Skip to main content

Advertisement

Log in

Cutting condition effects on microstructure and mechanical characteristics of Ni-based superalloys—a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Surface integrity is considered to be a significant factor in evaluating surface qualities. A wide range of applications of nickel-based superalloys can be attributed to a number of features such as mechanical and chemical characteristics at elevated temperatures, high durability and ductileness, great resistance to corrosion, high melting point, thermal shock, thermal fatigue, and erosion. However, the practical performance of the component particularly the fatigue life is critically influenced by the machined surface finish of Ni-based superalloys. The present review article provides the most recent information on various surface integrity properties while machining Ni-based superalloys. The surface integrity aspects contain the surface topography including machined surface defects (plucking, metal debris, feed marks, surface cavities, smeared material, grooves and laps, cracking, carbide particles, and redeposited materials) and surface roughness; the metallurgical phase consists of plasticity, grain refinement and orientation, and white layer formation, and mechanical characteristics comprise the residual stress and strain hardening. The impact of various cutting parameters, the cutting environment, and cutting tool materials have been carefully explained on surface metallurgy and mechanical characteristics. Moreover, the influence of surface integrity on the fatigue life of machined components has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

Vc:

Cutting force

f:

Feed

ap :

Axial depth of cut

ae :

Radial depth of cut

MQL:

Minimum quantity lubrication

BUE:

Built-up edge

SEM:

Scanning electron microscope

VBmax :

Flank wear

XRD:

Xray diffraction

ESBD:

Electron backscattered diffraction

TEM:

Transmission electron microscopy

PVD:

Physical vapor deposition

CVD:

Chemical vapor deposition

CBN:

Carbon boron nitride

DRX:

Dynamic recrystallization

EBS:

Electron backscattered

References

  1. Mustafa G, Anwar MT, Ahmed A, Nawaz M, Rasheed T (2022) Influence of machining parameters on machinability of Inconel 718—a review. Adv Eng Mater 24:1–17. https://doi.org/10.1002/adem.202200202

    Article  Google Scholar 

  2. Zhu D, Zhang X, Ding H (2013) Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tools Manuf 64:60–77. https://doi.org/10.1016/j.ijmachtools.2012.08.001

    Article  Google Scholar 

  3. Çelik A, Sert Alağaç M, Turan S, Kara A, Kara F (2017) Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718. Wear 378–379:58–67. https://doi.org/10.1016/j.wear.2017.02.025

    Article  Google Scholar 

  4. Mustafa G, Liu J, Zhang F, Wang G, Yang Z, Harris M, Liu S, Liu X, Jin Z, Sun J (2019) Atmospheric pressure plasma jet assisted micro-milling of Inconel 718. Int J Adv Manuf Technol 103:4681–4687. https://doi.org/10.1007/s00170-019-03931-8

    Article  Google Scholar 

  5. Ezugwu EO, Tang SH (1995) Surface abuse when machining cast iron (G-17) and nickel-base superalloy (Inconel 718) with ceramic tools. J Mater Process Technol 55:63–69. https://doi.org/10.1016/0924-0136(95)01786-0

    Article  Google Scholar 

  6. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51:250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003

    Article  Google Scholar 

  7. Hardy MC, Herbert CRJ, Kwong J, Li W, Axinte DA (2014) Characterising the integrity of machined surfaces in a powder nickel alloy used in aircraft engines. Procedia CIRP 13:411–416. https://doi.org/10.1016/j.procir.2014.04.070

    Article  Google Scholar 

  8. Parida AK, Maity K (2017) Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis. Eng Sci Technol an Int J 20:687–693. https://doi.org/10.1016/j.jestch.2016.10.006

    Article  Google Scholar 

  9. Ghiban B, Elefterie CF, Guragata C, Bran D (2018) Requirements of Inconel 718 alloy for aeronautical applications, p 030016

  10. Özel T, Arisoy YM (2014) Experimental and numerical investigations on machining induced surface integrity in inconel-100 nickel-base alloy. Procedia CIRP 13:302–307. https://doi.org/10.1016/j.procir.2014.04.051

    Article  Google Scholar 

  11. Fan YH, Hao ZP, Zheng ML et al (2013) Study of surface quality in machining nickel-based alloy Inconel 718. Int J Adv Manuf Technol 69:2659–2667. https://doi.org/10.1007/s00170-013-5225-1

    Article  Google Scholar 

  12. Dowling AP, Mahmoudi Y (2015) Combustion noise Proc Combust Inst 35:65–100. https://doi.org/10.1016/j.proci.2014.08.016

    Article  Google Scholar 

  13. Patel SJ (2006) A century of discoveries, inventors, and new nickel alloys. Jom 58:18–20. https://doi.org/10.1007/s11837-006-0076-y

    Article  Google Scholar 

  14. Guo Y, Klink A, Fu C, Snyder J (2013) Machinability and surface integrity of nitinol shape memory alloy. CIRP Ann - Manuf Technol 62:83–86. https://doi.org/10.1016/j.cirp.2013.03.004

    Article  Google Scholar 

  15. Cui C, Hu BM, Zhao L, Liu S (2011) Titanium alloy production technology, market prospects and industry development. Mater Des 32:1684–1691. https://doi.org/10.1016/j.matdes.2010.09.011

    Article  Google Scholar 

  16. Zhang LC, Attar H (2016) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater 18:463–475. https://doi.org/10.1002/adem.201500419

    Article  Google Scholar 

  17. Thakur A, Gangopadhyay S, Maity KP (2014) Effect of cutting speed and CVD multilayer coating on machinability of Inconel 825. Surf Eng 30:516–523. https://doi.org/10.1179/1743294414Y.0000000274

    Article  Google Scholar 

  18. Pramanik A, Littlefair G (2015) Machining of titanium alloy (Ti-6Al-4V) —theory to application. Mach Sci Technol 19:1–49. https://doi.org/10.1080/10910344.2014.991031

