Skip to main content
Log in

Research and prospect of novel WC-HEA cemented carbide

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

With the rapid development of industrial manufacturing, traditional WC–Co cemented carbides have exposed more and more problems. Therefore, the preparation of ultrafine/nanocrystalline-grained cemented carbides and the development of new binders have become a hot issue in the field of cemented carbides. Due to the unique design concept, the high-entropy alloys (HEA) binder not only has the unique properties of the HEA itself, but also can replace the traditional Co element as the binder of cemented carbide, which opens up the possibility for industrial manufacturing. The stable chemical properties of WC are coupled with the multi-principal element characteristics of HEA binder, which makes novel WC-HEA cemented carbides have the characteristics of grain refinement, compact structure, stable structure, and excellent capability. A multitude of studies have found that the new WC-HEA cemented carbide exhibits better service performance than WC–Co cemented carbide. In this paper, the main preparation processes of WC-HEA cemented carbide in recent years are summarized; the influence of the working principle, advantages, and defects of the two different preparation methods on the microstructure and properties of WC-HEA cemented carbide were described. The characteristics and influence mechanism of microstructure such as the composition of high-entropy alloy binder and the change behavior of phase structure of WC-HEA cemented carbide were discussed. The service performance characteristics of WC-HEA cemented carbides were discussed, including mechanical properties, wear resistance, oxidation resistance, and corrosion resistance. Finally, it summarizes the research challenges and prospects in the current research work, and provides an outlook on the research direction and application prospects of WC-HEA cemented carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References 

  1. García J, Collado Ciprés V, Blomqvist A, Kaplan B (2019) Cemented carbide microstructures: a review. Inter J Refract Met Hard Mater 80:40–68. https://doi.org/10.1016/j.ijrmhm.2018.12.004

    Article  Google Scholar 

  2. Tu XX, Xiao LR, Cai ZY, Peng ZW, Zeng DL, Ren PH, Zhao XJ (2023) The microstructure evolution and dimensional stability of TiC steel-bonded cemented carbide during stabilizing heat treatments. Inter J Refract Met Hard Mater 113:106213. https://doi.org/10.1016/j.ijrmhm.2023.106213

    Article  Google Scholar 

  3. Ren XY, Zou HB, Diao QW, Wang CS, Wang Y, Li HY, Sui TY, Lin B, Yan S (2023) Surface modification technologies for enhancing the tribological properties of cemented carbides: a review. Tribol Int 180:108257. https://doi.org/10.1016/j.triboint.2023.108257

    Article  Google Scholar 

  4. Ming X, Wang HB, Zhao Z, Lu H, Liu C, Lin LL, Wang MS, Song XY (2022) Additive manufacturing of cemented carbides inserts with high mechanical performance. Mater Sci Eng A 861:144350. https://doi.org/10.1016/j.msea.2022.144350

    Article  Google Scholar 

  5. Hu HX, Liu XM, Lu H, Zhao Z, Wang HB, Liu C, Wang MS, Song XY (2023) Ultra-coarse cemented tungsten carbide with (Zr, W)Cx precipitates in ceramic phase. Inter J Refract Met Hard Mater 115:106294. https://doi.org/10.1016/j.ijrmhm.2023.106294

    Article  Google Scholar 

  6. Dong DQ, Xiang X, Huang B, Xiong HW, Zhang L, Shi KH, Liao J (2020) Microstructure and properties of WC-Co/CrMnFeCoNi composite cemented carbides. Vac 179:109571. https://doi.org/10.1016/j.vacuum.2020.109571

    Article  Google Scholar 

  7. Balbino NAN, Correa EO, Valeriano LDC, Amâncio DA (2017) Microstructure and mechanical properties of 90WC-8Ni-2Mo2C cemented carbide developed by conventional powder metallurgy. Inter J Refract Met Hard Mater 68:49–53. https://doi.org/10.1016/j.ijrmhm.2017.06.009

    Article  Google Scholar 

  8. Zhang XX, Zhang J, Ding JW (2022) Effect of the additive graphene oxide on tribological properties of WC-Co cemented carbide. Inter J Refract Met Hard Mater 109:105962. https://doi.org/10.1016/j.ijrmhm.2022.105962

    Article  Google Scholar 

  9. Zak Fang Z, Wang X, Ryu T, Hwang KS, Sohn HY (2009) Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide -a review. Inter J Refract Met Hard Mater 27:288–299. https://doi.org/10.1016/j.ijrmhm.2008.07.011

    Article  Google Scholar 

  10. Peng Y, Wang HB, Zhao C, Hu HX, Liu XM, Song XY (2020) Nanocrystalline WC-Co composite with ultrahigh hardness and toughness. Compos B Eng 197:108161. https://doi.org/10.1016/j.compositesb.2020.108161

    Article  Google Scholar 

  11. Chen XF, Liu Y, Ye JW, Wang L, Li D (2022) Effect of rapid cooling on microstructure and properties of nanocrystalline WC-9%co-Cr3C2-VC cemented carbide. Inter J Refract Met Hard Mater 109:105961. https://doi.org/10.1016/j.ijrmhm.2022.105961

    Article  Google Scholar 

  12. Wang K, Wang RR, Zhou XK, Li GJ, Pei JA, Wang Q (2021) Preparation of nanocrystalline gradient cemented carbide by adding gradient former of V(C, N). Inter J Refract Met Hard Mater 100:105630. https://doi.org/10.1016/j.ijrmhm.2021.105630

    Article  Google Scholar 

  13. Li D, Liu Y, Ye JW, Chen XF, Wang L (2021) The enhancement of the microstructure and mechanical performances of ultrafine WC-Co cemented carbides by optimizing Cr2(C, N) addition and WC particle sizes. Inter J Refract Met Hard Mater 97:105518. https://doi.org/10.1016/j.ijrmhm.2021.105518

    Article  Google Scholar 

  14. He RG, Li B, Ou PH, Yang CH, Yang HL, Ruan JM (2020) Effects of ultrafine WC on the densification behavior and microstructural evolution of coarse-grained WC-5Co cemented carbides. Ceram Int 46:12852–12860. https://doi.org/10.1016/j.ceramint.2020.01.113

