Skip to main content
Log in

Assessment of performance parameters in intermittent turning and multi-response optimization of machining conditions using DF, MOORA, VIKOR, and coupled NSGAII-VIKOR methods

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study aims to assess the influence of different machining factors (Vc, f, ap, and r) during intermittent turning of cold work tool steel (AISI D3). Eight output parameters were examined, namely surface roughness (Ra), cutting force (Fz), motor power (Pm), flank wear (VB), cutting temperature (Ct), material removal rate (MRR), tangential vibration (Az), and sound intensity (Lp). A statistical study based on ANOVA was conducted to quantify the effects of cutting factors on output parameters. The results revealed that (Vc) has a predominant influence on outputs (Pm, VB, Ct, and Lp), with respective contributions of 40.37%, 66.44%, 29.72%, and 47.64%. Additionally, the factor (ap) was identified as the dominant factor for (Fz and Az), with contributions of 51.82% and 74.07%. Finally, the factor (f) is most significant for (Ra), with a contribution of 57.86%. The application of Response Surface Methodology (RSM) allowed for the development of accurate mathematical models to predict these outputs, characterized by a determination coefficient exceeding 92.28%. Ultimately, four multi-objective optimization approaches, namely DF, MOORA, VIKOR, and NSGAII coupled with VIKOR, were used to determine the optimal combination of cutting conditions. These four methods were examined and compared. The results indicate that the DF approach offers the best combination of parameters: r = 1.29 mm, Vc = 240 m/min, f = 0.1 mm/rev, and ap = 0.689 mm, leading to the minimization of six outputs (Ra, Pm, Ct, VB, Fz, and Lp) with respective values of 0.825 µm, 3282.085 Watt, 0.066 mm, 211.683 °C, 82.837 N, and 108.158 dB. On the other hand, the MOORA approach favors the minimization of vibrations (Az), with a value of 15.01 m/s2, while VIKOR presented five outputs (Pm, VB, Ct, MRR, and Lp) superior to the MOORA approach. Finally, the NSGAII approach coupled with VIKOR exhibited the best productivity value (MRR) with a rate of 405.636 mm3/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Included in the manuscript.

Code availability

Not applicable.

Abbreviations

AISI:

American Iron and Steel Institute

ANOVA:

Analysis of variance

ap:

Depth of cut (mm)

Az:

Tangential vibration

Cont %:

Percentage contribution

Ct:

Cutting temperature

CT:

Continuous turning

CVD:

Chemical vapor deposition

DF:

Desirability function

f:

Feed rate (mm/rev)

Fz :

Tangential cutting force (N)

DIFF %:

Percentage of difference

IT:

Intermittent turning

Lp:

Sound intensity

MOORA:

Multi-Objective Optimization by Ratio Analysis

MRR:

Material removal rate (mm3/s)

NSGA II:

Non-dominated Sorting Genetic Algorithm II

Pm:

Motor power (Watt)

r:

Tool nose radius (mm)

Ra:

Arithmetic mean roughness (µm)

RSM:

Response surface methodology

VB :

Flank wear

Vc:

Cutting speed (m/min)

VIKOR:

Optimization and Compromise Solution (Vlse Kriterijumska Optimizacija Kompromisno Resenje)

References

  1. Rubio EM, Villeta M, de Agustina B, Carou D (2014) Surface roughness analysis of magnesium pieces obtained by intermittent turning. Mater Sci Forum 773:377–391. https://doi.org/10.4028/www.scientific.net/MSF.773-774.377. (Trans Tech Publ)

    Article  Google Scholar 

  2. Carou D, Rubio EM, Lauro CH, Brandão LC, Davim JP (2017) Study based on sound monitoring as a means for superficial quality control in intermittent turning of magnesium workpieces. Procedia Cirp 62:262–268. https://doi.org/10.1016/j.procir.2016.06.061

