Skip to main content
Log in

Thermal analysis of revolution pitch effects on friction stir welding of polypropylene

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study explores the relationship between revolution pitch, heat generation, and flow properties in polypropylene friction stir welding joints. Utilizing a modified computational fluid dynamics method, simulations of polypropylene friction stir welding are conducted to elucidate material flow and thermal history in relation to revolution pitch. The study investigates the impact of revolution pitch on internal defects, hardness, and tensile strength of the polypropylene joint. Simulation results reveal that revolution pitch influences polypropylene strain rate and viscosity, leading to variations in internal voids within the stir zone. A higher revolution pitch results in vertical mixing, while a lower revolution pitch causes horizontal lamellar mixing in the stir zone. Controlling revolution pitch is crucial for producing robust joints, as a very low revolution pitch increases the risk of over-stirring and air tapping, while a very high revolution pitch hinders proper joint formation. The optimal heat range for robust joint formation is identified between ~175 (revolution pitch = 0.0410) and ~210 °C. (at revolution pitch = 0.0107). The study demonstrates that consistent polypropylene joint properties can be achieved with similar revolution pitch, even at different friction stir welding tool velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

P :

Pressure

cv :

Volumetric density

C p :

Specific heat

T :

Temperature

k :

Thermal conductivity

O Total :

Total heat input produced by friction and plastic deformation

𝜓:

Internal mixing factor

R s :

Tool shoulder radius

R p :

Pin body radius

R b :

Pin beneath radius

O w :

Conducted heat into the weld material

τ0:

Plastic tangential adhesion

μf :

Friction coefficient

M :

Welding velocity

ω :

Rotational velocity of the FSW tool

F :

Axial force

F z :

Normal force

F x :

Shear force

ε ij :

Activation strain

ΔU :

Activation energy

V*:

Activation volume

R :

Gas constant

T g,dry :

Glass transition temperature at the dry state

T g,wet :

Glass transition temperature after FSW

References

  1. Derazkola HA, Eyvazian A, Simchi A (2020) Modeling and experimental validation of material flow during FSW of polycarbonate. Mater Today Commun 22. https://doi.org/10.1016/j.mtcomm.2019.100796

  2. Aghajani Derazkola H, Garcia E, Elyasi M (2021) Underwater friction stir welding of PC: experimental study and thermo-mechanical modelling. J Manuf Process 65:161–173. https://doi.org/10.1016/j.jmapro.2021.03.034

    Article  Google Scholar 

  3. MirHashemi SM, Amadeh A, Khodabakhshi F (2021) Effects of SiC nanoparticles on the dissimilar friction stir weldability of low-density polyethylene (LDPE) and AA7075 aluminum alloy. J Mater Res Technol 13:449–462. https://doi.org/10.1016/j.jmrt.2021.04.094

    Article  Google Scholar 

  4. Isa MSM, Moghadasi K, Ariffin MA, Raja S, Muhamad MR, Muhamad MRB, Yusof F, Jamaludin MF, Yusoff NB, Karim MSBA (2021) Recent research progress in friction stir welding of aluminium and copper dissimilar joint: a review. J Mater Res Technol 15:2735–2780. https://doi.org/10.1016/j.jmrt.2021.09.037

    Article  Google Scholar 

  5. Panneerselvam K, Lenin K (2014) Joining of Nylon 6 plate by friction stir welding process using threaded pin profile. Mater Des 53:302–307. https://doi.org/10.1016/j.matdes.2013.07.017

    Article  Google Scholar 

  6. Rahmi M, Abbasi M (2017) Friction stir vibration welding process: modified version of friction stir welding process. Int J Adv Manuf Technol 90:141–151. https://doi.org/10.1007/s00170-016-9383-9

    Article  Google Scholar 

  7. Pereira MAR, Amaro AM, Reis PNB, Loureiro A (2021) Effect of Friction Stir Welding Techniques and Parameters on Polymers Joint Efficiency—A Critical Review. Polymers. 13(13):2056. https://doi.org/10.3390/polym13132056

    Article  Google Scholar 

  8. Mirabzadeh R, Parvaneh V, Ehsani A (2021) Experimental and numerical investigation of the generated heat in polypropylene sheet joints using friction stir welding (FSW). Int J Mater Form 14:1067–1083. https://doi.org/10.1007/s12289-021-01622-y

    Article  Google Scholar 

  9. Bilici MK (2012) Effect of tool geometry on friction stir spot welding of polypropylene sheets. Express Polym Lett 6:805–813. https://doi.org/10.3144/expresspolymlett.2012.86

    Article  Google Scholar 

  10. Kiss Z, Czigany T (2012) Microscopic analysis of the morphology of seams in friction stir welded polypropylene. Express Polym Lett 6:54–62. https://doi.org/10.3144/expresspolymlett.2012.6

    Article  Google Scholar 

  11. Moochani A, Omidvar H, Ghaffarian SR, Goushegir SM (2019) Friction stir welding of thermoplastics with a new heat-assisted tool design: mechanical properties and microstructure. Weld World 63:181–190. https://doi.org/10.1007/s40194-018-00677-x

    Article  Google Scholar 

  12. Sahu SK, Mishra D, Mahto RP, Sharma VM, Pal SK, Pal K, Banerjee S, Dash P (2018) Friction stir welding of polypropylene sheet. Eng Sci Technol an Int J 21:245–254. https://doi.org/10.1016/j.jestch.2018.03.002

    Article  Google Scholar 

  13. Nath RK, Jha V, Maji P, Barma JD (2021) A novel double-side welding approach for friction stir welding of polypropylene plate. Int J Adv Manuf Technol 113:691–703. https://doi.org/10.1007/s00170-021-06602-9