    Article  Google Scholar 

  15. Bo S, Lu SH, Gong P, Wang DW, Dong YP, Cheng JY, Ren GH, Yan M (2023) Printability and properties of tungsten cemented carbide produced using laser powder bed fusion additive manufacturing with Ti as a binder. Inter J Refract Met Hard Mater 111:106106. https://doi.org/10.1016/j.ijrmhm.2023.106106

    Article  Google Scholar 

  16. Hu ZJ, Zhao Z, Deng X, Lu ZL, Liu JY, Qu Z, Jin F (2022) Microstructure and mechanical behavior of cemented carbide with Al alloy binder fabricated by selective laser melting. Inter J Refract Met Hard Mater 108:105916. https://doi.org/10.1016/j.ijrmhm.2022.105916

    Article  Google Scholar 

  17. Cheng Q, Li K, Cheng HC, Zhang W, Jiang XS, Liu Y (2021) Fracture behavior of cemented carbides with CoNiFe medium entropy alloy binder. Inter J Refract Met Hard Mater 98:105547. https://doi.org/10.1016/j.ijrmhm.2021.105547

    Article  Google Scholar 

  18. Zhou PL, Xiao DH, Zhou PF, Yuan TC (2018) Microstructure and properties of ultrafine grained AlCrFeCoNi/WC cemented carbides. Ceram Inter 44:17160–17166. https://doi.org/10.1016/j.ceramint.2018.06.171

    Article  Google Scholar 

  19. JL Sun, J Zhao, ZF Huang, Y Yan (2020) A review on binder less tungsten carbide: development and application. Nano-Micro Lett 13 https://doi.org/10.1007/s40820-019-0346-1

  20. Slobodyan M, Pesterev E, Markov A (2023) Recent advances and outstanding challenges for implementation of high entropy alloys as structural materials. Mater Today Commun 36:106422. https://doi.org/10.1016/j.mtcomm.2023.106422

    Article  Google Scholar 

  21. Liu YY, Chen Z, Shi JC, Wang ZY, Zhang JY (2019) The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys. Vacuum 161:143–149. https://doi.org/10.1016/j.vacuum.2018.12.009

    Article  Google Scholar 

  22. Li XL, Ji XF, Zhang YQ, Fan GH (2020) Photonic crystal with tunable air layers based asymmetric transmission film for space solar power station. Acta Astronaut 177:1–8. https://doi.org/10.1016/j.actaastro.2020.07.009

    Article  Google Scholar 

  23. Cheng ZY, Sun JR, Gao X, Wang YY, Cui JH, Wang T, Chang HL (2023) Irradiation effects in high-entropy alloys and their applications. J Alloys Compd 930:166768. https://doi.org/10.1016/j.jallcom.2022.166768

    Article  Google Scholar 

  24. Velo IL, Gotor FJ, Alcalá MD, Real C, Córdoba JM (2018) Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy. J Alloys Compd 746:1–8. https://doi.org/10.1016/j.jallcom.2018.02.292

    Article  Google Scholar 

  25. Luo WY, Liu YZ, Luo Y, Wu M (2018) Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering. J Alloys Compd 754:163–170. https://doi.org/10.1016/j.jallcom.2018.04.270

    Article  Google Scholar 

  26. Zhu SG, Hui JQ, Qin JY, Dong WW (2023) High temperature oxidation behavior of spark plasma sintered WC-CoCrFeNiAl hard alloys. Inter J Refract Met Hard Mater 113:106157. https://doi.org/10.1016/j.ijrmhm.2023.106157

    Article  Google Scholar 

  27. Li XQ, Zhang MA, Zheng DH, Cao T, Chen J, Qu SG (2015) The oxidation behavior of the WC-10 wt.% Ni3Al composite fabricated by spark plasma sintering. J Alloys Compd 629:148–154. https://doi.org/10.1016/j.jallcom.2015.01.010

    Article  Google Scholar 

  28. Chen RZ, Su Z, Zhou R, Wei BZ, Yang G, Chen PQ, Cheng JG (2022) Development of cemented carbides with CoxFeNiCrCu high-entropy alloyed binder prepared by spark plasma sintering. Inter J Refract Met Hard Mater 103:105751. https://doi.org/10.1016/j.ijrmhm.2021.105751

    Article  Google Scholar 

  29. Yadav S, Zhang QF, Behera A, Haridas RS, Agrawal P, Gong JD, Mishra Rajiv S (2021) Role of binder phase on the microstructure and mechanical properties of a mechanically alloyed and spark plasma sintered WC-FCC HEA composites. J Alloys Compd 877:160265. https://doi.org/10.1016/j.jallcom.2021.160265

    Article  Google Scholar 

  30. Kumar D (2023) Recent advances in tribology of high entropy alloys: a critical review. Prog Mater Sci 136:101–106. https://doi.org/10.1016/j.pmatsci.2023.101106

    Article  Google Scholar 

  31. Yeh J, Chen S, Lin S, Gan J-Y, Chin T, Shun T, Tsau C, Chang S (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303. https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  32. Tsai KY, Tsai MH, Yeh JW (2013) Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater 61:4887–4897. https://doi.org/10.1016/j.actamat.2013.04.058

    Article  Google Scholar 

  33. Kucza W, Dąbrowa J, Cieślak G, Berent K, Kulik T, Danielewski M (2018) Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. J Alloys Compd 731:920–928. https://doi.org/10.1016/j.jallcom.2017.10.108

    Article  Google Scholar 

  34. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  Google Scholar 

  35. Yadav S, Aggrawal A, Kumar A, Biswas K (2019) Effect of TiB2 addition on wear behavior of (AlCrFeMnV)90Bi10 high entropy alloy composite. Tribol Int 132:62–74. https://doi.org/10.1016/j.triboint.2018.11.025

    Article  Google Scholar 

  36. Mishra RS, Haridas RS, Agrawal P (2021) High entropy alloys-tunability of deformation mechanisms through integration of compositional and microstructural domains. Mater Sci Eng A 812:141085. https://doi.org/10.1016/j.msea.2021.141085

    Article  Google Scholar 

  37. Pole M, Sadeghilaridjani M, Shittu J, Ayyagari A, Mukherjee S (2020) High temperature wear behavior of refractory high entropy alloys based on 4–5-6 elemental palette. J Alloys Compd 843:156004. https://doi.org/10.1016/j.jallcom.2020.156004