    Article  Google Scholar 

  19. Thakur A, Gangopadhyay S, Mohanty A (2015) Investigation on some machinability aspects of Inconel 825 during dry turning. Mater Manuf Process 30:1026–1034. https://doi.org/10.1080/10426914.2014.984216

    Article  Google Scholar 

  20. Sravan Sashank S, Rajakumar S, Karthikeyan R, Nagaraju DS (2020) Weldability, mechanical properties and microstructure of nickel based super alloys: a review. E3S Web Conf 184:1–6. https://doi.org/10.1051/e3sconf/202018401040

    Article  Google Scholar 

  21. Li ZY, Wei XT, Guo YB, Sealy MP (2015) State-of-art, challenges, and outlook on manufacturing of cooling holes for turbine blades. Mach Sci Technol 19:361–399. https://doi.org/10.1080/10910344.2015.1051543

    Article  Google Scholar 

  22. Biermann D, Kersting P, Surmann T (2010) A general approach to simulating workpiece vibrations during five-axis milling of turbine blades. CIRP Ann - Manuf Technol 59:125–128. https://doi.org/10.1016/j.cirp.2010.03.057

    Article  Google Scholar 

  23. Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–54. https://doi.org/10.1016/j.ijmachtools.2015.10.001

    Article  Google Scholar 

  24. Wang B, Liu Z (2018) Influences of tool structure, tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys: a review. Int J Adv Manuf Technol 98:1925–1975. https://doi.org/10.1007/s00170-018-2314-1

    Article  Google Scholar 

  25. Iturbe A, Hormaetxe E, Garay A, Arrazola PJ (2016) Surface Integrity analysis when machining Inconel 718 with conventional and cryogenic cooling. Procedia CIRP 45:67–70. https://doi.org/10.1016/j.procir.2016.02.095

    Article  Google Scholar 

  26. Cantero JL, Díaz-Álvarez J, Miguélez MH, Marín NC (2013) Analysis of tool wear patterns in finishing turning of Inconel 718. Wear 297:885–894. https://doi.org/10.1016/j.wear.2012.11.004

    Article  Google Scholar 

  27. Pervaiz S, Rashid A, Deiab I, Nicolescu M (2014) Influence of tool materials on machinability of titanium- and nickel-based alloys: a review. Mater Manuf Process 29:219–252. https://doi.org/10.1080/10426914.2014.880460

    Article  Google Scholar 

  28. Davim JP (2010) Surface integrity in machining. Springer, London, London

    Book  Google Scholar 

  29. Natarajan SK, Prakash R, Sankaranarayanasamy K (2022) Recent advances in manufacturing, automation, design and energy technologies. Springer Singapore, Singapore

    Book  Google Scholar 

  30. Yin X, Li X, Liu Y, Geng D, Zhang D (2023) Surface integrity and fatigue life of Inconel 718 by ultrasonic peening milling. J Mater Res Technol 22:1392–1409. https://doi.org/10.1016/j.jmrt.2022.12.019

    Article  Google Scholar 

  31. Tu L, Ming W, Xu X, Cai C, Chen J, An Q, Xu J, Chen M (2022) Wear and failure mechanisms of SiAlON ceramic tools during high-speed turning of nickel-based superalloys. Wear 488–489:204171. https://doi.org/10.1016/j.wear.2021.204171

    Article  Google Scholar 

  32. Huang X, Shi K, Zheng S (2022) Research on the surface integrity and fatigue behavior of grinding Ni-based superalloy GH4169DA. 2022 13th Int Conf Mech Aerosp Eng ICMAE 2022 13–20. https://doi.org/10.1109/ICMAE56000.2022.9852865

  33. Xiao G, Chen B, Li S, Zhuo X, Zhao Z (2022) Surface integrity and fatigue performance of GH4169 superalloy using abrasive belt grinding. Eng Fail Anal 142:. https://doi.org/10.1016/j.engfailanal.2022.106764

  34. Masood Arif Bukhari S, Husnain N, Arsalan Siddiqui F, Anwar MT (2023) Effect of laser surface remelting on microstructure, mechanical properties and tribological properties of metals and alloys: a review. Opt Laser Technol 165:. https://doi.org/10.1016/j.optlastec.2023.109588

  35. Singh R, Sharma V (2022) Machining induced surface integrity behavior of nickel-based superalloy: effect of lubricating environments. J Mater Process Technol 307:117701. https://doi.org/10.1016/j.jmatprotec.2022.117701

    Article  Google Scholar 

  36. Beck RJ, Aspinwall DK, Soo SL, Williams P, Perez R (2022) Fatigue performance of surface ground and wire electrical discharge machined TiNi shape memory alloy. Proc Inst Mech Eng Part B J Eng Manuf 236:355–362. https://doi.org/10.1177/09544054211028844

    Article  Google Scholar 

  37. Madariaga A, Garay A, Esnaola JA, Arrazola PJ (2022) Effect of surface integrity generated by machining on isothermal low cycle fatigue performance of Inconel 718. Eng Fail Anal 137:. https://doi.org/10.1016/j.engfailanal.2022.106422

  38. Chen Z, Huang C, Li B, Jiang G, Tang Z, Niu J, Liu H (2022) Experimental study on surface integrity of Inconel 690 milled by coated carbide inserts. Int J Adv Manuf Technol 121:3025–3042. https://doi.org/10.1007/s00170-022-09456-x

    Article  Google Scholar 

  39. Ardi DT, Li YG, Chan KHK, Bache MR (2014) Surface roughness, areal topographic measurement, and correlation to LCF behavior in a nickel-based superalloy. J Mater Eng Perform 23:3657–3665. https://doi.org/10.1007/s11665-014-1130-5

    Article  Google Scholar 

  40. Tan L, Yang XG, Shi DQ, Hao WQ, Fan YS (2022) Unified fatigue life modelling and uncertainty estimation of Ni-based superalloy family with a supervised machine learning approach. Eng Fract Mech 275:. https://doi.org/10.1016/j.engfracmech.2022.108813