    Article  Google Scholar 

  3. Ko T, Kim H (2001) Surface integrity and machineability in intermittent hard turning. Int J Adv Manuf Technol 18:168–175. https://doi.org/10.1007/s001700170072

    Article  Google Scholar 

  4. Liu HL, Lv X, Huang CZ, Yin ZB, Zou B, Zhu HT (2011) Tools optimization in efficient intermittent cutting of 2.25 Cr1Mo0. 25V steel. Adv Mater Res 188:469–474. https://doi.org/10.4028/www.scientific.net/AMR.188.469. (Trans Tech Publ)

    Article  CAS  Google Scholar 

  5. Liu HL, Lv X, Huang CZ, Zhu HT (2012) Experimental study on intermittent turning 2.25 Cr-1Mo-0.25 V steel with coated cemented carbide tool. Adv Mater Res 500:128–133. https://doi.org/10.4028/www.scientific.net/AMR.500.128. (Trans Tech Publ)

    Article  CAS  Google Scholar 

  6. Carou D, Rubio E, Lauro C, Davim J (2016) The effect of minimum quantity lubrication in the intermittent turning of magnesium based on vibration signals. Measurement 94:338–343. https://doi.org/10.1016/j.measurement.2016.08.016

    Article  ADS  Google Scholar 

  7. Gong F, Zhao J, Pang J (2017) Evolution of cutting forces and tool failure mechanisms in intermittent turning of hardened steel with ceramic tool. Int J Adv Manuf Technol 89:1603–1613. https://doi.org/10.1007/s00170-016-9178-z

    Article  Google Scholar 

  8. Cui X, Guo J (2018) Identification of the optimum cutting parameters in intermittent hard turning with specific cutting energy, damage equivalent stress, and surface roughness considered. Int J Adv Manuf Technol 96:4281–4293. https://doi.org/10.1007/s00170-018-1885-1

    Article  Google Scholar 

  9. Kudryashov E, Smirnov I, Yatsun E, Khizhnyak N (2019) Stabilizing tool for intermittent turning of complex surfaces. Russ Eng Res 39:141–146. https://doi.org/10.3103/S1068798X19020199

    Article  Google Scholar 

  10. Nayak M, Sehgal R, Kumar R (2021) Investigating machinability of AISI D6 tool steel using CBN tools during hard turning. Mater Today: Proceedings 47:3960–3965. https://doi.org/10.1016/j.matpr.2021.04.020

    Article  CAS  Google Scholar 

  11. Khelfaoui F, Yallese MA, Boucherit S, Boumaaza H, Ouelaa N (2023) Minimizing tool wear, cutting temperature and surface roughness in the intermittent turning of AISI D3 steel using the DF and GRA method. Tribol Ind 44(1):89

    Article  Google Scholar 

  12. Yip WS, To S (2020) Sustainable ultra-precision machining of titanium alloy using intermittent cutting. Int J Precis Eng Manuf-Green Tech 7:361–373. https://doi.org/10.1007/s40684-019-00078-5

    Article  Google Scholar 

  13. Saini A, Jayal AD (2022) A numerical model for tool–chip friction in intermittent orthogonal machining. J Micromanuf 5(1):36–45

    Article  Google Scholar 

  14. Yu W, Ming W, An Q, Chen M (2021) Cutting performance and wear mechanism of honeycombceramictools in interruptedcutting of nickel-basedsuperalloys. Ceram Int 47(13):18075–18083

    Article  CAS  Google Scholar 

  15. Mohanta DK, Sahoo B, Mohanty AM (2023) Optimization of process parameter in AI7075 turning using grey relational, desirability function and metaheuristics. Mater Manuf Process: 1–11. https://doi.org/10.15282/jmes.17.2.2023.8.0752

  16. Cherfia A, Nouioua M (2023) Monitoring and optimization of machining process when turning of AISI316L based on response surface methodology artificial neural network and desirability function. https://doi.org/10.21203/rs.3.rs-2463873/v1