    Article  Google Scholar 

  38. Pan YF, Liu AJ, Huang L, Du Y, Jin YQ, Yang XY, Zhang JX (2019) Effects of metal binder content and carbide grain size on the microstructure and properties of SPS manufactured WC-Fe composites. J Alloys Compd 784:519–526. https://doi.org/10.1016/j.jallcom.2019.01.057

    Article  Google Scholar 

  39. Walbrühl M, Linder D, Ågren J, Borgenstam A (2018) Alternative Ni-based cemented carbide binder - hardness characterization by nano-indentation and focused ion beam. Inter J Refract Met Hard Mater 73:204–209. https://doi.org/10.1016/j.ijrmhm.2018.02.017

    Article  Google Scholar 

  40. Gao Y, Gao K, Fan L, Yang F, Guo XQ, Zhang R, An LN (2020) Oscillatory pressure sintering of WC-Fe-Ni cemented carbides. Ceram Int 46:12727–12731. https://doi.org/10.1016/j.ceramint.2020.02.040

    Article  Google Scholar 

  41. Kübarsepp J, Juhani K (2020) Cermets with Fe-alloy binder: a review. Inter J Refract Met Hard Mater 92:105290. https://doi.org/10.1016/j.ijrmhm.2020.105290

    Article  Google Scholar 

  42. Min FL, Yu SB, Wang S, Yao ZH, Jacques GNOUDEM, Liu SJ, Zhang JF (2022) Preparation and properties of Ni-coated WC powder and highly impact resistant and corrosion resistant WC-Ni cemented carbides. Trans Nonferrous Met Soc China 32:1935–1947. https://doi.org/10.1016/S1003-6326(22)65920-X

    Article  Google Scholar 

  43. Luo WY, Liu YZ, Tu C (2021) Wetting behaviors and interfacial characteristics of molten AlxCoCrCuFeNi high-entropy alloys on a WC substrate. J Mater Sci Technol 78:192–201. https://doi.org/10.1016/j.jmst.2020.10.067

    Article  Google Scholar 

  44. Steinlechner R, de Oro Calderon R, Koch T, Linhardt P, Schubert WD (2022) A study on WC-Ni cemented carbides: constitution, alloy compositions and properties, including corrosion behaviour. Inter J Refract Met Hard Mater 103:105750. https://doi.org/10.1016/j.ijrmhm.2021.105750

    Article  Google Scholar 

  45. Chen CS, Yang CC, Chai HY, Yeh JW, Hang Chau JL (2014) Novel cermet material of WC/multi-element alloy, Int. Journal of Refractory Metals and Hard Materials. Inter J Refract Met Hard Mater 43:200–204. https://doi.org/10.1016/j.ijrmhm.2013.11.005

    Article  Google Scholar 

  46. Zhou PF, Xiao DH, Yuan TC (2017) Comparison between ultrafine-grained WC-Co and WC-HEA cemented carbides. Powder Metall 60:1–6. https://doi.org/10.1080/00325899.2016.1260903

    Article  Google Scholar 

  47. Chen LY, Yi DQ, Wang B, Liu HQ, Wu CP (2016) Mechanism of the early stages of oxidation of WC-Co cemented carbides. Corros Sci 103:75–87. https://doi.org/10.1016/j.corsci.2015.11.007

    Article  Google Scholar 

  48. Lofaj F, Kaganovskiǐ YuS (1995) Kinetics of WC-Co oxidation accompanied by swelling. J Mater Sci 30:1811–1817. https://doi.org/10.1007/BF00351615

    Article  Google Scholar 

  49. Voitovich VB, Sverdel VV, Voitovich RF, Golovko EI (1996) Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature range 500–800 °C. Inter J Refract Met Hard Mater 14:289–295. https://doi.org/10.1016/0263-4368(96)00009-1

    Article  Google Scholar 

  50. Fang GK, Tang HG, Ren ZK, Cheng Y, Yu Y, Wang LJ, Li TY, Zhang YF, Qiao ZH (2023) Effect of grain size on oxidation resistance of WC-6wt%Co cemented carbide sintered by spark plasma sintering. Inter J Refract Met Hard Mater 111:106108. https://doi.org/10.1016/j.ijrmhm.2023.106108

    Article  Google Scholar 

  51. Karimi H, Hadi M, Ebrahimzadeh I, Reza Farhang M, Sadeghi M (2018) High-temperature oxidation behaviour of WC-FeAl composite fabricated by spark plasma sintering. Ceram Int 44:17147–17153. https://doi.org/10.1016/j.ceramint.2018.06.168

    Article  Google Scholar 

  52. Luo WY, Liu YZ, Liu XH, Zhou ZG (2021) Oxidation behavior of ultrafine WC-based cemented carbides with AlxCoCrCuFeNi high-entropy alloy binders. Ceram Int 47:8498–8509. https://doi.org/10.1016/j.ceramint.2020.11.217

    Article  Google Scholar 

  53. Holmström E, Lizárraga R, Linder D, Salmasi A, Wang W, Kaplan B, Mao H, Larsson H, Vitos L (2018) High entropy alloys: substituting for cobalt in cutting edge technology. Appl Mater Today 12:322–329. https://doi.org/10.1016/j.apmt.2018.07.001

    Article  Google Scholar 

  54. Chen WY, Yin ZB, Li XL, Yuan JT (2023) Effect of co-doped additives on microstructure and mechanical properties of microwave-sintered WC-10Co cemented carbide tool materials. J Alloys Compd 962:171148. https://doi.org/10.1016/j.jallcom.2023.171148

    Article  Google Scholar 

  55. Mueller-Grunz A, Alveen P, Rassbach S, Useldinger R, Moseley S (2019) The manufacture and characterization of WC-(AlCoCrCuFeNi cemented carbides with nominally high entropy alloy binders. Inter J Refract Met Hard Mater 84:105032. https://doi.org/10.1016/j.ijrmhm.2019.105032

    Article  Google Scholar 

  56. Varalakshmi S, Appa Rao G, Kamaraj M, Murty BS (2010) Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J Mater Sci 45:5158–5163. https://doi.org/10.1007/s10853-010-4246-5

