Skip to main content
Log in

Integrated non-cyclical preventive maintenance scheduling and production planning for multi-parallel component production systems with interdependencies-induced degradation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Integrating preventive maintenance (PM) scheduling and production planning efficiently remains challenging for researchers and practitioners alike, owing to complex component interdependencies. Existing studies often lack practicality due to oversimplified assumptions. In this paper, we propose a two-stage solution for the integrated PM scheduling and production planning problem within multi-parallel component manufacturing systems, accounting for diverse interdependencies. These interdependencies encompass stochastic, structural, economic, and resource-related interdependencies, all while accounting for the resultant degradation. The primary objective is jointly optimizing costs associated with holding, backorders, production, setup, and maintenance. Initially, we employ an Ordinary Differential System to compute a realistic production capacity. Additionally, we analyze the effects of interdependence-induced degradation on system availability and failures. Subsequently, we formulate the problem as an integer programming model to determine an optimal joint plan. The effectiveness of our approach is validated through numerical examples and sensitivity analysis, providing insightful guidance for efficient PM scheduling and production planning, particularly in large-scale production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Weinstein L, Chung CH (1999) Integrating maintenance and production decisions in a hierarchical production planning environment. Comput Oper Res 26(10–11):1059–1074. https://doi.org/10.1016/S0305-0548(99)00022-2

    Article  Google Scholar 

  2. Keizer MCO, Flapper SDP, Teunter RH (2017) Condition-based maintenance policies for systems with multiple dependent components: A review. Eur J Oper Res 261(2):405–420. https://doi.org/10.1016/j.ejor.2017.02.044

    Article  MathSciNet  Google Scholar 

  3. Bahou Z, Krimi Lemnaouar MRI (2023) A dynamic availability analysis of an N-component production system with interdependency effects: a fractional-order approach. Prod Eng Res Devel. https://doi.org/10.1007/s11740-023-01216-4

  4. Xu M, Jin X, Kamarthi S, Noor-E-Alam M (2018) A failure-dependency modeling and state discretization approach for condition-based maintenance optimization of multi-component systems. J Manuf Syst 47:141–152. https://doi.org/10.1016/j.jmsy.2018.04.018

    Article  Google Scholar 

  5. Van Horenbeek A, Pintelon L (2013) A dynamic predictive maintenance policy for complex multi-component systems. Reliab Eng & Syst Saf 120:39–50. https://doi.org/10.1016/j.ress.2013.02.029

    Article  Google Scholar 

  6. Haimes YY (2018) Modeling and managing interdependent complex systems of systems. John Wiley & Sons

  7. Dinh DH, Do P, Iung B (2020) Degradation modeling and reliability assessment for a multi-component system with structural dependence. Comput & Ind Eng 144:106443. https://doi.org/10.1016/j.cie.2020.106443

    Article  Google Scholar 

  8. Taji J, Farughi H, Rasay H (2022) A new approach to preventive maintenance planning considering non-failure stops and failure interdependence between components. Adv Ind Eng 56(2):231–249. https://doi.org/10.22059/aie.2022.344909.1843

  9. Keedy E, Feng Q (2013) Reliability analysis and customized preventive maintenance policies for stents with stochastic-dependent competing risk processes. IEEE Trans Reliab 62(4):887–897. https://doi.org/10.1109/TR.2013.2285045

    Article  Google Scholar 

  10. Igba J, Alemzadeh K, Henningsen K, Durugbo C (2015) Effect of preventive maintenance intervals on reliability and maintenance costs of wind turbine gearboxes. Wind Energy 18(11):2013–2024. https://doi.org/10.1002/we.1801

    Article  Google Scholar 

  11. Shahin A, Labib A, Emami S, Karbasian M (2018) Improving Decision-Making Grid based on interdependence among failures with a case study in the steel industry. The TQM J 31(2):167–182. https://doi.org/10.1108/TQM-03-2018-0043

    Article  Google Scholar 

  12. Kobbacy KA, Murthy DP, Nicolai RP, Dekker R (2008) Optimal maintenance of multi-component systems: a review, pp 263–286. Springer, London. https://doi.org/10.1007/978-1-84800-011-7_11

  13. Wildeman RE, Dekker R, Smit ACJM (1997) A dynamic policy for grouping maintenance activities. Eur J Oper Res 99(3):530–551. https://doi.org/10.1016/S0377-2217(97)00319-6

