl Polym Sci 96:899–904. https://doi.org/10.1002/app.21535

    Article  CAS  Google Scholar 

  80. Vidakis N, Petousis M, Savvakis K, Maniadi A, Koudoumas E (2019) A comprehensive investigation of the mechanical behavior and the dielectrics of pure polylactic acid (PLA) and PLA graphene (GnP) in fused deposition modeling (FDM). Int J Plast Technol 23:195–206. https://doi.org/10.1007/s12588-019-09248-1

    Article  CAS  Google Scholar 

  81. Chacón JM, Caminero MA, García-Plaza E, Núñez PJ (2017) Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157. https://doi.org/10.1016/j.matdes.2017.03.065

    Article  CAS  Google Scholar 

  82. Lanzotti A, Grasso M, Staiano G, Martorelli M (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 21:604–617. https://doi.org/10.1108/RPJ-09-2014-0135

    Article  Google Scholar 

  83. Zhang D, Chi B, Li B, Gao Z, Du Y, Guo J, Wei J (2016) Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth Met 217:79–86. https://doi.org/10.1016/j.synthmet.2016.03.014

    Article  CAS  Google Scholar 

  84. Arifvianto B, Wirawan YB, Salim UA, Suyitno S, Mahardika M (2021) Effects of extruder temperatures and raster orientations on mechanical properties of the FFF-processed polylactic-acid (PLA) material. Rapid Prototyp J 27:1761–1775. https://doi.org/10.1108/RPJ-10-2019-0270

    Article  Google Scholar 

  85. Perez ART, Roberson DA, Wicker RB (2014) Fracture surface analysis of 3Dprinted tensile specimens of novel ABS-based materials. J Fail Anal Prev 14:343–353. https://doi.org/10.1007/s11668-014-9803-9

    Article  Google Scholar 

  86. Ziemian S, Okwara M, Ziemian CW (2015) Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp J 21:270–278. https://doi.org/10.1108/RPJ-09-2013-0086

    Article  Google Scholar 

  87. Thota S (2019) A study of the effect of heat treatment on 3D-printed PLA impact strength. Thesis. South Dakota State University

    Google Scholar 

  88. Hamma A, Kaci M, Mohd Ishak ZA, Pegoretti A (2014) Starch-grafted-polypropylene/kenaf fibres composites. Part 1: Mechanical performances and viscoelastic behavior. Compos A: Appl Sci Manuf 56:328–335. https://doi.org/10.1016/j.compositesa.2012.11.010

    Article  CAS  Google Scholar 

  89. Ramesh M, Panneerselvam K (2020) PLA-based material design and investigation of its properties by FDM. In: Shunmugam M, Kanthababu M (eds) Advances in Additive Manufacturing and Joining, Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9433-2_20

    Chapter  Google Scholar 

  90. Butt J, Bhaskar R, Mohaghegh V (2022) Non-destructive and destructive testing to analyse the effects of processing parameters on the tensile and flexural properties of FFF-printed graphene-enhanced PLA. J Compos Sci 6:148. https://doi.org/10.3390/jcs6050148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fozit Soluções em Tecnologia LTDA for the donation of the materials used in this study and for conducting the 3D printing of the specimens. We also extend our gratitude to the Laboratories of Product and Process Development and Innovation (LADIPP) and Physical Metallurgy, both affiliated with the Department of Mechanical Engineering at UFSM, for conducting the mechanical characterizations. Additionally, we thank the Laboratory of Environmental Processes (LAPAM) and the Analytical Central (CADEQ), both affiliated with the Department of Chemical Engineering at UFSM, for performing the chemical and thermal characterizations. Our appreciation also goes to Professor Sailer Santos dos Santos from the Laboratory of Inorganic Materials (LMI) at the Department of Chemistry at UFSM for conducting the Raman spectroscopy characterizations.

Funding

Professor C.J. Scheuer acknowledges support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) through Grant No. 309675/2022-7.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. JJJ was responsible for printing the samples. JL conducted the characterization of the printed samples and analyzed the results, with assistance from AAB and CJS. JRFdS assisted in conducting the mechanical tests. The initial draft of the manuscript was written by CJS, and all authors provided feedback on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cristiano José Scheuer.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liesenfeld, J., Jablonski, J.J., da Silva, J.R.F. et al. Exploring the influence of graphene incorporation on the characteristics of 3D-printed PLA. Int J Adv Manuf Technol 130, 5813–5835 (2024). https://doi.org/10.1007/s00170-024-13032-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13032-w

Keywords

Navigation