    Article  Google Scholar 

  57. Feuerbacher M, Heidelmann M, Thomas C (2015) Hexagonal high-entropy alloys. Mater Res Lett 3:1–6. https://doi.org/10.1080/21663831.2014.951493

    Article  Google Scholar 

  58. Onawale OT, Cobbinah PV, Nzeukou RA, Matizamhuka WR (2021) Synthesis route, microstructural evolution, and mechanical property relationship of high-entropy alloys (HEAs): a review. Mater 14:3065. https://doi.org/10.3390/ma14113065

    Article  Google Scholar 

  59. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  60. Henein H, Uhlenwinkel V, Fritsching U (2017) Metal sprays and spray deposition. Metal Sprays Spray Depos. https://doi.org/10.1007/978-3-319-52689-8

    Article  Google Scholar 

  61. Fujieda T, Shiratori H, Kuwabara K, Hirota M, Kato T, Yamanaka K, Koizumi Y, Chiba A, Watanabe S (2017) CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Mater Lett 189:148–151. https://doi.org/10.1016/j.matlet.2016.11.026

    Article  Google Scholar 

  62. Munir ZA, Tamburini A, Ohyanagi UM (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777. https://doi.org/10.1007/s10853-006-6555-2

    Article  Google Scholar 

  63. Ashwath K, Bai Y, Eklund A, Williams CB (2017) Effects of hot isostatic pressing on copper parts fabricated via binder jetting. Procedia Manuf 10:935–944. https://doi.org/10.1016/j.promfg.2017.07.084

    Article  Google Scholar 

  64. Bukola JB, Ayodele OO, Olubambi PA (2023) Sintering of nanocrystalline materials: sintering parameters. Heliyon 9:e14070. https://doi.org/10.1016/j.heliyon.2023.e14070

    Article  Google Scholar 

  65. Luo WY, Liu YZ, Shen JJ (2019) Effects of binders on the microstructures and mechanical properties of ultrafine WC-10%AlxCoCrCuFeNi composites by spark plasma sintering. J Alloys Compd 791:540–549. https://doi.org/10.1016/j.jallcom.2019.03.328

    Article  Google Scholar 

  66. Cheng QQ, Chen JL, Sun XM, Zhang PL, Yi GW, Yu KX, Shan Y, Wang JY (2023) Influence mechanism of AlCoCrFeNi content on the wide temperature domain tribological properties of WC-based cemented carbides. Inter J Refract Met Hard Mater 112:106159. https://doi.org/10.1016/j.ijrmhm.2023.106159

    Article  Google Scholar 

  67. Luo WY, Liu YZ, Dong BW, Wu ZP, Zhou LH (2022) Corrosion resistance of WC-based cemented carbides with 10 wt.% AlxCrCoCuFeNi high-entropy alloy binders. Intermetallics 151:107738. https://doi.org/10.1016/j.intermet.2022.107738

    Article  Google Scholar 

  68. Łukasz R, Kalita D, Tarasek A, Bobrowski P, Czerwinski F (2017) Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J Alloys Compd 708:344–352. https://doi.org/10.1016/j.jallcom.2017.02.274

    Article  Google Scholar 

  69. Fu ZQ, Chen WP, Fang SC, Zhang DY, Xiao HQ, Zhu DZ (2013) Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J Alloys Compd 553:316–323. https://doi.org/10.1016/j.jallcom.2012.11.146

    Article  Google Scholar 

  70. Wu B, Xie ZY, Huang JC, Lin JW, Yang YX, Jiang LQ, Huang JL, Ye GX, Zhao CF, Yang SJ, Sa BS (2018) Microstructures and thermodynamic properties of high-entropy alloys CoCrCuFeNi. Intermetallics 93:40–46. https://doi.org/10.1016/j.intermet.2017.10.018

    Article  Google Scholar 

  71. Mohammad SM, Shahmir H, Kim HS (2023) Microstructure tailoring by manipulating chemical composition in novel CoNiMnCrAl high-entropy alloys. J Alloys Compd 944:169207. https://doi.org/10.1016/j.jallcom.2023.169207

    Article  Google Scholar 

  72. Wang WL, Hu L, Luo SB, Meng LJ, Geng DL, Wei B (2016) Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy. Intermetallics 77:41–45. https://doi.org/10.1016/j.intermet.2016.07.003

    Article  Google Scholar 

  73. Xu Z, Li QY, Wei Li DY, Li, (2023) Microstructure, mechanical properties, and wear behavior of AlCoCrFeNi high-entropy alloy and AlCrFeNi medium-entropy alloy with WC addition. Wear 522:204701. https://doi.org/10.1016/j.wear.2023.204701

    Article  Google Scholar 

  74. Chen HC, Dong MJ, Li YY, Kong J, Chai ZH, Fu GQ (2013) Facile synthesis of high-magnetization Fe3O4@polydivinylbenzene core–shell submicrospheres. React Funct Polym 73:18–22. https://doi.org/10.1016/j.reactfunctpolym.2012.10.010

    Article  Google Scholar 

  75. Kim HC, Shon I, Garay JE, Munir ZA (2004) Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering. Inter J Refract Met Hard Mater 22:257–264. https://doi.org/10.1016/j.ijrmhm.2004.08.003

    Article  Google Scholar 

  76. Huang B, Chen LD, Bai SQ (2006) Bulk ultrafine binderless WC prepared by spark plasma sintering. Scr Mater 54:441–445. https://doi.org/10.1016/j.scriptamat.2005.10.014

    Article  Google Scholar 

  77. Yu BH, Li YP, Lei Q, Nie Y (2019) Microstructures and mechanical properties of WC-Co-xCr-Mo cement carbides. J Alloys Compd 771:636–642. https://doi.org/10.1016/j.jallcom.2018.08.255

    Article  Google Scholar 

  78. Farag S, Konyashin I, Ries B (2018) The influence of grain growth inhibitors on the microstructure and properties of submicron, ultrafine and nano-structured hardmetals-a review. Inter J Refract Met Hard Mater 77:12–30. https://doi.org/10.1016/j.ijrmhm.2018.07.003

    Article  Google Scholar 

  79. Jafari M, Enayati MH, Salehi M, Nahvi SM, Park CG (2013) Comparison between oxidation kinetics of HVOF sprayed WC-12Co and WC-10Co-4Cr coatings. Inter J Refract Met Hard Mater 41:78–84. https://doi.org/10.1016/j.ijrmhm.2013.02.006