  17. Mahapatra S, Das A, Jena PC, Das SR (2023) Turning of hardened AISI H13 steel with recently developed S3P-AlTiSiN coated carbide tool using MWCNT mixed nanofluid under minimum quantity lubrication. Proc Inst Mech Eng Part C: J Mech Eng Sci 237(4):843–864. https://doi.org/10.1177/09544062221126357

    Article  CAS  Google Scholar 

  18. Hadjela S, Belhadi S, Ouelaa N, Safi K, Yallese MA (2023) Straight turning optimization of low alloy steel using MCDM methods coupled with Taguchi approach. Int J Adv Manuf Technol 124(5–6):1607–1621. https://doi.org/10.1007/s00170-022-10584-7

    Article  Google Scholar 

  19. Kalita K, Madhu S, Ramachandran M, Chakraborty S, Ghadai RK (2023) Experimental investigation and parametric optimization of a milling process using multi-criteria decision making methods: a comparative analysis. Int J Interact Des Manuf (IJIDeM) 17(1):453–467. https://doi.org/10.1007/s12008-022-00973-3

    Article  Google Scholar 

  20. Nguyen T, Pham V-H (2023) Investigation and optimization of parameters in face milling of s50c steel under mql system. J Appl Eng Sci 21(1):94–107. https://doi.org/10.5937/jaes0-38857

    Article  Google Scholar 

  21. Ingle S, Raut D (2023) Evaluation of tool wears mechanism considering machining parameters and performance parameters for titanium alloy in turning operation on CNC. Adv Mater Process Technol: 1–21. https://doi.org/10.1080/2374068X.2023.2189682

  22. Chowdhury SR, Das PP, Chakraborty S (2023) Optimization of CNC turning of aluminium 6082–T6 alloy using fuzzy multi-criteria decision making methods: a comparative study. Int J Interact Des Manuf (IJIDeM) 17(3):1047–1066. https://doi.org/10.1007/s12008-022-01049-y

    Article  Google Scholar 

  23. Ingle SV, Raut DN (2023) Performance evaluation of process parameters using MCDM methods for Titanium Alloy (Ti6al4v) in turning operation. Aust J Mech Eng: 1–15. https://doi.org/10.1080/14484846.2023.2203886

  24. Saatçi E, Yapan YF, Uysal MU, Uysal A (2023) Orthogonal turning of AISI 310S austenitic stainless steel under hybrid nanofluid-assisted MQL and a sustainability optimization using NSGA-II and TOPSIS. Sustain Mater Technol 36:e00628. https://doi.org/10.1016/j.susmat.2023.e00628

    Article  CAS  Google Scholar 

  25. Oussama B, Yapan YF, Uysal A, Abdelhakim C, Mourad N (2023) Assessment of turning AISI 316L stainless steel under MWCNT-reinforced nanofluid-assisted MQL and optimization of process parameters by NSGA-II and TOPSIS. Int J Adv Manuf Technol: 1–14. https://doi.org/10.1007/s00170-023-11747-w

  26. Bohat M, Sharma N (2023) Investigation of parameters and morphology of coated WC tool while machining X-750 using NSGA-II. Eng Res Express 5(2):025052. https://doi.org/10.1088/2631-8695/acd67a

    Article  ADS  Google Scholar 

  27. Safi K, Yallese MA, Belhadi S, Mabrouki T, Chihaoui S (2022) Parametric study and multi-criteria optimization during turning of X210Cr12 steel using the desirability function and hybrid Taguchi-WASPAS method. Proc Inst Mech Eng Part C: J Mech Eng Sci 236(15):8401–8420. https://doi.org/10.1177/09544062221086171

