Skip to main content
Log in

An experimental study on ultrasonic-assisted drilling of Inconel 718 under different cooling/lubrication conditions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ultrasonic-assisted drilling (UAD) is one of the efficient and innovative methods to improve the drillability of difficult-to-cut materials. In the present study, the UAD of Inconel 718 was investigated under different cooling and/or lubrication conditions. The drilling tests were carried out at a constant cutting speed (15 m/min) and a feed (0.045 mm/rev) using uncoated and TiAlN-coated solid carbide drills under dry, conventional cutting fluid (CCF), and minimum quantity lubrication (MQL) conditions. The applicability of UAD to drilling Inconel 718 was evaluated in terms of thrust force, surface roughness, roundness error, burr formation, subsurface microstructure and microhardness, tool wear, and chip morphology. The test results showed that, when compared to conventional drilling (CD), UAD reduced the thrust force and improved the hole quality, tool life, and surface integrity under all conditions. Good surface finish, lower roundness error, and minimum burr heights were achieved under CCF conditions. MQL drilling provided lower thrust forces, better tool performance, and good subsurface quality characteristics. In addition, the simultaneous application of CCF-UAD and MQD-UAD showed significantly better performance, especially when using the coated tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen YC, Liao YS (2003) Study on wear mechanisms in drilling of Inconel 718 superalloy. J Mater Process Technol 140:269–273. https://doi.org/10.1016/S0924-0136(03)00792-1

    Article  Google Scholar 

  2. Mahesh K, Philip JT, Joshi SN, Kuriachen B (2021) Machinability of Inconel 718: a critical review on the impact of cutting temperatures. Mater Manuf Process 36:753–791. https://doi.org/10.1080/10426914.2020.1843671

    Article  Google Scholar 

  3. Loria EA (1992) Recent developments in the progress of superalloy 718. JOM 44:33–36. https://doi.org/10.1007/BF03222252

    Article  Google Scholar 

  4. Giasin K, Ayvar-Soberanis S (2017) An Investigation of burrs, chip formation, hole size, circularity and delamination during drilling operation of GLARE using ANOVA. Compos Struct 159:745–760. https://doi.org/10.1016/j.compstruct.2016.10.015

    Article  Google Scholar 

  5. Ezugwu EO, Wang ZM, Machado AR (1999) The machinability of nickel-based alloys: a review. J Mater Process Technol 86:1–16. https://doi.org/10.1016/S0924-0136(98)00314-8

    Article  Google Scholar 

  6. Sharman ARC, Amarasinghe A, Ridgway K (2008) Tool life and surface integrity aspects when drilling and hole making in Inconel 718. J Mater Process Technol 200:424–432. https://doi.org/10.1016/j.jmatprotec.2007.08.080

    Article  Google Scholar 

  7. Kadam GS, Pawade RS (2017) Surface integrity and sustainability assessment in high-speed machining of Inconel 718 – an eco-friendly green approach. J Clean Prod 147:273–283. https://doi.org/10.1016/j.jclepro.2017.01.104

    Article  Google Scholar 

  8. Neo DWK, Liu K, Kumar AS (2020) High throughput deep-hole drilling of Inconel 718 using PCBN gun drill. J Manuf Process 57:302–311. https://doi.org/10.1016/j.jmapro.2020.06.043

    Article  Google Scholar 

  9. Uçak N, Çiçek A (2018) The effects of cutting conditions on cutting temperature and hole quality in drilling of Inconel 718 using solid carbide drills. J Manuf Process 31:662–673. https://doi.org/10.1016/j.jmapro.2018.01.003

    Article  Google Scholar 

  10. Lauwers B, Klocke F, Klink A et al (2014) Hybrid processes in manufacturing. CIRP Ann 63:561–583. https://doi.org/10.1016/j.cirp.2014.05.003

    Article  Google Scholar 

  11. Feng Y, Hsu FC, Lu YT et al (2021) Force prediction in ultrasonic vibration-assisted milling. Mach Sci Technol 25:307–330. https://doi.org/10.1080/10910344.2020.1815048

    Article  Google Scholar 

  12. Feng Y, Hsu FC, Lu YT et al (2020) Surface roughness prediction in ultrasonic vibration-assisted milling. J Adv Mech Des Syst Manuf 14:1–14. https://doi.org/10.1299/jamdsm.2020jamdsm0063

    Article  Google Scholar 

  13. Feng Y, Hsu F-C, Lu Y-T et al (2020) Tool wear rate prediction in ultrasonic vibration-assisted milling. Mach Sci Technol 24:758–780. https://doi.org/10.1080/10910344.2020.1752240