    Article  Google Scholar 

  80. Konyashin I, Zaitsev AA, Sidorenko D, Levashov EA, Ries B, Konischev SN, Sorokin M, Mazilkin AA, Herrmann M, Kaiser A (2017) Wettability of tungsten carbide by liquid binders in WC-Co cemented carbides: is it complete for all carbon contents. Inter J Refract Met Hard Mater 62:134–148. https://doi.org/10.1016/j.ijrmhm.2016.06.006

    Article  Google Scholar 

  81. Nandy S, Tsai SP, Stephenson L, Raabe D, Zaefferer S (2021) The role of Ca, Al and Zn on room temperature ductility and grain boundary cohesion of magnesium. J Magnesium Alloys 9:1521–1536. https://doi.org/10.1016/j.jma.2021.03.005

    Article  Google Scholar 

  82. Zulkafli NMA, Yaakob MK, Ridzwan MH, Kasim MF, Mahat MM, Rajmi R, Mamat MH, Mohamad AA, Yahya M (2023) Insight into the role of atomic interaction and ionic radius in Al doped BiFeO3: structural electronic, and optical properties. Phys B: Condensed Matter 648:414–417. https://doi.org/10.1016/j.physb.2022.414417

    Article  Google Scholar 

  83. Tavangar Z, Hamadanian M, Basharnavaz H (2017) Studying the effects of the configuration of doped Al atoms on the conductive properties of boron nitride nanotube using density functional theory. Chem Phys Lett 669:29–37. https://doi.org/10.1016/j.cplett.2016.12.026

    Article  Google Scholar 

  84. Fu L, Jin D, Su GS, Zhang PR, Zhang CY (2023) Investigating the effect of Al, Mo or Mn addition to CoCrFeNi entropy alloys on the interface binding properties of WC/HEA cemented carbides. Mater Today Commun 35:105891. https://doi.org/10.1016/j.mtcomm.2023.105891

    Article  Google Scholar 

  85. Siegel DJ, Hector LG, Adams JB (2002) Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC. Surf Sci 498:321–336. https://doi.org/10.1016/S0039-6028(01)01811-8

    Article  Google Scholar 

  86. Li C, Li ZJ, Dai PQ, Fu PX, Tang QH, Chen JF (2023) Microstructure and tensile properties of metastable Fe50Mn30Co10Cr10 high-entropy alloy prepared via powder metallurgy. J Alloys Compd 955:170225. https://doi.org/10.1016/j.jallcom.2023.170225

    Article  Google Scholar 

  87. Zhao ZY, Liu JW, Tang HG, Ma XF, Zhao W (2015) Effect of Mo addition on the microstructure and properties of WC-Ni-Fe hard alloys. J Alloys Compd 646:155–160. https://doi.org/10.1016/j.jallcom.2015.05.277

    Article  Google Scholar 

  88. Wu Z, Parish CM, Bei H (2015) Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. J Alloys Compd 647:815–822. https://doi.org/10.1016/j.jallcom.2015.05.224

    Article  Google Scholar 

  89. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50. https://doi.org/10.1016/0022-3697(61)90054-3

    Article  Google Scholar 

  90. Moon H, Kim BK, Kang SJL (2001) Growth mechanism of round-edged NbC grains in Co liquid. Acta Mater 49:1293–1299. https://doi.org/10.1016/S1359-6454(00)00394-3

    Article  Google Scholar 

  91. Deng XC, Lan X, Wang YL, Zhang GH (2023) Effect of Mo2C on the microstructure and properties of (W, Mo) C-10Co cemented carbides. Inter J Refract Met Hard Mater 111:106103. https://doi.org/10.1016/j.ijrmhm.2023.106103

    Article  Google Scholar 

  92. El-Tahawy M, Péter L, Kiss LF, Gubicza J, Czigány ZS, Molnár G, Bakonyi I (2022) Anisotropic magnetoresistance (AMR) of cobalt: hcp-Co vs. fcc-Co. J Magn Magn Mater 560:169660. https://doi.org/10.1016/j.jmmm.2022.169660

    Article  Google Scholar 

  93. P Tolédano, G Krexner, M Prem, HP Weber, VP Dmitriev (2001) Theory of the martensitic transformation in cobalt. Phys Rev B 64 https://doi.org/10.1103/PhysRevB.64

  94. Tian LY, Lizárraga R, Larsson H, Holmström E, Vitos L (2017) A first principles study of the stacking fault energies for fcc Co-based binary alloys. Acta Mater 136:215–223. https://doi.org/10.1016/j.actamat.2017.07.010

    Article  Google Scholar 

  95. Wu Z, Bei H, Pharr GM, George EP (2014) Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater 81:428–441. https://doi.org/10.1016/j.actamat.2014.08.026

    Article  Google Scholar 

  96. Lilensten L, Couzinié JP, Bourgon J, Perrière L, Dirras G, Prima F, Guillot I (2017) Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater Res Lett 5:110–116. https://doi.org/10.1080/21663831.2016.1221861

    Article  Google Scholar 

  97. C Tracy, S Park, D Rittman, S Zinkle, HB Bei, M Lang, R Ewing, W Mao (2017) High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat Commun 8 https://doi.org/10.1038/ncomms15634

  98. F Zhang, Y Wu, HB Lou, ZD Zeng, VB Prakapenka, E Greenberg, Y Ren, JY Yan, JS Okasinski, XJ Liu, Y Liu, QS Zeng, ZP Lu (2017) Polymorphism in a high-entropy alloy. Nat Commun 8 https://doi.org/10.1038/ncomms15687

  99. Otto F, Dlouhý A, Somsen C, Bei H, Eggeler G, George EP (2013) The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater 61:5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018

    Article  Google Scholar 

  100. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534:227–230. https://doi.org/10.1038/nature17981

    Article  Google Scholar 

  101. Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132:233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  102. Borkar T, Gwalani B, Choudhuri D, Mikler CV, Yannetta CJ, Chen X, Ramanujan RV, Styles MJ, Gibson MA, Banerjee R (2016) A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater 116:63–76. https://doi.org/10.1016/j.actamat.2016.06.025