    Article  CAS  Google Scholar 

  28. Yallese M, Rigal J, Chaoui K, Boulanouar L (2005) The effects of cutting conditions on mixed ceramic and cubic boron nitride tool wear and on surface roughness during machining of X200Cr12 steel (60 HRC). Proc Inst Mech Eng Part B: J Eng Manuf 219(1):35–55. https://doi.org/10.1243/095440505X8082

    Article  CAS  Google Scholar 

  29. Haoues S, Yallese MA, Belhadi S, Chihaoui S, Uysal A (2023) Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI. MABAC, and MAIRCA) methods: a comparative study. Int J Adv Manuf Technol 124(7–8):2401–2421. https://doi.org/10.1007/s00170-022-10583-8

    Article  Google Scholar 

  30. Bhushan RK (2023) Minimising tool wear by optimisation (ANOVA) of cutting parameters in machining of 7075Al Alloy SiC particle composite. Aust J Mech Eng 21(2):499–517. https://doi.org/10.1080/14484846.2021.1873068

    Article  Google Scholar 

  31. Carou D, Rubio E, Lauro C, Davim J (2014) Experimental investigation on surface finish during intermittent turning of UNS M11917 magnesium alloy under dry and near dry machining conditions. Measurement 56:136–154. https://doi.org/10.1016/j.measurement.2014.06.020

    Article  ADS  Google Scholar 

  32. Camposeco-Negrete C (2013) Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. J Clean Prod 53:195–203. https://doi.org/10.1016/j.jclepro.2013.03.049

    Article  CAS  Google Scholar 

  33. Kant G, Sangwan KS (2014) Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining. J Clean Prod 83:151–164. https://doi.org/10.1016/j.jclepro.2014.07.073

    Article  Google Scholar 

  34. Safi K, Yallese MA, Belhadi S, Mabrouki T, Laouissi A (2022) Tool wear. 3D surface topography, and comparative analysis of GRA, MOORA, DEAR, and WASPAS optimization techniques in turning of cold work tool steel. Int J Adv Manuf Technol 121(1–2):701–721. https://doi.org/10.1007/s00170-022-09326-6

    Article  Google Scholar 

  35. Abbas AT, Al-Abduljabbar AA, El Rayes MM, Benyahia F, Abdelgaliel IH, Elkaseer A (2023) Multi-objective optimization of performance indicators in turning of AISI 1045 under dry cutting conditions. Metals 13(1):96. https://doi.org/10.3390/met13010096

    Article  CAS  Google Scholar 

  36. Guimarães B et al (2023) Real-time cutting temperature measurement in turning of AISI 1045 steel through an embedded thermocouple—a comparative study with infrared thermography. J Manufact Mater Process 7(1):50. https://doi.org/10.3390/jmmp7010050

    Article  CAS  Google Scholar 

  37. Demirpolat H, Binali R, Patange AD, Pardeshi SS, Gnanasekaran S (2023) Comparison of tool wear, surface roughness, cutting forces, tool tip temperature, and chip shape during sustainable turning of bearing steel. Materials 16(12):4408. https://doi.org/10.3390/ma16124408

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Cui XB, Zhao J, Zhou YH, Pei Z (2012) Cutting forces and tool wear in intermittent turning processes with Al2O3-based ceramic tools. Key Eng Mater 499:205–210. https://doi.org/10.4028/www.scientific.net/KEM.499.205. (Trans Tech Publ)

    Article  CAS  Google Scholar 

  39. Ni X, Zhao J, Wang F, Gong F, Zhong X, Tao H (2018) Failure analysis of ceramic tool in intermittent turning of hardened steel. Proc Inst Mech Eng Part B: J Eng Manuf 232(12):2140–2153. https://doi.org/10.1177/0954405416684156

    Article  CAS  Google Scholar 

  40. Şahinoğlu A, Rafighi M (2020) Investigation of vibration, sound intensity, machine current and surface roughness values of AISI 4140 during machining on the lathe. Arab J Sci Eng 45:765–778. https://doi.org/10.1007/s13369-019-04124-x

