Skip to main content
Log in

3D grinding mark simulation and its applications for silicon wafer grinding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A three-dimensional mathematical model based on homogenous coordinate transformation was developed and later experimentally validated to simulate the abrasive trajectories caused by the grit of grinding wheel onto the wafer. Those abrasive trajectories become the cross-hatch grinding marks on the ground wafer surface. The resulting convex or concave face profile of wafer after the grinding process as well as the abrasive trajectories which correlated to the wafer surface quality in terms of total thickness variation (TTV) can be predicted accurately. Simulations revealed that the relative orientation between the chuck table and the grinding wheel most affects TTV, followed by the offset distance if only the grinding geometry is considered. Moreover, the spindle speed should be coprime to chuck table in order to avoid overlapped trajectory, which may ensure a better grinding quality and grinding efficiency as well. Similarly, the spindle speeds for fine grinding should be coprime to rough grinding to effectively eliminate the grinding marks left by the rough grinding for better grinding quality. The model was implemented in software to generate grinding trajectories to predict wafer TTV given the process parameters such as rotational speeds and relative orientation between the grinding wheel and chuck table, which plays an essential tool for further process parameters optimization for wafer grinding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chen B, Luo L, Jiao H, Li S, Li S, Deng Z, Yao H (2021) Affecting factors, optimization, and suppression of grinding marks: a review. Int J Adv Manuf Technol 115(1–2):1–29. https://doi.org/10.1007/s00170-021-07116-0

    Article  Google Scholar 

  2. Li ZC, Pei ZJ, Fisher GR (2006) Simultaneous double side grinding of silicon wafers: a literature review. Int J Mach Tools Manuf 46(12–13):1449–1458. https://doi.org/10.1016/j.ijmachtools.2005.09.011

    Article  Google Scholar 

  3. Liu JH, Pei ZJ, Fisher GR (2007) Grinding wheels for manufacturing of silicon wafers: a literature review. Int J Mach Tools Manuf 47(1):1–13. https://doi.org/10.1016/j.ijmachtools.2006.02.003

    Article  Google Scholar 

  4. Shiha AJ, Lee NL (1999) Precision cylindrical face grinding. Precis Eng 23(3):177–184. https://doi.org/10.1016/S0141-6359(99)00008-2

    Article  Google Scholar 

  5. Chen Z, Wei X, Ren Q,  Xie X (2009) Analysis and simulation of grinding motion on large size wafer self-rotating grinding. Diam Abrasives Eng 5:1–12. https://doi.org/10.3969/j.issn.1006-852X.2009.05.001

  6. Wang L, Hu Z, Fang C, Yu Y, Xu X (2018) Study on the double-sided grinding of sapphire substrates with the trajectory method. Precis Eng 51:308–318. https://doi.org/10.1016/j.precisioneng.2017.09.001

    Article  Google Scholar 

  7. Sun C, Lu Y, Xiu S, Li Q, Zhang P (2021) Analysis on the removal mechanism of disc grinding based on dynamic thermal–mechanical coupling. Int J Mech Mater Des 17:831–853. https://doi.org/10.1007/s10999-021-09539-9

    Article  Google Scholar 

  8. Pei ZJ (2002) A study on surface grinding of 300 mm silicon wafers. Int J Mach Tools Manuf 42(3):385–393. https://doi.org/10.1016/S0890-6955(01)00122-5

    Article  Google Scholar 

  9. Chidambaram S, Pei ZJ, Kassir S (2003) Fine grinding of silicon wafers: a mathematical model for grinding marks. Int J Mach Tools Manuf 43(15):1595–1602. https://doi.org/10.1016/S0890-6955(03)00187-1

    Article  Google Scholar 

  10. Zhou L, Shimizu J, Shinohara K, Eda H (2003) Three-dimensional kinematical analyses for surface grinding of large scale substrate. Precis Eng 27(2):175–184. https://doi.org/10.1016/S0141-6359(02)00225-8

    Article  Google Scholar 

  11. Sun W, Pei ZJ, Fisher GR (2004) Fine grinding of silicon wafers: a mathematical model for the wafer shape. Int J Mach Tools Manuf 44(7–8):707–716. https://doi.org/10.1016/j.ijmachtools.2004.02.012

    Article  Google Scholar 

  12. Sun W, Pei ZJ, Fisher GR (2005) Fine grinding of silicon wafers: machine configurations for spindle angle adjustments. Int J Mach Tools Manuf 45(1):51–61. https://doi.org/10.1016/j.ijmachtools.2004.06.013

    Article  Google Scholar 

  13. Sun W, Pei ZJ, Fisher GR (2005) Fine grinding of silicon wafers: effects of chuck shape on grinding marks. Int J Mach Tools Manuf 45(6):673–686. https://doi.org/10.1016/j.ijmachtools.2004.09.020