    Article  Google Scholar 

  103. Li XQ, Wei DX, Vitos L, Lizárraga R (2020) Micro-mechanical properties of new alternative binders for cemented carbides: CoCrFeNiWx high-entropy alloys. J Alloys Compd 820:153141. https://doi.org/10.1016/j.jallcom.2019.153141

    Article  Google Scholar 

  104. Lu ZP, Wang H, Chen MW, Baker I, Yeh JW, Liu CT, Nieh TG (2015) An assessment on the future development of high-entropy alloys: summary from a recent workshop. Intermetallics 66:67–76. https://doi.org/10.1016/j.intermet.2015.06.021

    Article  Google Scholar 

  105. Zhang PL, Chen JL, Cheng QQ (2022) Microstructure and sliding wear behavior of (AlCoCrFeNi)1–x(WC)x. Ceram Int 48:19399–19411. https://doi.org/10.1016/j.ceramint.2022.03.238

    Article  Google Scholar 

  106. Vaidya M, Muralikrishna GM, Murty BS (2019) High-entropy alloys by mechanical alloying: a review. J Mater Res 34:664–686. https://doi.org/10.1557/jmr.2019.37

    Article  Google Scholar 

  107. Šmíd M, Koutný D, Neumannová K, Chlup Z, Náhlík L, Jambor M (2023) Cyclic behaviour and microstructural evolution of metastable austenitic stainless steel 304L produced by laser powder bed fusion. Addit Manuf 68:103503. https://doi.org/10.1016/j.addma.2023.103503

    Article  Google Scholar 

  108. Yurkova AI, Chernyavsky VV, Bolbut V, Krüger M, Bogomol I (2019) Structure formation and mechanical properties of high-entropy AlCuNiFeCr alloy prepared by mechanical alloying and spark plasma sintering. J Alloys Compd 786:139–148. https://doi.org/10.1016/j.jallcom.2019.01.341

    Article  Google Scholar 

  109. Solodkyi I, Teslia S, Bezdorozhev O, Trosnikova I, Yurkova O, Bogomol I, Loboda P (2022) Hard metals prepared from WC-W2C eutectic particles and AlCrFeCoNiV high entropy alloy as a binder. Vacuum 195:110630. https://doi.org/10.1016/j.vacuum.2021.110630

    Article  Google Scholar 

  110. de la Obra AG, Avilés MA, Torres Y, Chicardi E, Gotor FJ (2017) A new family of cermets: chemically complex but microstructurally simple. Inter J Refract Met Hard Mater 63:17–25. https://doi.org/10.1016/j.ijrmhm.2016.04.011

    Article  Google Scholar 

  111. Fernandes CM, Senos AMR (2011) Cemented carbide phase diagrams: a review. Inter J Refract Met Hard Mater 29:405–418. https://doi.org/10.1016/j.ijrmhm.2011.02.004

    Article  Google Scholar 

  112. Sivaprahasam D, Chandrasekar SB, Sundaresan R (2007) Microstructure and mechanical properties of nanocrystalline WC–12Co consolidated by spark plasma sintering. Inter J Refract Met Hard Mater 25:144–152. https://doi.org/10.1016/j.ijrmhm.2006.03.008

    Article  Google Scholar 

  113. Wagner C (1961) Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). J Electrochem 65:581–591. https://doi.org/10.1002/bbpc.19610650704

    Article  Google Scholar 

  114. Wang XC, Zhao J, Cui EZ, Sun ZF, Yu H (2021) Grain growth kinetics and grain refinement mechanism in Al2O3/WC/TiC/graphene ceramic composite. J Eur Ceram Soc 41:1391–1398. https://doi.org/10.1016/j.jeurceramsoc.2020.10.019

    Article  Google Scholar 

  115. Xu Wang Z (2015) Zak Fang, Mark Koopman, The relationship between the green density and as-sintered density of nano-tungsten compacts. Inter J Refract Met Hard Mater 53:134–138. https://doi.org/10.1016/j.ijrmhm.2015.07.006

    Article  Google Scholar 

  116. Park YJ, Hwang NM, Yoon DY (1996) Abnormal growth of faceted (WC) grains in a (Co) liquid matrix. Metall Mater Trans A 27:2809–2819. https://doi.org/10.1007/BF02652373

    Article  Google Scholar 

  117. Wang X, Fang ZG, Hong YS (2008) Grain growth during the early stage of sintering of nanosized WC-Co powder. Inter J Refract Met Hard Mater 26:232–241. https://doi.org/10.1016/j.ijrmhm.2007.04.006

    Article  Google Scholar 

  118. Z Wang, J Xiong, Z Guo, T Yang, J Liu, B Chai (2019) The microstructure and properties of novel Ti (C, N)-based cermets with multi-component CoCrFeNiCu high-entropy alloy binders. Mater Sci Eng A 766 https://doi.org/10.1016/j.msea.2019.138345

  119. Chen CS, Yang CC, Chai HY, Yeh JW, Chau JLH (2014) Novel cermet material of WC/multi-element alloy. Inter J Refract Met Hard Mater 43:200–204. https://doi.org/10.1016/j.ijrmhm.2013.11.005

    Article  Google Scholar 

  120. Liu XQ, Cheng H, Li ZJ, Wang H, Chang F, Wang WG, Tang QH, Dai PQ (2019) Microstructure and mechanical properties of FeCoCrNiMnTi0.1C0.1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Vacuum 165:297–304. https://doi.org/10.1016/j.vacuum.2019.04.043

    Article  Google Scholar 

  121. Zhu G, Liu Y, Ye JW (2014) Early high-temperature oxidation behavior of Ti (C, N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Inter J Refract Met Hard Mater 44:35–41. https://doi.org/10.1016/j.ijrmhm.2014.01.005

    Article  Google Scholar 

  122. Borgh I, Hedström P, Borgenstam A, Ågren J, Odqvist J (2014) Effect of carbon activity and powder particle size on WC grain coarsening during sintering of cemented carbides. Inter J Refract Met Hard Mater 42:30–35. https://doi.org/10.1016/j.ijrmhm.2013.10.004

    Article  Google Scholar 

  123. Milman YV, Luyckx S, Northrop IT (1999) Influence of temperature, grain size and cobalt content on the hardness of WC-Co alloys. Inter J Refract Met Hard Mater 17:39–44. https://doi.org/10.1016/S0263-4368(98)00038-9