    Article  Google Scholar 

  14. Nath RK, Maji P, Barma JD (2019) Development of a self-heated friction stir welding tool for welding of polypropylene sheets. J Brazilian Soc Mech Sci Eng 41:553. https://doi.org/10.1007/s40430-019-2059-2

    Article  Google Scholar 

  15. Sheikh-Ahmad JY, Deveci S, Almaskari F, Rehman RU (2022) Effect of process temperatures on material flow and weld quality in the friction stir welding of high density polyethylene. J Mater Res Technol 18:1692–1703. https://doi.org/10.1016/j.jmrt.2022.03.082

    Article  Google Scholar 

  16. Zhai M, Wu C, Shi L (2022) Numerical simulation of friction stir lap welding of Al-to-Mg alloys under different lap configurations and pin lengths. J Mater Res Technol 20:2889–2904. https://doi.org/10.1016/j.jmrt.2022.08.047

    Article  Google Scholar 

  17. Ji H, Deng YL, Xu HY, Yin X, Zhang T, Wang WQ, Dong HG, Wang TY, Wu JP (2022) Numerical modeling for the mechanism of shoulder and pin features affecting thermal and material flow behavior in friction stir welding. J Mater Res Technol 21:662–678. https://doi.org/10.1016/j.jmrt.2022.09.070

    Article  Google Scholar 

  18. Aghajani Derazkola H, Simchi A (2018) Experimental and thermomechanical analysis of the effect of tool pin profile on the friction stir welding of poly(methyl methacrylate) sheets. J Manuf Process 34:412–423. https://doi.org/10.1016/j.jmapro.2018.06.015

    Article  Google Scholar 

  19. Sun Z, Wu CS, Jiang T, Wu CS, Shi L (2022) Influence of tool thread pitch on material flow and thermal process in friction stir welding. J Mater Process Technol 275:112–122. https://doi.org/10.1016/j.jmatprotec.2019.116281

    Article  Google Scholar 

  20. Sun Z, Wu CS (2018) A numerical model of pin thread effect on material flow and heat generation in shear layer during friction stir welding. J Manuf Process 36:10–21. https://doi.org/10.1016/j.jmapro.2018.09.021

    Article  Google Scholar 

  21. Jiang T, Wu C, Shi L (2022) Effects of tool pin thread on temperature field and material mixing in friction stir welding of dissimilar Al/Mg alloys. J Manuf Process 74:112–122. https://doi.org/10.1016/j.jmapro.2021.12.008

    Article  Google Scholar 

  22. Lambiase F, Paoletti A, Di Ilio A (2016) Effect of tool geometry on loads developing in friction stir spot welds of polycarbonate sheets. Int J Adv Manuf Technol 87:2293–2303. https://doi.org/10.1007/s00170-016-8629-x

    Article  Google Scholar 

  23. Lambiase F, Grossi V, Paoletti A (2020) Effect of tilt angle in FSW of polycarbonate sheets in butt configuration. Int J Adv Manuf Technol 107:489–501. https://doi.org/10.1007/s00170-020-05106-2

    Article  Google Scholar 

  24. Akbari M, Aliha MRM, Berto F (2023) Investigating the role of different components of friction stir welding tools on the generated heat and strain. Forces Mech 10:100166. https://doi.org/10.1016/j.finmec.2023.100166

    Article  Google Scholar 

  25. Akbari M, Rahimi Asiabaraki H (2023) Modeling and optimization of tool parameters in friction stir lap joining of aluminum using RSM and NSGA II. Weld Int 37:21–33. https://doi.org/10.1080/09507116.2022.2164530

    Article  Google Scholar 

  26. Akbari M, Asadi P (2021) Effects of different cooling conditions on friction stir processing of A356 alloy: numerical modeling and experiment. Proc Inst Mech Eng Part C J Mech Eng Sci 236:4133–4146. https://doi.org/10.1177/09544062211045655

    Article  Google Scholar 

  27. Asadi P, Aliha MRM, Akbari M, Imani DM, Berto F (2022) Multivariate optimization of mechanical and microstructural properties of welded joints by FSW method. Eng Fail Anal 140:106528. https://doi.org/10.1016/j.engfailanal.2022.106528

    Article  Google Scholar 

  28. Bagheri B, Sharifi F, Abbasi M, Abdollahzadeh A (2021) On the role of input welding parameters on the microstructure and mechanical properties of Al6061-T6 alloy during the friction stir welding: experimental and numerical investigation. Proc Inst Mech Eng Part L J Mater Des Appl 236:299–318. https://doi.org/10.1177/14644207211044407

    Article  Google Scholar 

  29. Bagheri B, Abbasi M, Abdolahzadeh A, Kokabi AH (2020) Numerical analysis of cooling and joining speed effects on friction stir welding by smoothed particle hydrodynamics (SPH). Arch Appl Mech 90:2275–2296. https://doi.org/10.1007/s00419-020-01720-4

    Article  Google Scholar 

  30. Abbasi M, Bagheri B, Keivani R (2015) Thermal analysis of friction stir welding process and investigation into affective parameters using simulation. J Mech Sci Technol 29:861–866. https://doi.org/10.1007/s12206-015-0149-3

    Article  Google Scholar 

  31. Keivani R, Bagheri B, Sharifi F, Ketabchi M, Abbasi M (2013) Effects of pin angle and preheating on temperature distribution during friction stir welding operation. Trans Nonferrous Met Soc Chin 23:2708–2713. https://doi.org/10.1016/S1003-6326(13)62788-0

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Aghajani Derazkola.

Ethics declarations

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derazkola, H.A., Kubit, A. Thermal analysis of revolution pitch effects on friction stir welding of polypropylene. Int J Adv Manuf Technol 130, 1421–1437 (2024). https://doi.org/10.1007/s00170-023-12831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12831-x

Keywords

Navigation