    Article  Google Scholar 

  14. Chen S, Zou P, Tian Y et al (2019) Study on modal analysis and chip breaking mechanism of Inconel 718 by ultrasonic vibration-assisted drilling. Int J Adv Manuf Technol 105:177–191. https://doi.org/10.1007/s00170-019-04155-6

    Article  Google Scholar 

  15. Liao YS, Chen YC, Lin HM (2007) Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy. Int J Mach Tools Manuf 47:1988–1996. https://doi.org/10.1016/j.ijmachtools.2007.02.001

    Article  Google Scholar 

  16. Baghlani V, Mehbudi P, Akbari J et al (2016) An optimization technique on ultrasonic and cutting parameters for drilling and deep drilling of nickel-based high-strength Inconel 738LC superalloy with deeper and higher hole quality. Int J Adv Manuf Technol 82:877–888. https://doi.org/10.1007/s00170-015-7414-6

    Article  Google Scholar 

  17. Abdelaziz AM, Youssef H, Al-Makky M, El-Hofy H (2020) Ultrasonic-assisted drilling of nickel-based super alloy in conel 601: an experimental study. IOP Conf Ser Mater Sci Eng 973:012047. https://doi.org/10.1088/1757-899X/973/1/012047

    Article  Google Scholar 

  18. Osman KA, Ünver HÖ, Şeker U (2019) Application of minimum quantity lubrication techniques in machining process of titanium alloy for sustainability: a review. Int J Adv Manuf Technol 100:2311–2332. https://doi.org/10.1007/s00170-018-2813-0

    Article  Google Scholar 

  19. Park KB, Cho YT, Jung YG (2018) Efficient MQL-based drilling of Inconel 601. Korean Soc Manuf Process Eng 17:1–8. https://doi.org/10.14775/ksmpe.2018.17.4.001

    Article  Google Scholar 

  20. Hegab HA, Darras B, Kishawy HA (2018) Towards sustainability assessment of machining processes. J Clean Prod 170:694–703. https://doi.org/10.1016/j.jclepro.2017.09.197

    Article  Google Scholar 

  21. Sarikaya M, Gupta MK, Tomaz I et al (2021) Cooling techniques to improve the machinability and sustainability of light-weight alloys: a state-of-the-art review. J Manuf Process 62:179–201. https://doi.org/10.1016/j.jmapro.2020.12.013

    Article  Google Scholar 

  22. Khanafer K, Eltaggaz A, Deiab I et al (2020) Toward sustainable micro-drilling of Inconel 718 superalloy using MQL-Nanofluid. Int J Adv Manuf Technol 107:3459–3469. https://doi.org/10.1007/s00170-020-05112-4

    Article  Google Scholar 

  23. Kamata Y, Obikawa T (2007) High speed MQL finish-turning of Inconel 718 with different coated tools. J Mater Process Technol 192–193:281–286. https://doi.org/10.1016/j.jmatprotec.2007.04.052

    Article  Google Scholar 

  24. Singh G, Gupta MK, Mia M, Sharma VS (2018) Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. Int J Adv Manuf Technol 97:481–494. https://doi.org/10.1007/s00170-018-1911-3

    Article  Google Scholar 

  25. Gong L, Bertolini R, Ghiotti A et al (2020) Sustainable turning of Inconel 718 nickel alloy using MQL strategy based on graphene nanofluids. Int J Adv Manuf Technol 108:3159–3174. https://doi.org/10.1007/s00170-020-05626-x

    Article  Google Scholar 

  26. Ni C, Zhu L (2020) Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology. J Mater Process Technol 278:116518. https://doi.org/10.1016/j.jmatprotec.2019.116518

    Article  Google Scholar 

  27. Hoang T-D, Ngo Q-H, Chu N-H et al (2022) Ultrasonic assisted nano-fluid MQL in deep drilling of hard-to-cut materials. Mater Manuf Process 37:712–721. https://doi.org/10.1080/10426914.2021.1981936

    Article  Google Scholar 

  28. Yan L, Zhang Q, Yu J (2018) Effects of continuous minimum quantity lubrication with ultrasonic vibration in turning of titanium alloy. Int J Adv Manuf Technol 98:827–837. https://doi.org/10.1007/s00170-018-2323-0

    Article  Google Scholar 

  29. Namlu RH, Sadigh BL, Kiliç SE (2021) An experimental investigation on the effects of combined application of ultrasonic assisted milling (UAM) and minimum quantity lubrication (MQL) on cutting forces and surface roughness of Ti-6Al-4V. Mach Sci Technol 25:738–775. https://doi.org/10.1080/10910344.2021.1971706