    Article  Google Scholar 

  14. Borkar S (2005) Designing reliable systems from unreliable components: the challenges of transistor variability and degradation. Ieee Micro 25(6):10–16. https://doi.org/10.1109/MM.2005.110

    Article  Google Scholar 

  15. Cadi AAE, Hachemi NE, Jamali MA, Artiba A, Rousseau LM (2022) An exact approach to the integration of non-cyclical preventive maintenance scheduling and production planning for a series-parallel production system. Int J Oper Res 44(3):401–414. https://doi.org/10.1504/IJOR.2022.124104

    Article  MathSciNet  Google Scholar 

  16. Gharoun H, Hamid M, Torabi SA (2022) An integrated approach to joint production planning and reliability-based multi-level preventive maintenance scheduling optimization for a deteriorating system considering due-date satisfaction. Int J Syst Sci Oper Logist 9(4):489–511. https://doi.org/10.1080/23302674.2021.1941394

    Article  Google Scholar 

  17. Merghem M, Haoues M, Mouss KN, Dahane M, Senoussi A (2023) Integrated production and maintenance planning in hybrid manufacturing-remanufacturing system with outsourcing opportunities. Procedia Comput Sci 217:1487–1496. https://doi.org/10.1016/j.procs.2022.12.348

    Article  Google Scholar 

  18. Bahou Z, Krimi I, Elhachemi N, El cadi AA (in press) Integrating non-cyclical preventive maintenance scheduling and production planning for a series-parallel production line with stochastic dependence. Int J Ind Syst Eng. https://doi.org/10.1504/IJISE.2022.10053547

  19. Aguilar H, García-Villoria A, Pastor R (2020) A survey of the parallel assembly lines balancing problem. Comput Oper Res 124:105061. https://doi.org/10.1016/j.cor.2020.105061

    Article  MathSciNet  Google Scholar 

  20. Xi W et al (2018) Type synthesis of coordinated multi-robot system based on parallel thought. Trans Can Soc Mech Eng 42(2):164–176. https://doi.org/10.1139/tcsme-2017-0053

    Article  Google Scholar 

  21. Yang H, Lu L, Zhou W (2007) A novel optimization sizing model for hybrid solar-wind power generation system. Solar Energy 81(1):76–84. https://doi.org/10.1016/j.solener.2006.06.010

    Article  Google Scholar 

  22. Chen Z, Turng LS (2005) A review of current developments in process and quality control for injection molding. Adv Polym Technol J Polym Process Inst 24(3):165–182. https://doi.org/10.1002/adv.20046

    Article  Google Scholar 

  23. Gackowiec P (2019) General overview of maintenance strategies-concepts and approaches. Multidisciplinary Aspects of Production Engineering 2(1):126–139. https://doi.org/10.2478/mape-2019-0013

    Article  Google Scholar 

  24. Liu X, Wang W, Zhang T, Zhai Q, Peng R, (2015) An integrated non-cyclical preventive maintenance and production planning model for a multi-product production system. In, (2015) IEEE International conference on industrial engineering and engineering management (IEEM), pp 494–498. IEEE. https://doi.org/10.1109/IEEM.2015.7385696

  25. DerakhshanHoreh S, Bijari M (2023) Integrated production and non-cyclical maintenance planning in flow-shop environment with limited buffer. Int J Ind Syst Eng 45(3):291–320. https://doi.org/10.1504/IJISE.2023.134718

    Article  Google Scholar 

  26. Xia T, Jin X, Xi L, Ni J (2015) Production-driven opportunistic maintenance for batch production based on MAM-APB scheduling. Eur J Oper Res 240(3):781–790. https://doi.org/10.1016/j.ejor.2014.08.004

    Article  MathSciNet  Google Scholar 

  27. Biel K, Glock CH (2016) Systematic literature review of decision support models for energy-efficient production planning. Comput & Ind Eng 101:243–259. https://doi.org/10.1016/j.cie.2016.08.021

    Article  Google Scholar 

  28. Allahverdi A (2015) The third comprehensive survey on scheduling problems with setup times/costs. Eur J Oper Res 246(2):345–378. https://doi.org/10.1016/j.ejor.2015.04.004