    Article  Google Scholar 

  14. Pietsch GJ, Kerstan M (2005) Understanding simultaneous double-disk grinding: operation principle and material removal kinematics in silicon wafer planarization. Precis Eng 29(2):189–196. https://doi.org/10.1016/j.precisioneng.2004.07.001

    Article  Google Scholar 

  15. Hou HY, Li DD, Wei CJ, Hu DJ, Xu KZ (2011) Process optimization in two spherical surface grinding processes using trajectories analysis. Proc Inst Mech Eng B J Eng Manuf 225(12):2177–2188. https://doi.org/10.1177/0954405411411404

    Article  Google Scholar 

  16. Huo FW, Kang RK, Li Z, Guo DM (2013) Origin, modeling and suppression of grinding marks in ultra precision grinding of silicon wafers. Int J Mach Tools Manuf 66:54–65. https://doi.org/10.1016/j.ijmachtools.2012.11.006

    Article  Google Scholar 

  17. Jiang B, Zhao D, Liu Y, Lu X (2018) Surface figure control in fine rotation grinding process of thick silicon mirror. Int J Adv Manuf Technol 98:771–779. https://doi.org/10.1007/s00170-018-2328-8

    Article  Google Scholar 

  18. Pan Y, Zhao Q, Guo B, Chen B, Wang J, Wu X (2020) An investigation of the surface waviness features of ground surface in parallel grinding process. Int J Mech Sci 170:105351. https://doi.org/10.1016/j.ijmecsci.2019.105351

    Article  Google Scholar 

  19. Yao W, Kang R, Guo X, Zhu X (2022) Effect of grinding residual height on the surface shape of ground wafer. J Mater Process Technol 299:117390. https://doi.org/10.1016/j.jmatprotec.2021.117390

    Article  Google Scholar 

  20. Kao I, Chung C (2021) Wafer manufacturing: shaping of single crystal silicon wafers. John Wiley & Sons, pp 11–19

    Book  Google Scholar 

  21. Zhang XH, Pei ZJ, Fisher GR (2006) A grinding-based manufacturing method for silicon wafers: generation mechanisms of central dimples on ground wafers. Int J Mach Tools Manuf 46(3–4):397–403. https://doi.org/10.1016/j.ijmachtools.2005.05.008

    Article  Google Scholar 

  22. Zhang Y, Kang R, Gao S, Huang J, Zhu X (2021) A new model of grit cutting depth in wafer rotational grinding considering the effect of the grinding wheel, workpiece characteristics, and grinding parameters. Precis Eng 72:461–468. https://doi.org/10.1016/j.precisioneng.2021.06.007

    Article  Google Scholar 

  23. Gao S, Kang R, Dong Z, Guo D (2013) Subsurface damage distribution in silicon wafers ground with wafer rotation grinding method. J Mech Eng 49(3):88–94. https://doi.org/10.3901/JME.2013.03.088

    Article  Google Scholar 

  24. Zhu X, Yao W, Guo X, Kang R, Ahmad MJ (2021) The effect of the chuck shape on the wafer topography in back grinding of wafer with outer rim. Adv Mech Eng 13(10):16878140211050488. https://doi.org/10.1177/16878140211050488

    Article  Google Scholar 

  25. Guo X, Yao W, Zhu X, Li Y, Kang R (2022) Research on the shape of ground wafer in back grinding of wafer with outer rim. Mater Sci Semicond Process 139:106344. https://doi.org/10.1016/j.mssp.2021.106344

    Article  Google Scholar 

  26. Liu Y, Tao H, Zhao D, Lu X (2022) An investigation on the total thickness variation control and optimization in the wafer backside grinding process. Materials 15(12):4230. https://doi.org/10.3390/ma15124230

    Article  Google Scholar 

Download references

Funding

This study was partially supported by the Ministry of Science and Technology, Global Wafers Co. and the Advanced Institute of Manufacturing with High-tech Innovations (AIM-HI) from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan, ROC (under Contract No. MOST 109–2634-F-194–003 and NSTC 111–2634-F-007–010).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Chih-Chun Cheng.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$${{}^{w}\mathbf{A}}_{g}=\mathbf{R}\mathbf{o}\mathbf{t}\left({{\text{Z}}}_{w},{\theta }_{w}\right)\mathbf{T}\left({{\text{S}}}_{x},{{\text{S}}}_{y},-{z}_{t}\right)\mathbf{R}\mathbf{o}\mathbf{t}\left({{\text{Y}}}_{w},-{\phi }_{ty}\right)\mathbf{R}\mathbf{o}\mathbf{t}\left({{\text{X}}}_{w},-{\phi }_{tx}\right)\mathbf{T}\left({R}_{g},0,0\right)\mathbf{R}\mathbf{o}\mathbf{t}\left({{\text{Z}}}_{w},-{\theta }_{g}\right)$$
$$=\left[\begin{array}{cccc}a& b& c& d\\ e& f& g& h\\ i& j& k& l\\ 0& 0& 0& 1\end{array}\right],$$

