Skip to main content

Advertisement

Log in

Optimization and comparison of machining characteristics of SKD61 steel in powder-mixed EDM process by TOPSIS and desirability approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, tungsten carbide powder adding the dielectric liquid during electro-discharge machining (EDM) process for processing SKD61 steel was explored. Firstly, the influence of main process variables, comprising peak current (Ip), pulse on time (Ton), and amount of powder (Ap) on material removal rate (MRR), tool wear rate (TWR), and surface roughness (Ra) was explored. Secondly, an optimal combination of these process variables is sought to enhance the quality of surfaces, MRR, and reduce TWR. A series of 15 experiments of the Box-Behnken design was performed. Subsequently, adequate mathematical models for MRR, TWR, and Ra were established, with the application of analysis of variance (ANOVA) to evaluate the adequacy of these models. Finally, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and desirability approach (DA) were adopted for the multi-attribute optimization. Besides, Non-Dominated Sorting Genetic Algorithm II (NSGA II)-evaluation by an area-based method of ranking (EAMR) was also conducted and compared with both DA and TOPSIS for the most appropriate choice. The outcomes indicated that Ip demonstrates the strongest influence on Ra, MRR, and TWR, followed by Ton and Ap for MRR, while the proceeding effect is Ap and Ton for TWR and Ra. In comparison with TOPSIS, DA provides the best solution with a decline of 41.5% in TWR and an increment of 22.7% in MRR, while TOPSIS contributes the best solution with a drop of 13.89% in Ra when compared with DA. In addition, TOPSIS provides better surface quality than DA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Schumacher BM (2004) After 60 years of EDM the discharge process remains still disputed. J Mater Process Technol 149:376–381. https://doi.org/10.1016/j.matprotec.2003.11.060

    Article  Google Scholar 

  2. Philip JT, Mathew J, Kuriachen B (2021) Transition from EDM to PMEDM—impact of suspended particulates in the dielectric on Ti6Al4V and other distinct material surfaces: A review. J Manuf Process 64:1105–1142. https://doi.org/10.1016/j.jmapro.2021.01.056

    Article  Google Scholar 

  3. Long BT, Phan NH, Cuong N, Jatti VS (2016) Optimization of PMEDM process parameter for maximizing material removal rate by Taguchi’s method. Int J Adv Manuf Technol 87:1929–1939. https://doi.org/10.1007/s00170-016-8586-4

    Article  Google Scholar 

  4. Prakash C, Kansal HK, Pabla BS, Puri S (2017) Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater Manuf Process 32:274–285. https://doi.org/10.1080/10426914.2016.1198018

    Article  Google Scholar 

  5. Sahu SK, Jadam T, Datta S, Nandi G (2018) Effect of using SiC powder-added dielectric media during electro-discharge machining of Inconel 718 superalloys. J Brazilian Soc Mech Sci Eng 40:330. https://doi.org/10.1007/s40430-018-1257-7

    Article  Google Scholar 

  6. Toshimitsu R, Okada A, Kitada R, Okamoto Y (2016) Improvement in surface characteristics by EDM with chromium powder mixed fluid. Procedia CIRP 42:231–235. https://doi.org/10.1016/j.procir.2016.02.277

    Article  Google Scholar 

  7. Al-Amin M, Abdul-Rani AM, Ahmed R et al (2021) Multi-objective optimization of process variables for MWCNT-added electro-discharge machining of 316L steel. Int J Adv Manuf Technol 115:179–198. https://doi.org/10.1007/s00170-021-07169-1

    Article  Google Scholar 

  8. Amorim FL, Dalcin VA, Soares P, Mendes LA (2017) Surface modification of tool steel by electrical discharge machining with molybdenum powder mixed in dielectric fluid. Int J Adv Manuf Technol 91:341–350. https://doi.org/10.1007/s00170-016-9678-x

    Article  Google Scholar 

  9. Hossain MM, Karim MSBA, Hoong WY et al (2020) Feasibility of using CeO 2 / water dielectrical nanofluid in electrical discharge machining ( EDM ). Arab J Sci Eng 45:5435–5445. https://doi.org/10.1007/s13369-020-04404-x

    Article  Google Scholar 

  10. Shard A, Shikha D, Gupta V, Garg MP (2018) Effect of B4C abrasive mixed into dielectric fluid on electrical discharge machining. J Brazilian Soc Mech Sci Eng 40:554. https://doi.org/10.1007/s40430-018-1474-0

    Article  Google Scholar 

  11. Talla G, Gangopadhyay S, Biswas CK (2017) Influence of graphite powder mixed EDM on the surface integrity characteristics of Inconel 625. Part Sci Technol 35:219–226. https://doi.org/10.1080/02726351.2016.1150371

    Article  Google Scholar 

  12. Bui VD, Mwangi JW, Meinshausen AK et al (2020) Antibacterial coating of Ti-6Al-4V surfaces using silver nano-powder mixed electrical discharge machining. Surf Coatings Technol 383:125254. https://doi.org/10.1016/j.surfcoat.2019.125254