    Article  MathSciNet  Google Scholar 

  29. Allahverdi A (2016) A survey of scheduling problems with no-wait in process. Eur J Oper Res 255(3):665–686. https://doi.org/10.1016/j.ejor.2016.05.036

    Article  MathSciNet  Google Scholar 

  30. Carlson JG, Yao AC (2008) Simulating an agile, synchronized manufacturing system. Int J Prod Econ 112(2):714–722. https://doi.org/10.1016/j.ijpe.2007.06.008

    Article  Google Scholar 

  31. Ekin T (2018) Integrated maintenance and production planning with endogenous uncertain yield. Reliab Eng Syst Saf 179:52–61. https://doi.org/10.1016/j.ress.2017.07.011

    Article  Google Scholar 

  32. Glawar R, Karner M, Nemeth T, Matyas K, Sihn W (2018) An approach for the integration of anticipative maintenance strategies within a production planning and control model. Procedia CIRP 67:46–51. https://doi.org/10.1016/j.procir.2017.12.174

    Article  Google Scholar 

  33. Liu Y, Zhang Q, Ouyang Z, Huang HZ (2021) Integrated production planning and preventive maintenance scheduling for synchronized parallel machines. Reliab Eng Syst Saf 215:107869. https://doi.org/10.1016/j.ress.2021.107869

    Article  Google Scholar 

  34. Dehghan Shoorkand, H., Nourelfath, M., and Hajji, A. (2023). A deep learning approach for integrated production planning and predictive maintenance. Int J Prod Res, pp 1–20. https://doi.org/10.1080/00207543.2022.2162618

  35. Kolus A, El-Khalifa A, Al-Turki UM, Duffuaa SO (2020) An integrated mathematical model for production scheduling and preventive maintenance planning. Int J Qual Reliab Manag 37(6/7):925–937. https://doi.org/10.1108/IJQRM-10-2019-0335

    Article  Google Scholar 

  36. Qiu S, Ming X, Sallak M, Lu J (2021) Joint optimization of production and condition-based maintenance scheduling for make-to-order manufacturing systems. Comput Ind Eng 162:107753. https://doi.org/10.1016/j.cie.2021.107753

    Article  Google Scholar 

  37. Majdouline I, Dellagi S, Mifdal L, Kibbou EM, Moufki A (2022) Integrated production-maintenance strategy considering quality constraints in dry machining. Int J Prod Res 60(9):2850–2864. https://doi.org/10.1080/00207543.2021.1905193

    Article  Google Scholar 

  38. Aghezzaf EH, Khatab A, Le Tam P (2016) Optimizing production and imperfect preventive maintenance planning’ s integration in failure-prone manufacturing systems. Reliab Eng Syst Saf 145:190–198. https://doi.org/10.1016/j.ress.2015.09.017

    Article  Google Scholar 

  39. Kang K, Subramaniam V (2018) Joint control of dynamic maintenance and production in a failure-prone manufacturing system subjected to deterioration. Comput Ind Eng 119:309–320. https://doi.org/10.1016/j.cie.2018.03.001

    Article  Google Scholar 

  40. Khatab A (2018) Maintenance optimization in failure-prone systems under imperfect preventive maintenance. J Intell Manuf 29:707–717. https://doi.org/10.1007/s10845-018-1390-2

    Article  Google Scholar 

  41. Alimian M, Saidi-Mehrabad M, Jabbarzadeh A (2019) A robust integrated production and preventive maintenance planning model for multi-state systems with uncertain demand and common cause failures. J Manuf Syst 50:263–277. https://doi.org/10.1016/j.jmsy.2018.12.001

    Article  Google Scholar 

  42. Bampoula X, Siaterlis G, Nikolakis N, Alexopoulos K (2021) A deep learning model for predictive maintenance in cyber-physical production systems using lstm autoencoders. Sensors 21(3):972. https://doi.org/10.3390/s21030972

    Article  Google Scholar 

  43. Gan J, Zhang W, Wang S, Zhang X (2022) Joint decision of condition-based opportunistic maintenance and scheduling for multi-component production systems. Int J Prod Res 60(17):5155–5175. https://doi.org/10.1080/00207543.2021.1951447

    Article  Google Scholar 

  44. BAHOU Z, KRIMI I, ELHACHEMI N, El Cadi AA (2022) Assessing the stochastic dependence effect on the integrated preventive maintenance scheduling and production planning