    Article  Google Scholar 

  124. Tong CJ, Chen MR, Ye JW, Lin SJ, Chen RK, Tao ZS, Zhang SY (2005) Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A 36:1263–1271. https://doi.org/10.1007/s11661-005-0218-9

    Article  Google Scholar 

  125. Grathwohl G, Warren R (1974) The effect of cobalt content on the microstructure of liquid-phase sintered TaC Co alloys. Mater Sci Eng 14:55–65. https://doi.org/10.1016/0025-5416(74)90123-2

    Article  Google Scholar 

  126. Fu ZZ, Koc R (2017) Ultrafine TiB2-TiNiFeCrCoAl high-entropy alloy composite with enhanced mechanical properties. Mater Sci Eng A 702:184–188. https://doi.org/10.1016/j.msea.2017.07.008

    Article  Google Scholar 

  127. German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44:1–39. https://doi.org/10.1007/s10853-008-3008-0

    Article  Google Scholar 

  128. Sarin VK, Johannesson T (1975) On the deformation of WC-Co Cemented carbides. Met Sci 9:472–476. https://doi.org/10.1179/030634575790444531

    Article  Google Scholar 

  129. Liu BH, Zhang Y, Ouyang SX (2000) Study on the relation between structural parameters and fracture strength of WC-Co cemented carbides. Mater Chem Phys 62:35–43. https://doi.org/10.1016/S0254-0584(99)00152-2

    Article  Google Scholar 

  130. Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct Mater 1:1–19. https://doi.org/10.1016/0965-9773(92)90045-Y

    Article  Google Scholar 

  131. Richter V, Ruthendorf MV (1999) On hardness and toughness of ultrafine and nanocrystalline hard materials. Inter J Refract Met Hard Mater 17:141–152. https://doi.org/10.1016/S0263-4368(99)00003-7

    Article  Google Scholar 

  132. Song XY, Gao Y, Liu XM, Wei CB, Wang HB, Xu WW (2013) Effect of interfacial characteristics on toughness of nanocrystalline cemented carbides. Acta Mater 61:2154–2162. https://doi.org/10.1016/j.actamat.2012.12.036

    Article  Google Scholar 

  133. Bai T, Xie TT (2017) Fabrication and mechanical properties of WC-Al2O3 cemented carbide reinforced by CNTs. Mater Chem Phys 201:113–119. https://doi.org/10.1016/j.matchemphys.2017.08.018

    Article  Google Scholar 

  134. Li T, Li QF, Fuh JYH, Poh Ching Yu, Lu L, Wu CC (2007) Effects of AGG on fracture toughness of tungsten carbide. Mater Sci Eng A 445–446:587–592. https://doi.org/10.1016/j.msea.2006.09.076

    Article  Google Scholar 

  135. Sigl LS, Mataga PA, Dalgleish BJ, McMeeking RM, Evans AG (1988) On the toughness of brittle materials reinforced with a ductile phase. Acta Metall 36:945–953. https://doi.org/10.1016/0001-6160(88)90149-6

    Article  Google Scholar 

  136. Wen X, Cui XF, Jin G, Jiao YL, Fang YC (2021) A novel Ni2MnCuSnAl0.1 multi-principal element alloy coating to enhance the wear resistance and corrosion resistance of Mg-Li alloy. Opt Laser Technol 142:107243. https://doi.org/10.1016/j.optlastec.2021.107243

    Article  Google Scholar 

  137. Kao YF, Lee TD, Chen SK, Chang YS (2010) Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros Sci 52:1026–1034. https://doi.org/10.1016/j.corsci.2009.11.028

    Article  Google Scholar 

  138. Chai WK, Lu T, Pan Y (2020) Corrosion behaviors of FeCoNiCrx (x = 0, 0.5, 1.0) multi-principal element alloys: role of Cr-induced segregation. Intermetallics 116:106654. https://doi.org/10.1016/j.intermet.2019.106654

    Article  Google Scholar 

  139. Zhao Y, Wang ML, Cui HZ, Zhao YQ, Song XJ, Zeng Y, Gao XH, Lu F, Wang C, Song Q (2019) Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys. J Alloys Compd 805:585–596. https://doi.org/10.1016/j.jallcom.2019.07.100

    Article  Google Scholar 

  140. Ferro Rocha AM, Bastos AC, Cardoso JP, Rodrigues F, Fernandes CM, Soares E, Sacramento J, Senos AMR, Ferreira MGS (2019) Corrosion behaviour of WC hard metals with nickel-based binders. Corros Sci 147:384–393. https://doi.org/10.1016/j.corsci.2018.11.015

    Article  Google Scholar 

  141. Oliveira AB, Bastos AC, Fernandes CM et al (2015) Corrosion behaviour of WC-10% AISI304 cemented carbides. Corros Sci 100:322–331. https://doi.org/10.1016/j.corsci.2015.08.006

    Article  Google Scholar 

  142. Wei L, Liu Y, Li Q et al (2019) Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5wt.% NaCl solution. Corros Sci 146:44–57. https://doi.org/10.1016/j.corsci.2018.10.025

    Article  Google Scholar 

  143. Jiang YQ, Li J, Juan YF, Lu ZJ, Jia WL (2019) Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding. J Alloys Compd 775:1–14. https://doi.org/10.1016/j.jallcom.2018.10.091

    Article  Google Scholar 

  144. Yen CC, Lu HN, Tsai MH, Wu BW, Lo YC, Wang CC, Chang SY, Yen SK (2019) Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution. Corros Sci 157:462–471. https://doi.org/10.1016/j.corsci.2019.06.024

    Article  Google Scholar 

  145. Hochstrasser S, Mueller Y, Latkoczy C, Virtanen S, Schmutz P (2007) Analytical characterization of the corrosion mechanisms of WC-Co by electrochemical methods and inductively coupled plasma mass spectroscopy. Corros Sci 49:2002–2020. https://doi.org/10.1016/j.corsci.2006.08.022

    Article  Google Scholar 

  146. Wei L, Pang XL, Gao KW (2016) Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems. Corros Sci 111:637–648. https://doi.org/10.1016/j.corsci.2016.06.003