  41. Xiao G, Chen B, Li S, Zhuo X (2022) Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress. Eng Fail Anal 131:1–14. https://doi.org/10.1016/j.engfailanal.2021.105846

    Article  Google Scholar 

  42. Kumar D, Idapalapati S, Wang W (2021) Influence of residual stress distribution and microstructural characteristics on fatigue failure mechanism in Ni-based superalloy. Fatigue Fract Eng Mater Struct 44:1583–1601. https://doi.org/10.1111/ffe.13454

    Article  Google Scholar 

  43. Zhu L, Fan X, Xiao L, Ji H, Guo J (2023) Influence of shot peening on the microstructure and high-temperature tensile properties of a powder metallurgy Ni-based superalloy. J Mater Sci 58:2838–2852. https://doi.org/10.1007/s10853-023-08182-3

    Article  Google Scholar 

  44. Liu SY, Shao S, Guo H, Zong R, Qin CX (2022) The microstructure and fatigue performance of Inconel 718 produced by laser-based powder bed fusion and post heat treatment. Int J Fatigue 156:. https://doi.org/10.1016/j.ijfatigue.2021.106700

  45. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  46. Ulutan D, Sima M, Özel T (2011) Prediction of machining induced surface integrity using elastic-viscoplastic simulations and temperature-dependent flow softening material models in titanium and nickel-based alloys. Adv Mater Res 223:401–410. https://doi.org/10.4028/www.scientific.net/AMR.223.401

    Article  Google Scholar 

  47. Soo SL, Aspinwall DK, Dewes RC (2004) Three-dimensional finite element modelling of high-speed milling of Inconel 718. Proc Inst Mech Eng Part B J Eng Manuf 218:1555–1561. https://doi.org/10.1243/0954405042418473

    Article  Google Scholar 

  48. Aspinwall DK, Soo SL, Berrisford AE, Walder G (2008) Workpiece surface roughness and integrity after WEDM of Ti-6Al-4V and Inconel 718 using minimum damage generator technology. CIRP Ann - Manuf Technol 57:187–190. https://doi.org/10.1016/j.cirp.2008.03.054

    Article  Google Scholar 

  49. Attia H, Tavakoli S, Vargas R, Thomson V (2010) Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann - Manuf Technol 59:83–88. https://doi.org/10.1016/j.cirp.2010.03.093

    Article  Google Scholar 

  50. Axinte DA, De Chiffre L (2008) Effectiveness and resolution of tests for evaluating the performance of cutting fluids in machining aerospace alloys. CIRP Ann - Manuf Technol 57:129–132. https://doi.org/10.1016/j.cirp.2008.03.081

    Article  Google Scholar 

  51. Axinte D, Axinte M, Tannock JDT (2003) A multicriteria model for cutting fluid evaluation. Proc Inst Mech Eng Part B J Eng Manuf 217:1341–1353. https://doi.org/10.1243/095440503322617117

    Article  Google Scholar 

  52. Figiel H, Zogał O, Yartys V (2005) Journal of alloys and compounds: preface. J Alloys Compd 404–406:1. https://doi.org/10.1016/j.jallcom.2005.05.002

    Article  Google Scholar 

  53. Li DS, Chen G, Li D, Zheng Q, Gao P, Zhang LL (2021) Oxidation resistance of nickel-based superalloy Inconel 600 in air at different temperatures. Rare Met 40:3235–3240. https://doi.org/10.1007/s12598-018-1148-1

    Article  Google Scholar 

  54. Pratheesh Kumar S, Elangovan S, Mohanraj R, Ramakrishna JR (2021) A review on properties of Inconel 625 and Inconel 718 fabricated using direct energy deposition. Mater Today Proc 46:7892–7906. https://doi.org/10.1016/j.matpr.2021.02.566

    Article  Google Scholar 

  55. Hu Y, Lin X, Li Y, Zhang S, Zhang Q, Chen W (2021) Influence of heat treatments on the microstructure and mechanical properties of Inconel 625 fabricated by directed energy deposition. Mater Sci Eng A 817:. https://doi.org/10.1016/j.msea.2021.141309

  56. Bushlya V, Zhou J, Ståhl JE (2012) Effect of cutting conditions on machinability of superalloy Inconel 718 during high speed turning with coated and uncoated PCBN tools. Procedia CIRP 3:370–375. https://doi.org/10.1016/j.procir.2012.07.064

    Article  Google Scholar 

  57. Ulutan D, Arisoy YM, Özel T, Mears L (2014) Empirical modeling of residual stress profile in machining nickel-based superalloys using the sinusoidal decay function. Procedia CIRP 13:365–370. https://doi.org/10.1016/j.procir.2014.04.062

    Article  Google Scholar 

  58. Zhou J, Bushlya V, Avdovic P, Ståhl JE (2012) Study of surface quality in high speed turning of Inconel 718 with uncoated and coated CBN tools. Int J Adv Manuf Technol 58:141–151. https://doi.org/10.1007/s00170-011-3374-7

    Article  Google Scholar 

  59. Umbrello D (2013) Investigation of surface integrity in dry machining of Inconel 718. Int J Adv Manuf Technol 69:2183–2190. https://doi.org/10.1007/s00170-013-5198-0

    Article  Google Scholar 

  60. Lee SM, Chow HM, Yan BH (2007) Friction drilling of IN-713LC cast superalloy. Mater Manuf Process 22:893–897. https://doi.org/10.1080/10426910701451697

    Article  Google Scholar 

  61. Zou B, Chen M, Huang C, An Q (2009) Study on surface damages caused by turning NiCr20TiAl nickel-based alloy. J Mater Process Technol 209:5802–5809. https://doi.org/10.1016/j.jmatprotec.2009.06.017

    Article  Google Scholar 

  62. Ezilarasan C, Senthil Kumar VS, Velayudham A (2013) An experimental analysis and measurement of process performances in machining of nimonic C-263 super alloy. Measurement 46:185–199. https://doi.org/10.1016/j.measurement.2012.06.006