  45. Bakir I, Yildirim M, Ursavas E (2021) An integrated optimization framework for multi-component predictive analytics in wind farm operations and maintenance. Renew Sust Energ Rev 138:110639. https://doi.org/10.1016/j.rser.2020.110639

    Article  Google Scholar 

  46. Maher H, Aly MF, Afefy IH, Abdelmaguid TF (2022) A maintenance optimisation approach based on genetic algorithm for multi-component systems considering the effect of human error. Int J Ind Syst Eng 40(1):51–78. https://doi.org/10.1504/IJISE.2022.120803

    Article  Google Scholar 

  47. Zhang C, Qi F, Zhang N, Li Y, Huang H (2022) Maintenance policy optimization for multi-component systems considering dynamic importance of components. Reliab Eng Syst Saf 226:108705. https://doi.org/10.1016/j.ress.2022.108705

    Article  Google Scholar 

  48. Zhang W, Gan J, Hou Q (2022) Joint decision of condition-based maintenance and production scheduling for multi-component systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 236(6–7):726–740. https://doi.org/10.1177/09544054211043759

    Article  Google Scholar 

  49. Yang DY, Tsao CL (2019) Reliability and availability analysis of standby systems with working vacations and retrial of failed components. Reliab Eng Syst Saf 182:46–55. https://doi.org/10.1016/j.ress.2018.09.020

    Article  Google Scholar 

  50. Gao S, Wang J (2021) Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility. Reliab Eng Syst Saf 205:107240. https://doi.org/10.1016/j.ress.2020.107240

    Article  Google Scholar 

  51. Yang DY, Wu CH (2021) Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns. Reliab Eng Syst Saf 207:107366. https://doi.org/10.1016/j.ress.2020.107366

    Article  Google Scholar 

  52. Lazakis I, Kougioumtzoglou MA (2019) Assessing offshore wind turbine reliability and availability. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 233(1):267–282. https://doi.org/10.1177/1475090217735413

    Article  Google Scholar 

  53. Lotovskyi E, Teixeira AP, Soares Guedes C (2020). Availability analysis of an offshore oil and gas production system subjected to age-based preventive maintenance by Petri Nets. Eksploatacja i Niezawodność, 22(4). https://doi.org/10.17531/ein.2020.4.6

  54. Gao P, Xie L, Pan J (2019) Reliability and availability models of belt drive systems considering failure dependence. Chin J Mech Eng 32(1):1–12. https://doi.org/10.1186/s10033-019-0342-x

    Article  Google Scholar 

  55. Mishra S (2016) Optimal availability analysis of brake drum manufacturing system by using markovian approach (Doctoral dissertation)

  56. Danjuma MU, Yusuf I, Sufi NA (2022). Reliability availability maintainability dependability analysis of mirrored distributed system. Journal of Industrial Engineering International. https://doi.org/10.30495/JIEI.2022.1941704.1166

  57. Yusuf I, Usman NM, Bala SI (2020). Availability analysis of hybrid systems consisting of main units and cold standby processors. J Reliab Stat Stud, pp 429–460. https://doi.org/10.13052/jrss0974-8024.132411

  58. Zhang N, Yang Q (2015) Optimal maintenance planning for repairable multi-component systems subject to dependent competing risks. IIE Transactions 47(5):521–532. https://doi.org/10.1080/0740817X.2014.974115

    Article  Google Scholar 

  59. Jafari L, Naderkhani F, Makis V (2018) Joint optimization of maintenance policy and inspection interval for a multi-unit series system using proportional hazards model. J Oper Res Soc 69(1):36–48. https://doi.org/10.1057/s41274-016-0160-9

    Article  Google Scholar 

  60. Lai MT, Yan H (2016) Optimal number of minimal repairs with cumulative repair cost limit for a two-unit system with failure rate interactions. Int J Syst Sci 47(2):466–473. https://doi.org/10.1080/00207721.2014.886749

    Article  MathSciNet  Google Scholar 

  61. Bahou Z, Krimi I, Cadi AAE, Hachemi NE (2023) Availability modelling and analysis of a two-component parallel system under stochastic dependence. Int J Math Oper Res 26(3):327–356. https://doi.org/10.1504/IJMOR.2023.134836