    Article  CAS  Google Scholar 

  41. Hessainia Z, Belbah A, Yallese MA, Mabrouki T, Rigal J-F (2013) On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46(5):1671–1681. https://doi.org/10.1016/j.measurement.2012.12.016

    Article  ADS  Google Scholar 

  42. Şahinoğlu A, Rafighi M, Kumar R (2022) An investigation on cutting sound effect on power consumption and surface roughness in CBN tool-assisted hard turning. Proc Inst Mech Eng Part E: J Process Mech Eng 236(3):1096–1108. https://doi.org/10.1177/09544089211058021

    Article  CAS  Google Scholar 

  43. Rafighi M, Özdemir M, Şahinoğlu A, Kumar R, Das SR (2022) Experimental assessment and topsis optimization of cutting force, surface roughness, and sound intensity in hard turning of AISI 52100 steel. Surf Rev Lett 29(11):2250150. https://doi.org/10.1142/S0218625X22501505

    Article  CAS  ADS  Google Scholar 

  44. Gurusamy M, Sriram S (2023) Investigations on the choice of Johnson-Cook constitutive model parameters for the orthogonal cutting simulation of inconel 718. J Adv Manuf Syst 22(01):1–25. https://doi.org/10.1142/S0219686723500014

    Article  Google Scholar 

  45. Özden G, Öteyaka MÖ, Cabrera FM (2023) Modeling of cutting parameters in turning of PEEK composite using artificial neural networks and adaptive-neural fuzzy inference systems. J Thermoplast Compos Mater 36(2):493–509. https://doi.org/10.1177/08927057211013070

    Article  CAS  Google Scholar 

  46. Li R, He C, Xu W, Wang X (2023) Modeling and optimizing the specific cutting energy of medium density fiberboard during the helical up-milling process. Wood Mater Sci Eng 18(2):464–471. https://doi.org/10.1080/17480272.2022.2049867

    Article  CAS  Google Scholar 

  47. Aman A, Bhardwaj R, Gahlot P, Phanden RK (2023) Selection of cutting tool for desired surface finish in milling Machine using Taguchi optimization methodology. Mater Today: Proc 78:444–448. https://doi.org/10.1016/j.matpr.2022.10.253

    Article  CAS  Google Scholar 

  48. Lakshmanan S, Kumar MP, Dhananchezian M (2023) Optimization of turning parameter on surface roughness. cutting force and temperature through TOPSIS. Mater Today: Proc 72:2231–2237. https://doi.org/10.1016/j.matpr.2022.09.209

    Article  Google Scholar 

  49. Bhirud N, Dube A, Patil AS, Bhole KS (2023) Multi-objective optimization of cutting parameters and helix angle for temperature rise and surface roughness using response surface methodology and desirability approach for Al 7075. Int J Interact Des Manuf (IJIDeM): 1–20. https://doi.org/10.1007/s12008-023-01285-w

  50. Nguyen A-T, Nguyen V-H, Le T-T, Nguyen N-T (2023) A hybridization of machine learning and NSGA-II for multi-objective optimization of surface roughness and cutting force in AISI 4340 alloy steel turning. J Mach Eng 23. https://doi.org/10.36897/jme/160172

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by KHELFAOUI Fethi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fethi Khelfaoui.

Ethics declarations

Ethics approval

I certify that the paper follows the guidelines stated in the journal’s “Ethical Responsibilities of Authors.”

Consent to participate

Not applicable.

Consent for publication

The authors authorizes the publication of the manuscript.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Conflicts of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelfaoui, F., Yallese, M.A., Boucherit, S. et al. Assessment of performance parameters in intermittent turning and multi-response optimization of machining conditions using DF, MOORA, VIKOR, and coupled NSGAII-VIKOR methods. Int J Adv Manuf Technol 130, 5665–5691 (2024). https://doi.org/10.1007/s00170-024-12979-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-12979-0

Keywords

Navigation