    Article  Google Scholar 

  63. Ezilarasan C, Senthil Kumar VS, Velayudham A (2013) Effect of machining parameters on surface integrity in machining Nimonic C-263 super alloy using whisker-reinforced ceramic insert. J Mater Eng Perform 22:1619–1628. https://doi.org/10.1007/s11665-012-0439-1

    Article  Google Scholar 

  64. Ezilarasan C, Senthil Kumar VS, Velayudham A (2014) Theoretical predictions and experimental validations on machining the Nimonic C-263 super alloy. Simul Model Pract Theory 40:192–207. https://doi.org/10.1016/j.simpat.2013.09.008

    Article  Google Scholar 

  65. Yamaguchi Y, Abe M, Tajima R, Terada Y (2020) Microstructure evolution during isothermal aging for wrought nickel-based superalloy udimet 520+1. Mater Trans 61:1689–1697. https://doi.org/10.2320/matertrans.MT-M2020115

    Article  Google Scholar 

  66. Nematzadeh F, Akbarpour MR, Kokabi AH, Sadrnezhaad SK (2009) Structural changes of radial forging die surface during service under thermo-mechanical fatigue. Mater Sci Eng A 527:98–102. https://doi.org/10.1016/j.msea.2009.07.068

    Article  Google Scholar 

  67. Joshi S V., Paul Vizhian S, Sridhar BR, Jayaram K (2008) Parametric study of machining effect on residual stress and surface roughness of nickel base super alloy UDIMET 720. Adv Mater Res 47–50 PART:13–16. https://doi.org/10.4028/www.scientific.net/amr.47-50.13

  68. Cui C, Gu Y, Harada H, Sato A (2005) Microstructure and yield strength of UDIMET 720LI alloyed with Co-16.9 Wt Pct Ti. Metall Mater Trans A Phys Metall Mater Sci 36:2921–2927. https://doi.org/10.1007/s11661-005-0065-8

    Article  Google Scholar 

  69. Hood R, Soo SL, Aspinwall DK, Andrews P (2011) Twist drilling of haynes 282 superalloy. Procedia Eng 19:150–155. https://doi.org/10.1016/j.proeng.2011.11.094

    Article  Google Scholar 

  70. Hood R, Soo SL, Aspinwall DK, Andrews P, Sage C (2012) Radius end milling of Haynes 282 nickel based superalloy. 226:1745–1753. https://doi.org/10.1177/0954405412455886

  71. Ghazi AR, Khan HI, Farooq M, Jahangir S, Anwar MT (2023) Effect of temperature and medium environment on corrosion fatigue behavior of Inconel 625. Mater Corros. https://doi.org/10.1002/maco.202313748

    Article  Google Scholar 

  72. Thébaud L, Villechaise P, Cormier J, Crozet C, Devaux A, Bechet D, Franchet JM (2015) Relationships between microstructural parameters and time-dependent mechanical properties of a new nickel-based superalloy AD730™. Metals (Basel) 5:2236–2251. https://doi.org/10.3390/met5042236

    Article  Google Scholar 

  73. Shah P, Khanna N, Chetan (2020) Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques. Tribol Int 148:106314. https://doi.org/10.1016/j.triboint.2020.106314

    Article  Google Scholar 

  74. Kwong J, Axinte DA, Withers PJ, Hardy MC (2009) Minor cutting edge-workpiece interactions in drilling of an advanced nickel-based superalloy. Int J Mach Tools Manuf 49:645–658. https://doi.org/10.1016/j.ijmachtools.2009.01.012

    Article  Google Scholar 

  75. Marinescu I, Axinte DA (2008) A critical analysis of effectiveness of acoustic emission signals to detect tool and workpiece malfunctions in milling operations. Int J Mach Tools Manuf 48:1148–1160. https://doi.org/10.1016/j.ijmachtools.2008.01.011

    Article  Google Scholar 

  76. M’Saoubi R, Axinte D, Herbert C, Hardy M, Salmon P (2014) Surface integrity of nickel-based alloys subjected to severe plastic deformation by abusive drilling. CIRP Ann - Manuf Technol 63:61–64. https://doi.org/10.1016/j.cirp.2014.03.067

    Article  Google Scholar 

  77. Ezugwu EO, Wang ZM, Okeke CI (1999) Tool life and surface integrity when machining inconel 718 with pvd- and cvd-coated tools. Tribol Trans 42:353–360. https://doi.org/10.1080/10402009908982228

    Article  Google Scholar 

  78. Tan L, Yao C, Li X, Fan Y, Cui M (2022) Effects of machining parameters on surface integrity when turning Inconel 718. J Mater Eng Perform 31:4176–4186. https://doi.org/10.1007/s11665-021-06523-4

    Article  Google Scholar 

  79. Sharman ARC, Hughes JI, Ridgway K (2004) Workpiece Surface integrity and tool life issues when turning Inconel 718? nickel based superalloy. Mach Sci Technol 8:399–414. https://doi.org/10.1081/lmst-200039865

    Article  Google Scholar 

  80. Arunachalam R, Mannan M, Spowage A (2004) Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. Int J Mach Tools Manuf 44:879–887. https://doi.org/10.1016/j.ijmachtools.2004.02.016

    Article  Google Scholar 

  81. Sadat AB, Reddy MY, Wang BP (1991) Plastic deformation analysis in machining of Inconel-718 nickel-base superalloy using both experimental and numerical methods. Int J Mech Sci 33:829–842. https://doi.org/10.1016/0020-7403(91)90005-N

    Article  Google Scholar 

  82. Xu D, Liao Z, Axinte D, Hardy M (2020) A novel method to continuously map the surface integrity and cutting mechanism transition in various cutting conditions. Int J Mach Tools Manuf 151:. https://doi.org/10.1016/j.ijmachtools.2020.103529

  83. Zhou JM, Bushlya V, Peng RL, Johansson S (2011) Effects of tool wear on subsurface deformation of nickel-based superalloy. Procedia Eng 19:407–413. https://doi.org/10.1016/j.proeng.2011.11.133