    Article  Google Scholar 

  62. Bannert V, Tschirky H (2004) Integration planning for technology intensive acquisitions. R &d Management 34(5):481–494. https://doi.org/10.1111/j.1467-9310.2004.00356.x

    Article  Google Scholar 

  63. Wakiru J, Pintelon L, Muchiri PN, Chemweno PK (2021) Integrated remanufacturing, maintenance and spares policies towards life extension of a multi-component system. Reliab Eng Syst Saf 215:107872. https://doi.org/10.1016/j.ress.2021.107872https://doi.org/10.1016/j.ress.2021.107872

  64. Obrecht TP, Jordan S, Legat A, Saade MRM, Passer A (2021) An LCA methodolody for assessing the environmental impacts of building components before and after refurbishment. J Clean Prod 327:129527. https://doi.org/10.1016/j.jclepro.2021.129527https://doi.org/10.1016/j.jclepro.2021.129527

  65. Mifdal L, Hajej Z, Dellagi S, Rezg N (2013) An optimal production planning and maintenance policy for a multiple-product and single machine under failure rate dependency. IFAC Proceedings Volumes 46(9):507–512. https://doi.org/10.3182/20130619-3-RU-3018.00246

    Article  Google Scholar 

  66. Fitouhi MC, Nourelfath M (2012) Integrating noncyclical preventive maintenance scheduling and production planning for a single machine. Int J Prod Econ 136(2):344–351. https://doi.org/10.1016/j.ijpe.2011.12.021

    Article  Google Scholar 

  67. Kouedeu AF, Kenné JP, Dejax P, Songmene V, Polotski V (2014) Production planning of a failure-prone manufacturing/remanufacturing system with production-dependent failure rates. Appl Math. https://doi.org/10.4236/am.2014.510149

  68. Orcun S, Uzsoy R, Kempf KG (2009) An integrated production planning model with load-dependent lead-times and safety stocks. Comput & Chem Eng 33(12):2159–2163. https://doi.org/10.1016/j.compchemeng.2009.07.010

    Article  Google Scholar 

  69. Hu J, Sun Q, Ye ZS (2020) Condition-based maintenance planning for systems subject to dependent soft and hard failures. IEEE Trans Reliab 70(4):1468–1480. https://doi.org/10.1109/TR.2020.2981136

    Article  Google Scholar 

  70. Vu HC, Do P, Barros A, Bérenguer C (2015) Maintenance planning and dynamic grouping for multi-component systems with positive and negative economic dependencies. IMA J Manag Math 26(2):145–170. https://doi.org/10.1093/imaman/dpu007

    Article  MathSciNet  Google Scholar 

  71. Pahl J, Vob S, Woodruff DL (2007) Production planning with load dependent lead times: an update of research. Ann Oper Res 153:297–345. https://doi.org/10.1007/s10479-007-0173-5

    Article  MathSciNet  Google Scholar 

  72. Strogatz SH (2000) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, 1st pbk

  73. Bashirov AE, Mısırlı E, Tandoğdu Y, Özyapıcı A (2011) On modeling with multiplicative differential equations. Appl Math-A J Chinese Universities 26:425–438. https://doi.org/10.1007/s11766-011-2767-6

    Article  MathSciNet  Google Scholar 

  74. McConville K (2018) Trophic and ecological implications of the gelatinous body form in zooplankton (Doctoral dissertation, University of Plymouth)

  75. Lemnaouar MR, Khalfaoui M, Louartassi Y, Tolaimate I (2019) Harvesting of a prey-predator model fishery in the presence of competition and toxicity with two effort functions. Commun Math Biol Neurosci, 2019, Article-ID

  76. Hattaf K, El Karimi MI, Mohsen AA, Hajhouji Z, El Younoussi M, Yousfi N (2023) Mathematical modeling and analysis of the dynamics of RNA viruses in presence of immunity and treatment: A case study of SARS-CoV-2. Vaccines 11(2):201. https://doi.org/10.3390/vaccines11020201

    Article  Google Scholar 

  77. Manna K, Hattaf K (2022) A generalized distributed delay model for hepatitis B virus infection with two modes of transmission and adaptive immunity: A mathematical study. Math Methods Appl Sci 45(17):11614–11634. https://doi.org/10.1002/mma.8470