where

$$\begin{array}{c}a=cos\left({\omega }_{g}\Delta t\right)cos\left({\omega }_{w}\Delta t\right)cos\left({\phi }_{ty}\right)-sin\left({\omega }_{g}\Delta t\right)(-cos\left({\phi }_{tx}\right)sin\left({\omega }_{w}\Delta t\right)\\ +cos\left({\omega }_{w}\Delta t\right)sin\left({\phi }_{tx}\right)sin\left({\phi }_{ty}\right))\end{array},$$
(8)
$$\begin{array}{c}b=cos\left({\omega }_{w}\Delta t\right)cos\left({\phi }_{ty}\right)sin\left({\omega }_{g}\Delta t\right)\\ +cos\left({\omega }_{g}\Delta t\right)\left(-cos\left({\phi }_{tx}\right)sin\left({\omega }_{w}\Delta t\right)+cos\left({\omega }_{w}\Delta t\right)sin\left({\phi }_{tx}\right)sin\left({\phi }_{ty}\right)\right)\end{array},$$
(9)
$$c=-sin\left({\omega }_{w}\Delta t\right)sin\left({\phi }_{tx}\right)-cos\left({\omega }_{w}\Delta t\right)cos\left({\phi }_{tx}\right)sin\left({\phi }_{ty}\right),$$
(10)
$$d={S}_{x}cos\left({\omega }_{w}\Delta t\right)+{R}_{g}cos\left({\omega }_{w}\Delta t\right)cos\left({\phi }_{ty}\right)-{S}_{y}sin\left({\omega }_{w}\Delta t\right),$$
(11)
$$\begin{array}{c}e=cos\left({\omega }_{g}\Delta t\right)cos\left({\phi }_{ty}\right)sin\left({\omega }_{w}\Delta t\right)\\ -sin\left({\omega }_{g}\Delta t\right)\left(cos\left({\omega }_{w}\Delta t\right)cos\left({\phi }_{tx}\right)+sin\left({\omega }_{w}\Delta t\right)sin\left({\phi }_{tx}\right)sin\left({\phi }_{ty}\right)\right)\end{array},$$
(12)
$$\begin{array}{c}f=cos\left({\phi }_{ty}\right)sin\left({\omega }_{g}\Delta t\right)sin\left({\omega }_{w}\Delta t\right)\\ +cos\left({\omega }_{g}\Delta t\right)\left(cos\left({\omega }_{w}\Delta t\right)cos\left({\phi }_{tx}\right)+sin\left({\omega }_{w}\Delta t\right)sin\left({\phi }_{tx}\right)sin\left({\phi }_{ty}\right)\right)\end{array},$$
(13)
$$g=cos\left({\omega }_{w}\Delta t\right)sin\left({\phi }_{tx}\right)-cos\left({\phi }_{tx}\right)sin\left({\omega }_{w}\Delta t\right)sin\left({\phi }_{ty}\right),$$
(14)
$$h={S}_{y}cos\left({\omega }_{w}\Delta t\right)+{S}_{x}sin\left({\omega }_{w}\Delta t\right)+{R}_{g}cos\left({\phi }_{ty}\right)sin\left({\omega }_{w}\Delta t\right),$$
(15)
$$i=cos\left({\phi }_{ty}\right)sin\left({\omega }_{g}\Delta t\right)sin\left({\phi }_{tx}\right)+cos\left({\omega }_{g}\Delta t\right)sin\left({\phi }_{ty}\right),$$
(16)
$$j=-cos\left({\omega }_{g}\Delta t\right)cos\left({\phi }_{ty}\right)sin\left({\phi }_{tx}\right)+sin\left({\omega }_{g}\Delta t\right)sin\left({\phi }_{ty}\right),$$
(17)
$$k=cos\left({\phi }_{tx}\right)cos\left({\phi }_{ty}\right),$$
(18)
$$l=-z_t+R_gsin{\left(\phi_{ty}\right)}.$$
(19)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, TF., Cheng, WN., Lin, MB. et al. 3D grinding mark simulation and its applications for silicon wafer grinding. Int J Adv Manuf Technol 130, 4415–4430 (2024). https://doi.org/10.1007/s00170-023-12931-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12931-8

Keywords

Navigation