    Article  Google Scholar 

  84. Imran M, Mativenga PT, Gholinia A, Withers PJ (2015) Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes. Int J Adv Manuf Technol 79:1303–1311. https://doi.org/10.1007/s00170-015-6909-5

    Article  Google Scholar 

  85. Bushlya V, Zhou JM, Lenrick F, Avdovic P, Stahl JE (2011) Characterization of white layer generated when turning aged Inconel 718. Procedia Eng 19:60–66. https://doi.org/10.1016/j.proeng.2011.11.080

    Article  Google Scholar 

  86. M’Saoubi R, Larsson T, Outeiro J, Guo Y, Suslov S (2012) Surface integrity analysis of machined Inconel 718 over multiple length scales. CIRP Ann - Manuf Technol 61:99–102. https://doi.org/10.1016/j.cirp.2012.03.058

    Article  Google Scholar 

  87. Ranganath S, Guo C, Hegde P (2009) A finite element modeling approach to predicting white layer formation in nickel superalloys. CIRP Ann - Manuf Technol 58:77–80. https://doi.org/10.1016/j.cirp.2009.03.109

    Article  Google Scholar 

  88. Herbert C, Axinte DA, Hardy M, Withers P (2014) Influence of surface anomalies following hole making operations on the fatigue performance for a nickel-based superalloy. J Manuf Sci Eng 136:1–9. https://doi.org/10.1115/1.4027619

    Article  Google Scholar 

  89. Jin D, Liu Z (2012) Effect of cutting speed on surface integrity and chip morphology in high-speed machining of PM nickel-based superalloy FGH95. Int J Adv Manuf Technol 60:893–899. https://doi.org/10.1007/s00170-011-3679-6

    Article  Google Scholar 

  90. Umbrello D, Filice L (2009) Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation. CIRP Ann - Manuf Technol 58:73–76. https://doi.org/10.1016/j.cirp.2009.03.106

    Article  Google Scholar 

  91. Österle W, Li PX (1997) Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates. Mater Sci Eng A 238:357–366. https://doi.org/10.1016/S0921-5093(97)00457-7

    Article  Google Scholar 

  92. Sauvage X, Le Breton JM, Guillet A, Meyer A (2003) Phase transformations in surface layers of machined steels investigated by X-ray diffraction and Mössbauer spectrometry. Mater Sci Eng A 362:181–186. https://doi.org/10.1016/S0921-5093(03)00531-8

    Article  Google Scholar 

  93. Soo SL, Hood R, Aspinwall DK, Voice WE, Sage C (2011) Machinability and surface integrity of RR1000 nickel based superalloy. CIRP Ann - Manuf Technol 60:89–92. https://doi.org/10.1016/j.cirp.2011.03.094

    Article  Google Scholar 

  94. Augspurger T, Meurer M, Liu H, Mattfeld P, Bergs T (2020) Experimental study of the connection between process parameters, thermo-mechanical loads and surface integrity in machining Inconel 718. Procedia CIRP 87:59–64. https://doi.org/10.1016/j.procir.2020.02.081

    Article  Google Scholar 

  95. Akhavan Niaki F, Mears L (2017) A comprehensive study on the effects of tool wear on surface roughness, dimensional integrity and residual stress in turning IN718 hard-to-machine alloy. J Manuf Process 30:268–280. https://doi.org/10.1016/j.jmapro.2017.09.016

    Article  Google Scholar 

  96. Che-Haron CH, Jawaid A (2005) The effect of machining on surface integrity of titanium alloy Ti-6% Al-4% v. J Mater Process Technol 166:188–192. https://doi.org/10.1016/j.jmatprotec.2004.08.012

    Article  Google Scholar 

  97. Akhavan Farid A, Sharif S, Namazi H (2009) Effect of machining parameters and cutting edge geometry on surface integrity when drilling and hole making in Inconel 718. SAE Int J Mater Manuf 2:564–569. https://doi.org/10.4271/2009-01-1412

    Article  Google Scholar 

  98. Axinte DA, Andrews P, Li W, Gindy N, Withers PJ (2006) Turning of advanced Ni based alloys obtained via powder metallurgy route. CIRP Ann - Manuf Technol 55:117–120. https://doi.org/10.1016/S0007-8506(07)60379-5

    Article  Google Scholar 

  99. Herbert CRJ, Kwong J, Kong MC, Axinte DA (2012) An evaluation of the evolution of workpiece surface integrity in hole making operations for a nickel-based superalloy. J Mater Process Technol 212:1723–1730. https://doi.org/10.1016/j.jmatprotec.2012.03.014

    Article  Google Scholar 

  100. Thakur A, Mohanty A, Gangopadhyay S (2014) Comparative study of surface integrity aspects of Incoloy 825 during machining with uncoated and CVD multilayer coated inserts. Appl Surf Sci 320:829–837. https://doi.org/10.1016/j.apsusc.2014.09.129

    Article  Google Scholar 

  101. Imran M, Mativenga PT, Gholinia A, Withers PJ (2011) Evaluation of surface integrity in micro drilling process for nickel-based superalloy. 465–476. https://doi.org/10.1007/s00170-010-3062-z

  102. Jin D, Liu Z (2013) Damage of the machined surface and subsurface in orthogonal milling of FGH95 superalloy. Int J Adv Manuf Technol 68:1573–1581. https://doi.org/10.1007/s00170-013-4944-7

    Article  Google Scholar 

  103. Du J, Liu Z, Lv S (2014) Deformation-phase transformation coupling mechanism of white layer formation in high speed machining of FGH95 Ni-based superalloy. Appl Surf Sci 292:197–203. https://doi.org/10.1016/j.apsusc.2013.11.111

    Article  Google Scholar 

  104. Herbert C, Axinte D, Hardy M, Brown PD (2012) Investigation into the characteristics of white layers produced in a nickel-based superalloy from drilling operations. Mach Sci Technol 16:40–52. https://doi.org/10.1080/10910344.2012.648520