    Article  MathSciNet  Google Scholar 

  78. Louartassi Y, Alla A, Hattaf K, Nabil A (2019) Dynamics of a predator-prey model with harvesting and reserve area for prey in the presence of competition and toxicity. J Appl Math Comput 59:305–321. https://doi.org/10.1007/s12190-018-1181-0

  79. Vanlier J, Tiemann CA, Hilbers PAJ, Van Riel NAW (2013) Parameter uncertainty in biochemical models described by ordinary differential equations. Math Biosci 246(2):305–314. https://doi.org/10.1016/j.mbs.2013.03.006

    Article  MathSciNet  Google Scholar 

  80. Frenkel I, Lisnianski A, Khvatskin L (2012) Availability assessment for aging refrigeration system by using Lz-transform. J Reliab Stat Stud, pp 33–43

  81. Daichman S, Frenkel I, Khvatskin L, Lisnianski A (2013) On aging components impact on multi-state water cooling system: L z-transform application for availability assessment. In: The international conference on digital technologies 2013 (pp 156–161). IEEE. https://doi.org/10.1109/DT.2013.6566304

  82. Meenakshi K, Singh SB (2016) Availability assessment of multi-state system by hybrid universal generating function and probability intervals. Int J Perform Eng 12(4)

  83. Biswas BN, Chatterjee S, Mukherjee SP, Pal S (2013) A discussion on Euler method: A review. Electron J Math Anal Appl 1(2):294–317

    Google Scholar 

  84. Jaber AA, Bicker R (2014) The state of the art in research into the condition monitoring of industrial machinery. Int J Curr Eng Technol

  85. Nourelfath M, Châtelet E (2012) Integrating production, inventory and maintenance planning for a parallel system with dependent components. Reliab Eng Syst Saf 101:59–66. https://doi.org/10.1016/j.ress.2012.02.001

    Article  Google Scholar 

  86. Nourelfath M, Fitouhi MC, Machani M (2010) An integrated model for production and preventive maintenance planning in multi-state systems. IEEE Trans Reliab 59(3):496–506. https://doi.org/10.1109/TR.2010.2056412

    Article  Google Scholar 

  87. Fitouhi MC, Nourelfath M (2014) Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems. Reliab Eng Syst Saf 121:175–186. https://doi.org/10.1016/j.ress.2013.07.009

    Article  Google Scholar 

  88. Puik E, van Moergestel L (2010) Agile multi-parallel micro manufacturing using a grid of equiplets. In: Precision assembly technologies and systems: \(5th\) IFIP WG \(5.5\) international precision assembly seminar, IPAS 2010, Chamonix, France, February \(14-17\), 2010. Proceedings 5 , pp 71–282. Springer Berlin Heidelberg

  89. Kececioglu D (2002) Reliability engineering handbook (Vol. 1). DEStech Publications, Inc

  90. Yong T (2004) Extended Weibull distributions in reliability engineering

  91. Lawless JF (2011) Statistical models and methods for lifetime data. John Wiley and Sons

  92. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, volume 2 (Vol. 289). John Wiley and sons

  93. Birkoff G, Rota GC (1982) Ordinary Differential Equations. Ginn, Boston

  94. Louartassi Y, El Mazoudi E, Elalami N (2012) A new generalization of lemma Gronwall-Bellman. Appl Math Sci 6(13):621–628

    MathSciNet  Google Scholar 

Download references

Funding

This research was supported by Abu Dhabi University under the grant number 19300779.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to this paper.

Corresponding author

Correspondence to Ziyad Bahou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Basic model properties

To guarantee that our model (1) is well posed, we prove its solutions’ nonnegativity and boundedness.

Theorem 7.1

Under the condition (2), for all \(t\ge 0\), the solutions of our model (1) exhibit the following non-negative properties: \(S(t)\ge 0\), \(E(t)\ge 0\), \(I(t)\ge 0\), \(Q(t)\ge 0\), \(H(t)\ge 0\), \(R(t)\ge 0\) and \(S_t(t)\ge 0\).