    Article  Google Scholar 

  30. Namlu RH, Yılmaz OD, Lotfisadigh B, Kılıç SE (2022) An experimental study on surface quality of Al6061-T6 in ultrasonic vibration-assisted milling with minimum quantity lubrication. Procedia CIRP 108:311–316. https://doi.org/10.1016/j.procir.2022.04.071

    Article  Google Scholar 

  31. Ni C, Zhu L, Yang Z (2019) Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from dynamic view. Wear 436–437:203006. https://doi.org/10.1016/j.wear.2019.203006

    Article  Google Scholar 

  32. Airao J, Nirala CK, Khanna N (2022) Novel use of ultrasonic-assisted turning in conjunction with cryogenic and lubrication techniques to analyze the machinability of Inconel 718. J Manuf Process 81:962–975. https://doi.org/10.1016/j.jmapro.2022.07.052

    Article  Google Scholar 

  33. Khanna N, Airao J, Nirala CK, Krolczyk GM (2022) Novel sustainable cryo-lubrication strategies for reducing tool wear during ultrasonic-assisted turning of Inconel 718. Tribol Int 174:107728. https://doi.org/10.1016/j.triboint.2022.107728

    Article  Google Scholar 

  34. Wang Q, Wang D, Fang Y (2023) Research on chip mechanism of Inconel 718 with ultrasonic assisted drilling by step drill. Int J Adv Manuf Technol 126:2579–2594. https://doi.org/10.1007/s00170-023-11212-8

    Article  Google Scholar 

  35. Georgi O, Rüger C, Rentzsch H, Putz M (2021) Kinematic analysis and process stability of ultrasonic-assisted drilling. Int J Adv Manuf Technol 115:2049–2067. https://doi.org/10.1007/s00170-021-07165-5

    Article  Google Scholar 

  36. Dolinšek S, Šuštaršič B, Kopač J (2001) Wear mechanisms of cutting tools in high-speed cutting processes. Wear 250–251:349–356. https://doi.org/10.1016/S0043-1648(01)00620-2

    Article  Google Scholar 

  37. Giasin K, Atif M, Ma Y et al (2022) Machining GLARE fibre metal laminates: a comparative study on drilling effect between conventional and ultrasonic-assisted drilling. Int J Adv Manuf Technol 123:3657–3672. https://doi.org/10.1007/s00170-022-10297-x

    Article  Google Scholar 

  38. Sanda A, Arriola I, Garcia Navas V et al (2016) Ultrasonically assisted drilling of carbon fibre reinforced plastics and Ti6Al4V. J Manuf Process 22:169–176. https://doi.org/10.1016/j.jmapro.2016.03.003

    Article  Google Scholar 

  39. Lotfi M, Amini S, Teimouri R, Alinaghian M (2017) Built-up edge reduction in drilling of AISI 1045 steel. Mater Manuf Process 32:623–630. https://doi.org/10.1080/10426914.2016.1221104

    Article  Google Scholar 

  40. Chang SSF, Bone GM (2005) Burr size reduction in drilling by ultrasonic assistance. Robot Comput Integr Manuf 21:442–450. https://doi.org/10.1016/j.rcim.2004.11.005

    Article  Google Scholar 

  41. Liao Z, la Monaca A, Murray J et al (2021) Surface integrity in metal machining - part I: fundamentals of surface characteristics and formation mechanisms. Int J Mach Tools Manuf 162:103687. https://doi.org/10.1016/j.ijmachtools.2020.103687

    Article  Google Scholar 

  42. Careri F, Imbrogno S, Umbrello D et al (2021) Machining and heat treatment as post-processing strategies for Ni-superalloys structures fabricated using direct energy deposition. J Manuf Process 61:236–244. https://doi.org/10.1016/j.jmapro.2020.11.024

    Article  Google Scholar 

  43. Seah KHW, Rahman M, Li XP, Zhang XD (1996) A three-dimensional model of clip flow, chip curl and chip breaking for oblique cutting. Int J Mach Tools Manuf 36:1385–1400. https://doi.org/10.1016/0890-6955(95)00101-8

    Article  Google Scholar 

  44. Lotfi M, Amini S (2017) Experimental and numerical study of ultrasonically-assisted drilling. Ultrasonics 75:185–193. https://doi.org/10.1016/j.ultras.2016.11.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necati Uçak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erturun, Ö.F., Tekaüt, H., Çiçek, A. et al. An experimental study on ultrasonic-assisted drilling of Inconel 718 under different cooling/lubrication conditions. Int J Adv Manuf Technol 130, 665–682 (2024). https://doi.org/10.1007/s00170-023-12735-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12735-w

Keywords

Navigation