    Article  Google Scholar 

  105. Fan Y, Hao Z, Zheng M, Sun FL, Yang SC (2013) Study of surface quality in machining nickel-based alloy Inconel 718. Int J Adv Manuf Technol 69:2659–2667. https://doi.org/10.1007/s00170-013-5225-1

    Article  Google Scholar 

  106. Molaiekiya F, Aliakbari Khoei A, Aramesh M, Veldhuis SC (2021) Machined surface integrity of inconel 718 in high-speed dry milling using SiAlON ceramic tools. Int J Adv Manuf Technol 112:1941–1950. https://doi.org/10.1007/s00170-020-06471-8

    Article  Google Scholar 

  107. Muhammad A, Kumar Gupta M, Mikołajczyk T, Pimenov DY, Giasin K (2021) Effect of tool coating and cutting parameters on surface roughness and burr formation during micromilling of Inconel 718. Metals (Basel) 11:167. https://doi.org/10.3390/met11010167

    Article  Google Scholar 

  108. Ezilarasan C, Senthil Kumar VS, Velayudham A, Palanikumar K (2011) Modeling and analysis of surface roughness on machining of Nimonic C-263 alloy by PVD coated carbide insert. Trans Nonferrous Met Soc China 21:1986–1994. https://doi.org/10.1016/S1003-6326(11)60961-8

    Article  Google Scholar 

  109. Klocke F, Vogtel P, Gierlings S, Lung D, Veselovac D (2013) Broaching of Inconel 718 with cemented carbide. 593–600. https://doi.org/10.1007/s11740-013-0483-1

  110. Veldhuis SC, Dosbaeva GK, Elfizy A, Fox-Rabinovich GS, Wagg T (2010) Investigations of white layer formation during machining of powder metallurgical Ni-Based ME 16 superalloy. 19:1031–1036. https://doi.org/10.1007/s11665-009-9567-7

  111. Herbert CRJ, Axinte DA, Hardy MC, Brown PD (2011) Investigation into the characteristics of white layers produced in a nickel-based superalloy from drilling operations. Procedia Eng 19:138–143. https://doi.org/10.1016/j.proeng.2011.11.092

    Article  Google Scholar 

  112. Devillez A, Coz G Le, Dominiak S, Dudzinski D (2011) Journal of materials processing technology dry machining of Inconel 718, workpiece surface integrity. 211:1590–1598. https://doi.org/10.1016/j.jmatprotec.2011.04.011

  113. Günay M, Korkmaz ME, Yaşar N (2020) Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments. J Manuf Process 56:678–687. https://doi.org/10.1016/j.jmapro.2020.05.031

    Article  Google Scholar 

  114. Aramcharoen A, Chuan SK (2014) An experimental investigation on cryogenic milling of Inconel 718 and its sustainability assessment. Procedia CIRP 14:529–534. https://doi.org/10.1016/j.procir.2014.03.076

    Article  Google Scholar 

  115. Yy à (2008) Nalbant M. A review of cryogenic cooling in machining processes 48:947–964. https://doi.org/10.1016/j.ijmachtools.2008.01.008

    Article  Google Scholar 

  116. Ding R, Knaggs C, Li H, Li YG, Bowen P (2020) Characterization of plastic deformation induced by machining in a Ni-based superalloy. Mater Sci Eng A 778:139104. https://doi.org/10.1016/j.msea.2020.139104

    Article  Google Scholar 

  117. Kumar S, Kumar A (2023) Optimization of machining ability of nickel alloy 685. Int Res J Mod Eng Technol Sci 635–642. https://doi.org/10.56726/irjmets33479

  118. Tian P, He L, Zhou T, Du F, Zou Z, Zhou X (2023) Experimental characterization of the performance of MQL-assisted turning of solution heat-treated and aged Inconel 718 alloy. Int J Adv Manuf Technol 125:3839–3851. https://doi.org/10.1007/s00170-023-10890-8

    Article  Google Scholar 

  119. Danish M, Gupta MK, Rubaiee S, Ahmed A (2021) Influence of hybrid Cryo-MQL lubri-cooling strategy on the machining and tribological characteristics of Inconel 718. Tribol Int 163:107178. https://doi.org/10.1016/j.triboint.2021.107178

    Article  Google Scholar 

  120. Imran M, Mativenga PT, Gholinia A, Withers PJ (2014) Comparison of tool wear mechanisms and surface integrity for dry and wet micro-drilling of nickel-base superalloys. Int J Mach Tools Manuf 76:49–60. https://doi.org/10.1016/j.ijmachtools.2013.10.002

    Article  Google Scholar 

  121. Sugihara T, Enomoto T (2015) High speed machining of Inconel 718 focusing on tool surface topography of CBN Tool. 1:675–682. https://doi.org/10.1016/j.promfg.2015.09.010

  122. Liang X, Liu Z (2017) Experimental investigations on effects of tool flank wear on surface integrity during orthogonal dry cutting of Ti-6Al-4V. Int J Adv Manuf Technol 93:1617–1626. https://doi.org/10.1007/s00170-017-0654-x

    Article  Google Scholar 

  123. Pawade RS, Joshi SS, Brahmankar PK (2008) Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. Int J Mach Tools Manuf 48:15–28. https://doi.org/10.1016/j.ijmachtools.2007.08.004

    Article  Google Scholar 

  124. Sharman ARC, Hughes JI, Ridgway K (2006) An analysis of the residual stresses generated in Inconel 718 TM when turning. 173:359–367. https://doi.org/10.1016/j.jmatprotec.2005.12.007

  125. Khanna N, Shah P, Chetan (2020) Comparative analysis of dry, flood, MQL and cryogenic CO2 techniques during the machining of 15–5-PH SS alloy. Tribol Int 146:. https://doi.org/10.1016/j.triboint.2020.106196

  126. Rao CM, Sachin B, Rao SS, Herbert MA (2021) Minimum quantity lubrication through the micro-hole textured PCD and PCBN inserts in the machining of the Ti–6Al–4V alloy. Tribol Int 153:. https://doi.org/10.1016/j.triboint.2020.106619