Proof

If the condition (2) is realized, the following inequalities can be established from the ten equations in our model (1).

$$\begin{aligned} \frac{dS}{dt}\ge & {} -(\beta _{1}+d)S,\nonumber \\ \frac{dE}{dt}\ge & {} -(\beta _2+\theta +d)E,\nonumber \\ \frac{dI}{dt}\ge & {} -(\delta +\eta +\gamma +d)I,\nonumber \\ \frac{dQ}{dt}\ge & {} -(\Upsilon +\varepsilon +d)Q,\nonumber \\ \frac{dH}{dt}\ge & {} -(r+\upsilon +d)H,\nonumber \\ \frac{dR}{dt}\ge & {} -(d+b)R,\nonumber \\ \frac{dS_t}{dt}\ge & {} -(\zeta +d)S_t. \end{aligned}$$
(25)

When we apply the theory of differential inequalities [93, 94], we find:

$$\begin{aligned} S(t)\ge & {} \exp (-(\beta _{1}+d)S),\\ E(t)\ge & {} \exp (-(\beta _2+\theta +d)E),\\ I(t)\ge & {} \exp (-(\delta +\eta +\gamma +d)I),\\ Q(t)\ge & {} \exp (-(\Upsilon +\varepsilon +d)Q),\\ H(t)\ge & {} \exp (-(r+\upsilon +d)H),\\ R(t)\ge & {} \exp (-(d+b)R),\\ S_t(t)\ge & {} \exp (-(\zeta +d)S_t). \end{aligned}$$

\(\square \)

Theorem 7.2

The solution of our model (1), with the initial conditions specified in (2), is positive in the following set:

$$\begin{aligned} \mathcal {B} =\left\{ (S, E,I, Q,H, R,S_t)\in \mathbb {R}^{7}_{+} : N(t) \le \frac{\Lambda }{d}\right\} , \end{aligned}$$
(26)

where \(N=S+E+I+Q+H+R+S_t.\)

Proof

Letting \(N=S+E+I+Q+H+R+S_t,\) then

$$\begin{aligned} \frac{dN}{dt}+dN=m. \end{aligned}$$
(27)

Then, the solution of differential equation (27) is:

\(N(t)= N(0)e^{-dt}+\frac{m}{d}\left( 1-e^{-dt}\right) .\) If \(t\rightarrow \infty \), we have \(N\le \frac{\Lambda }{d}\). \(\square \)

1.2 A.2 Equilibrium points and stability analysis

This section determines the equilibrium point \(P_0\) in the absence of failure and the equilibrium point \(P^*\) in the presence of failure with failure. Finally, we discuss the local stability of \(P_0\) and \(P^*\).

We need to resolve the following system of equations to obtain the coordinates of equilibrium \(P_0(S_0,E_0, I_0,Q_0,H_0, \) \( R_0,St_0)\):

$$\begin{aligned} \frac{dS}{dt}=\frac{dE}{dt}=\frac{dI}{dt}=\frac{dQ}{dt}=\frac{dH}{dt}=\frac{dR}{dt}=\frac{dS_t}{dt}=0. \end{aligned}$$
(28)

The equilibrium point \(P_0\) is achieved if \(E_0=I_0=Q_0=H_0=R_0=St_0=0\). In the absence of failure, we have \(\beta _1=0\). As a result, the first system (1) is: \(\frac{dS}{dt}=m-dS_0=0\). Therefore, the system (1) admit failure-free equilibrium point \(P_{0}(\frac{m}{d},0,0,0,0,0,0)\).

To determine the coordinates of the equilibrium point \(P^*(S^*,E^*,I^*,Q^*,H^*,R^*,S_t^*)\). We resolve the system (28). Then we get:

$$\begin{aligned} E^*= & {} -\frac{f h k m n s z}{b f h k n s z+c e g j p v z+c e g j r s z+c e g k p q z+c e h i p v z+c e h i r s z+c e h k l s z-a t f h k n s},\nonumber \\ S^*= & {} \frac{\beta _{2}+d+\theta }{\beta _{1}}E^*,\nonumber \\ I^*= & {} \frac{\theta }{\delta +\gamma +d+\eta }E^*,\nonumber \\ Q^*= & {} \frac{\delta }{\epsilon +d+\Upsilon }I^*,\nonumber \\ H^*= & {} \frac{\eta I^*+\varepsilon Q^*}{d+\nu +r},\nonumber \\ R^*= & {} \frac{\delta I^*+rH^*+\mu _2S_t^*}{d+\sigma },\nonumber \\ S_t^*= & {} \frac{\Upsilon Q^*+\nu H^*}{\zeta +d}, \end{aligned}$$
(29)

where \(a=\beta _1+d\), \(b=\beta _2\), \(c=\sigma \), \(e=\theta \), \(f=\eta +\gamma +d+\delta \), \(g=\delta \), \(h=\varepsilon +d+\Upsilon \), \(i=\eta \), \(j=\varepsilon \), \(k=\nu +r+d\), \(l=\gamma \), \(n=d+\sigma \), \(p=\zeta \), \(q=\Upsilon \), \(s=\zeta +d\), \(t=b+e+d\) and \(z=\beta _1\).