    Article  Google Scholar 

  147. Liu C, Liu Y, Ma YZ, Liu WS, He YH (2019) Influence of μ-size WC on the corrosion behavior of ultrafine WC/WC-Co cemented carbides. J Superhard Mater 41:334–344. https://doi.org/10.3103/S1063457619050058

    Article  Google Scholar 

  148. Saha GC, Khan TI, Zhang GA (2011) Erosion–corrosion resistance of microcrystalline and near-nanocrystalline WC–17Co high velocity oxy-fuel thermal spray coatings. Corros Sci 53:2106–2114. https://doi.org/10.1016/j.corsci.2011.02.028

    Article  Google Scholar 

  149. del Campo L, Pérez-Sáez RB, González-Fernández L, Tello MJ (2009) Kinetics inversion in isothermal oxidation of uncoated WC-based carbides between 450 and 800℃. Corros Sci 51:707–712. https://doi.org/10.1016/j.corsci.2008.12.022

    Article  Google Scholar 

  150. Mukhopadhyay A, Basu B (2011) Recent developments on WC-based bulk composites. J Mater Sci 46:571–589. https://doi.org/10.1007/s10853-010-5046-7

    Article  Google Scholar 

  151. Kim H, Shon I, Yoon J, Doh J (2007) Consolidation of ultrafine WC and WC-co hard materials by pulsed current activated sintering and its mechanical properties. Inter J Refract Met Hard Mater 25:46–52. https://doi.org/10.1016/j.ijrmhm.2005.11.004

    Article  Google Scholar 

  152. Acchar W, Gomes UU, Kaysser WA, Goring J (1999) Strength degradation of a tungsten carbide-cobalt composite at elevated temperatures. Mater Charact 43:27–32. https://doi.org/10.1016/S1044-5803(98)00056-4

    Article  Google Scholar 

  153. Monteverde F, Bellosi A (2002) Oxidation behavior of titanium carbonitride based materials. Corros Sci 44:1967–1982. https://doi.org/10.1016/S0010-938X(01)00142-1

    Article  Google Scholar 

  154. Voitovich RF, Pugach ÉA (1973) High-temperature oxidation characteristics of the carbides of the group VI transition metals. Powder Metall Met Ceram 12:314–318. https://doi.org/10.1007/BF00791195

    Article  Google Scholar 

  155. Basu SN, Sarin VK (1996) Oxidation behavior of WC-Co, Materials. Mater Sci Eng A 209:206–212. https://doi.org/10.1016/0921-5093(95)10145-4

    Article  Google Scholar 

  156. Barbatti C, Garcia J, Brito P, Pyzalla AR (2009) Influence of WC replacement by TiC and (Ta, Nb)C on the oxidation resistance of Co-based cemented carbides. Inter J Refract Met Hard Mater 27:768–776. https://doi.org/10.1016/j.ijrmhm.2008.12.009

    Article  Google Scholar 

  157. Aristizabal M, Sanchez JM, Rodriguez N, Ibarreta F, Martinez R (2011) Comparison of the oxidation behaviour of WC-Co and WC-Ni-Co-Cr cemented carbides. Corros Sci 53:2754–2760. https://doi.org/10.1016/j.corsci.2011.05.006

    Article  Google Scholar 

  158. Aristizabal M, Rodriguez N, Ibarreta F, Martinez R, Sanchez JM (2010) Liquid phase sintering and oxidation resistance of WC-Ni-Co-Cr cemented carbides. Inter J Refract Met Hard Mater 28:516–522. https://doi.org/10.1016/j.ijrmhm.2010.02.010

    Article  Google Scholar 

  159. Y Fang, N Chen, G Du, M Zhang, X Zhao, H Cheng, J Wu (2020) High-temperature oxidation resistance, mechanical and wear resistance properties of Ti(C,N)-based cermets with Al0.3CoCrFeNi high-entropy alloy as a metal binder. J Alloys Compd 815 https://doi.org/10.1016/j.jallcom.2019.152486

  160. Jafari M, Enayati MH, Salehi M, Nahvi SM, Park C-G (2013) Comparison between oxidation kinetics of HVOF sprayed WC-12Co and WC-10Co-4Cr coatings. Inter J Refract Met Hard Mater 41:78–84. https://doi.org/10.1016/j.ijrmhm.2013.02.006

    Article  Google Scholar 

  161. Butler TM, Chaput KJ (2019) Native oxidation resistance of Al20Nb30Ta10Ti30Zr10 refractory complex concentrated alloy (RCCA). J Alloys Compd 787:606–617. https://doi.org/10.1016/j.jallcom.2019.02.128

    Article  Google Scholar 

  162. Tiwari A, Pankaj P, Biswas P, Kumar A (2023) Characterization of ultrafine grain tungsten carbide tool and its wear investigation in friction stir welding of HSLA steel. Tribol Int 186:108579. https://doi.org/10.1016/j.triboint.2023.108579

    Article  Google Scholar 

  163. Bonny K, De Baets P, Perez Y, Vleugels J, Lauwers B (2010) Friction and wear characteristics of WC-Co cemented carbides in dry reciprocating sliding contact. Wear 268:1504–1517. https://doi.org/10.1016/j.wear.2010.02.029

    Article  Google Scholar 

  164. Parihar RS, Sahu RK, Setti SG (2022) Adhesive wear performance of self-lubricating functionally graded cemented tungsten carbide prepared by spark plasma sintering. Inter J Refract Met Hard Mater 104:105788. https://doi.org/10.1016/j.ijrmhm.2022.105788

    Article  Google Scholar 

Download references

Funding

This work is supported by The National Natural Science Foundation of China (51872122), Natural Science Foundation of Shandong Province (ZR2022ME041), Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program (2019KJB021), Shandong Provincial Central Leading Local Science and Technology Development Fund Project (YDZX2022003), and Taishan Scholars and Youth Innovation in Science & Technology Support Plan of Shandong Province University and Innovation Capability Enhancement Project for Technological Small and Medium sized Enterprises (2023TSGC0192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Yang, X., Shen, S. et al. Research and prospect of novel WC-HEA cemented carbide. Int J Adv Manuf Technol 130, 2085–2117 (2024). https://doi.org/10.1007/s00170-023-12770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12770-7

Keywords

Navigation