  127. Thakur DG, Ramamoorthy B, Vijayaraghavan L (2012) Effect of cutting parameters on the degree of work hardening and tool life during high-speed machining of Inconel 718. Int J Adv Manuf Technol 59:483–489. https://doi.org/10.1007/s00170-011-3529-6

    Article  Google Scholar 

  128. Ramoni M, Shanmugam R, Ross NS, Gupta MK (2021) An experimental investigation of hybrid manufactured SLM based Al-Si10-Mg alloy under mist cooling conditions. J Manuf Process 70:225–235. https://doi.org/10.1016/j.jmapro.2021.08.045

    Article  Google Scholar 

  129. Bhirud NL, Gawande RR (2017) Measurement and prediction of cutting temperatures during dry milling : review and discussions. J Brazilian Soc Mech Sci Eng 39:5135–5158. https://doi.org/10.1007/s40430-017-0869-7

    Article  Google Scholar 

  130. Liang X, Liu Z, Wang B (2019) State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: a review. Meas J Int Meas Confed 132:150–181. https://doi.org/10.1016/j.measurement.2018.09.045

    Article  Google Scholar 

  131. Hood R, Soo SL, Aspinwall DK, Mantle AL (2018) Tool life and workpiece surface integrity when turning an RR1000 nickel-based superalloy. Int J Adv Manuf Technol 98:2461–2468. https://doi.org/10.1007/s00170-018-2371-5

    Article  Google Scholar 

  132. Saleem MQ, Mumtaz S (2020) Face milling of Inconel 625 via wiper inserts: evaluation of tool life and workpiece surface integrity. J Manuf Process 56:322–336. https://doi.org/10.1016/j.jmapro.2020.04.011

    Article  Google Scholar 

  133. Makhesana MA, Patel KM, Krolczyk GM (2023) Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of Inconel 625. CIRP J Manuf Sci Technol 41:225–238. https://doi.org/10.1016/j.cirpj.2022.12.015

    Article  Google Scholar 

  134. Sarıkaya M, Gupta MK, Tomaz I, Pimenov DY (2021) A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys. CIRP J Manuf Sci Technol 35:624–658. https://doi.org/10.1016/j.cirpj.2021.08.005

    Article  Google Scholar 

  135. Jafarian F, Amirabadi H, Sadri J, Banooie HR (2014) Simultaneous optimizing residual stress and surface roughness in turning of Inconel718 superalloy. Mater Manuf Process 29:337–343. https://doi.org/10.1080/10426914.2013.864413

    Article  Google Scholar 

  136. Özel T, Ulutan D (2012) Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Ann 61:547–550. https://doi.org/10.1016/j.cirp.2012.03.100

    Article  Google Scholar 

  137. Xin H, Shi Y, Ning L, Zhao T (2016) Residual stress and affected layer in disc milling of titanium alloy. Mater Manuf Process 31:1645–1653. https://doi.org/10.1080/10426914.2015.1090583

    Article  Google Scholar 

  138. Zhou J, Bushlya V, Lin R, Chen Z, Johansson S (2014) Analysis of subsurface microstructure and residual stresses in machined Inconel 718 with PCBN and Al 2 O 3 -SiC w tools. 13:150–155. https://doi.org/10.1016/j.procir.2014.04.026

  139. Axinte D, Dewes R (2002) Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J Mater Process Technol 127:325–335. https://doi.org/10.1016/S0924-0136(02)00282-0

    Article  Google Scholar 

  140. Valentini E, Bertelli L, Benincasa A, Gulisano S (2020) Recent advancements in the hole-drilling strain-gage method for determining residual stresses. In: New challenges in residual stress measurements and evaluation. IntechOpen https://doi.org/10.5772/intechopen.90392

  141. Guo J, Fu H, Pan B, KANG R, (2021) Recent progress of residual stress measurement methods: a review. Chinese J Aeronaut 34:54–78. https://doi.org/10.1016/j.cja.2019.10.010

    Article  Google Scholar 

  142. Lodh A, Thool K, Samajdar I (2022) X-ray diffraction for the determination of residual stress of crystalline material: an overview. Trans Indian Inst Met 75:983–995. https://doi.org/10.1007/s12666-022-02540-6

    Article  Google Scholar 

  143. Jacobson M, Dahlman P, Gunnberg F (2002) Cutting speed influence on surface integrity of hard turned bainite steel. J Mater Process Technol 128:318–323. https://doi.org/10.1016/S0924-0136(02)00472-7

    Article  Google Scholar 

  144. Rao B, Shin YC (2001) Analysis on high-speed face-milling of 7075–T6 aluminum using carbide and diamond cutters. Int J Mach Tools Manuf 41:1763–1781. https://doi.org/10.1016/S0890-6955(01)00033-5

    Article  Google Scholar 

  145. Sharman ARC, Hughes JI, Ridgway K (2015) The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718™. J Mater Process Technol 216:123–132. https://doi.org/10.1016/j.jmatprotec.2014.09.002

    Article  Google Scholar 

  146. Holmberg J, Wretland A, Berglund J, Beno T (2020) A detailed investigation of residual stresses after milling Inconel 718 using typical production parameters for assessment of affected depth. Mater Today Commun 24:100958. https://doi.org/10.1016/j.mtcomm.2020.100958

    Article  Google Scholar 

  147. Javidi A, Rieger U, Eichlseder W (2008) Int J Fatigue The effect of Mach Surface Integr Fatigue Life 30:2050–2055. https://doi.org/10.1016/j.ijfatigue.2008.01.005

    Article  Google Scholar 

  148. Dixit APAR, Uddin SCMS, Dong Y (2017) Fatigue life of machined componentshttps://doi.org/10.1007/s40436-016-0168-z

  149. Sun J, Guo YB (2009) Journal of Materials Processing Technology A comprehensive experimental study on surface integrity by end milling Ti – 6Al – 4V. 209:4036–4042. https://doi.org/10.1016/j.jmatprotec.2008.09.022