1.3 A.3 Local stability

This section determines the conditions for local stability of the two equilibrium points \(P_0\) and \(P^*\).

Lemma 7.3

The condition (30) guarantees the local asymptotic stability of the equilibrium points \(P_0\) and \(P^*\).

$$\begin{aligned} \beta _{1}(\beta _2+\theta +d)+\beta _{2}d+d\theta +d\theta +d^2>\beta _{2}^2. \end{aligned}$$
(30)

Proof

The Jacobian matrix of our system (1) is determined as follows:

$$\begin{aligned} J\!\!=\!\!\left\{ \!\!\begin{array}{ccccccc} -\beta _{1}-d&{}\beta _{2}&{}0&{}0&{}0&{}\sigma &{}0\\ \beta _{1}&{}-(\beta _{2}+d+\theta )&{}0&{}0&{}0&{}0&{}0\\ 0&{}\theta &{}-(\eta +\gamma +d+\delta )&{}0&{}0&{}0&{}0\\ 0&{}0&{}\delta &{}-(\varepsilon +d+\Upsilon )&{}0&{}0&{}0\\ 0&{}0&{}\eta &{}\varepsilon &{}-(d+\nu +r)&{}0&{}0\\ 0&{}0&{}\gamma &{}0&{}r&{}-(d+\sigma )&{}\zeta \\ 0&{}0&{}0&{}\Upsilon &{}\nu &{}0&{}-(\zeta +d)\\ \end{array}\!\!\right\} \!, \end{aligned}$$
(31)

Solving this equation \(det(J-\lambda I_7)= 0\) leads to the determination of the eigenvalues of the matrix J. Then:

$$\begin{aligned} \lambda _{1}= & {} -\frac{1}{2}\left( \sqrt{\beta _{1}^2-2(\beta _{1}\beta _{2}\!+\!\beta _{1}\theta \!-\!\beta _2\theta )\!+\!5\beta _{2}^2\!+\!\theta ^2}\!+\!\beta _{1}\!+\!\beta _{2}\!+\!\theta +2d \!\right) \!<\!0,\nonumber \\ \lambda _{2}= & {} -(d+\sigma )<0,\nonumber \\ \lambda _{3}= & {} -(d+\eta +\gamma +\delta )<0,\nonumber \\ \lambda _{4}= & {} -(d+\varepsilon +\Upsilon )<0,\nonumber \\ \lambda _{5}= & {} -(d+\zeta )<0,\nonumber \\ \lambda _{6}= & {} -(d+r+\nu )<0,\nonumber \\ \lambda _{7}= & {} \frac{1}{2}\left( \sqrt{\beta _{1}^2\!-\!2(\beta _{1}\beta _{2}\!+\!\beta _{1}\theta \!-\!\beta _2\theta )\!+\!5\beta _{2}^2\!-\!\theta ^2}\!-\!\beta _{1}\!-\!\beta _{2}\!-\!\theta \!-\!2d \right) <0. \end{aligned}$$
(32)

We have \(\lambda _{i}<0\) for \(i=1,\dots 6\). If the condition \(\beta _1(\beta _2+\theta +d)+\beta _{2}d+d\theta +d\theta +d^2>\beta _{2}^2\) is fulfilled. Then \(\lambda _7<0\). Therefore, all eigenvalues are negative real parts. The proof is completed. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahou, Z., Lemnaouar, M.R. & Krimi, I. Integrated non-cyclical preventive maintenance scheduling and production planning for multi-parallel component production systems with interdependencies-induced degradation. Int J Adv Manuf Technol 130, 4723–4749 (2024). https://doi.org/10.1007/s00170-024-12975-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-12975-4

Keywords

Navigation