  150. Wusatowska-Sarnek AM, Dubiel B, Czyrska-Filemonowicz A, Bhowal PR, Ben Salah N (2011) Microstructural characterization of the white etching layer in nickel-based superalloy. Metall Mater Trans A 42:3813–3825. https://doi.org/10.1007/s11661-011-0779-8

    Article  Google Scholar 

  151. Dutilh V, Dessein G, Alexis J, Perrin G (2010) Links between machining parameters and surface integrity in drilling Ni-superalloy. Adv Mater Res 112:171–178. https://doi.org/10.4028/www.scientific.net/AMR.112.171

    Article  Google Scholar 

  152. Vincent Dutilh, Andreï Popa, Gilles Dessein, Joël Alexis GP (2010) Impact of disturbed drilling conditions on the surface integrity of a nickel-base superalloy. In: CIRP ICME ’10 - 7th CIRP International Conference on INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING. hal-00944562, Capri, Italy. https://hal.science/hal-00944562

  153. Sharman ARC, Hughes JI, Ridgway K (2006) Machining science and technology : an international workpiece surface integrity and tool life issues when turning Inconel 718 TM nickel based superalloy workpiece surface integrity and tool life issues. 37–41. https://doi.org/10.1081/LMST-200039865

  154. Xu Y, Gong Y, Wang Z, Wen X, Yin G, Zhang H, Qi Y (2021) Experimental study of Ni - based single - crystal superalloy : microstructure evolution and work hardening of ground subsurface. Arch Civ Mech Eng 21:1–11. https://doi.org/10.1007/s43452-021-00203-9

    Article  Google Scholar 

  155. Saleem MQ, Mehmood A (2022) Eco-friendly precision turning of superalloy Inconel 718 using MQL based vegetable oils: tool wear and surface integrity evaluation. J Manuf Process 73:112–127. https://doi.org/10.1016/j.jmapro.2021.10.059

    Article  Google Scholar 

  156. Hill C (2002) Residual stresses VI , ECRS6. 407:173–178. https://doi.org/10.4028/www.scientific.net/MSF.404-407.173

  157. Cai X, Qin S, Li J, An Q, Chen M (2014) Experimental investigation on surface integrity of end milling nickel-based alloy— Inconel 718. Mach Sci Technol 18:31–46. https://doi.org/10.1080/10910344.2014.863627

    Article  Google Scholar 

  158. Pusavec F, Hamdi H, Kopac J, Jawahir IS (2011) Surface integrity in cryogenic machining of nickel based alloy - Inconel 718. J Mater Process Technol 211:773–783. https://doi.org/10.1016/j.jmatprotec.2010.12.013

    Article  Google Scholar 

  159. Ross NS, Srinivasan N, Amutha P, Gupta MK (2022) Thermo-physical, tribological and machining characteristics of Hastelloy C276 under sustainable cooling/lubrication conditions. J Manuf Process 80:397–413. https://doi.org/10.1016/j.jmapro.2022.06.018

    Article  Google Scholar 

  160. Podder B, Paul S (2012) Improvement of machinability in end milling of Nimonic C-263 by application of high pressure coolant. Int J Mach Mach Mater 11:418. https://doi.org/10.1504/IJMMM.2012.047837

    Article  Google Scholar 

  161. Rahim EA, Sasahara H Machining science and technology : an analysis of surface integrity when drilling Inconel 718 using palm oil and synthetic ester under mql condition. 37–41. https://doi.org/10.1080/10910344.2011.557967

  162. Sharman ARC, Hughes JI, Ridgway K (2008) Surface integrity and tool life when turning Inconel 718 using ultra-high pressure and flood coolant systems. 222:653–664. https://doi.org/10.1243/09544054JEM936

  163. Amigo FJ, Urbikain G, Pereira O (2020) Combination of high feed turning with cryogenic cooling on Haynes 263 and Inconel 718 superalloys. J Manuf Process 58:208–222. https://doi.org/10.1016/j.jmapro.2020.08.029

    Article  Google Scholar 

  164. Coelho RT, Silva LR, Braghini A, Bezerra AA (2004) Some effects of cutting edge preparation and geometric modifications when turning Inconel 718 TM at high cutting speeds. 148:147–153. https://doi.org/10.1016/j.jmatprotec.2004.02.001

  165. Madariaga A, Esnaola JA, Fernandez E (2014) Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. 1587–1598. https://doi.org/10.1007/s00170-013-5585-6

  166. Thakur A, Dewangan S, Patnaik Y, Gangopadhyay S (2014) Prediction of work hardening during machining Inconel 825 using fuzzy logic method. Procedia Mater Sci 5:2046–2053. https://doi.org/10.1016/j.mspro.2014.07.538

    Article  Google Scholar 

  167. Outeiro JC, Pina JC, Saoubi RM, Pusavec F, Jawahir IS (2008) CIRP Annals - Manufacturing technology analysis of residual stresses induced by dry turning of difficult-to-machine materials. 57:77–80https://doi.org/10.1016/j.cirp.2008.03.076

  168. Li W, Withers PJ, Axinte D, Preuss M (2009) Journal of materials processing technology residual stresses in face finish turning of high strength nickel-based superalloy. 209:4896–4902https://doi.org/10.1016/j.jmatprotec.2009.01.012

Download references

Funding

This work was supported by the Key Research & Development Program of Shandong Province (Grant No. 2021SFGC0902) and Taishan Scholar Project of Shandong Province (No. ts201712002).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study. GM has made a substantial effort to design, research, and writing of this article. BL helped to draft the manuscript, and SZ finalized the content of the manuscript including revisions and edits. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Song Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, G., Li, B. & Zhang, S. Cutting condition effects on microstructure and mechanical characteristics of Ni-based superalloys—a review. Int J Adv Manuf Technol 130, 3179–3209 (2024). https://doi.org/10.1007/s00170-023-12910-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12910-z

Keywords

Navigation