    Article  Google Scholar 

  13. Al-Amin M, Abdul-Rani AM, Ahmed R, Rao TVVLN (2021) Multiple-objective optimization of hydroxyapatite-added EDM technique for processing of 316L-steel. Mater Manuf Process 36:1134–1145. https://doi.org/10.1080/10426914.2021.1885715

    Article  Google Scholar 

  14. Tripathy S, Tripathy DK (2017) Multi-response optimization of machining process parameters for powder mixed electro-discharge machining of H-11 die steel using grey relational analysis and topsis. Mach Sci Technol 21:362–384. https://doi.org/10.1080/10910344.2017.1283957

    Article  MathSciNet  Google Scholar 

  15. Reddy VV, Valli PM, Kumar A, Reddy CS (2015) Multi-objective optimization of electrical discharge machining of PH17-4 stainless steel with surfactant-mixed and graphite powder–mixed dielectric using Taguchi-data envelopment analysis–based ranking method. Proc Inst Mech Eng Part B J Eng Manuf 229:487–494. https://doi.org/10.1177/0954405414530904

    Article  Google Scholar 

  16. Mohanty S, Mishra A, Nanda BK, Routara BC (2018) Multi-objective parametric optimization of nano powder mixed electrical discharge machining of AlSiCp using response surface methodology and particle swarm optimization. Alexandria Eng J 57:609–619. https://doi.org/10.1016/j.aej.2017.02.006

    Article  Google Scholar 

  17. Nguyen H, Pham V, Ngo N (2018) Application of TOPSIS to Taguchi method for multi-characteristic optimization of electrical discharge machining with titanium powder mixed into dielectric fluid. Int J Adv Manuf Technol 98:1179–1198. https://doi.org/10.1007/s00170-018-2321-2

    Article  Google Scholar 

  18. Mori K, Okuda Y (2010) Tailor die quenching in hot stamping for producing ultra-high strength steel formed parts having strength distribution. CIRP Ann 59:291–294. https://doi.org/10.1016/j.cirp.2010.03.107

    Article  Google Scholar 

  19. Le VT (2021) The role of electrical parameters in adding powder influences the surface properties of SKD61 steel in EDM process. J Brazilian Soc Mech Sci Eng 43:120. https://doi.org/10.1007/s40430-021-02844-6

    Article  Google Scholar 

  20. Le VT (2021) Influence of processing parameters on surface properties of SKD61 steel processed by powder mixed electrical discharge machining. J Mater Eng Perform 30:3003–3023. https://doi.org/10.1007/s11665-021-05584-9

    Article  Google Scholar 

  21. Le VT (2023) New insights into the surface features of SKD61 steel at heat-treated and non-heat-treated states as processed by powder-mixed EDM. Mater Lett 352:135199. https://doi.org/10.1016/j.matlet.2023.135199

    Article  Google Scholar 

  22. Nguyen T-T, Cao L-H (2020) Optimization of the burnishing process for energy responses and surface properties. Int J Precis Eng Manuf 21:1143–1152. https://doi.org/10.1007/s12541-020-00326-8

    Article  Google Scholar 

  23. Nguyen T-T, Cao L-H, Nguyen T-A, Dang X-P (2020) Multi-response optimization of the roller burnishing process in terms of energy consumption and product quality. J Clean Prod 245:119328. https://doi.org/10.1016/j.jclepro.2019.119328

    Article  Google Scholar 

  24. Zhang Y (2015) TOPSIS method based on entropy weight for supplier evaluation of power grid enterprise. In: 2nd International Conference on Education Reform and Modern Management (ERMM 2015). pp 334–337

  25. Nguyen T-T (2019) Prediction and optimization of machining energy, surface roughness, and production rate in SKD61 milling. Measurement 136:525–544. https://doi.org/10.1016/j.measurement.2019.01.009

    Article  Google Scholar 

  26. https://www.daido.co.jp/en/products/tool/dha_world/index.html

  27. Tyagi R, Das AK, Mandal A (2018) Electrical discharge coating using WS2 and Cu powder mixture for solid lubrication and enhanced tribological performance. Tribol Int 120:80–92. https://doi.org/10.1016/j.triboint.2017.12.023

    Article  Google Scholar 

  28. Wu KL, Yan BH, Huang FY, Chen SC (2005) Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric. Int J Mach Tools Manuf 45:1195–1201. https://doi.org/10.1016/j.ijmachtools.2004.12.005

    Article  Google Scholar 

  29. Fazli Shahri HR, Mahdavinejad R, Ashjaee M, Abdullah A (2017) A comparative investigation on temperature distribution in electric discharge machining process through analytical, numerical and experimental methods. Int J Mach Tools Manuf 114:35–53. https://doi.org/10.1016/j.ijmachtools.2016.12.005

    Article  Google Scholar 

  30. Wang J, Han F (2014) Simulation model of debris and bubble movement in consecutive-pulse discharge of electrical discharge machining. Int J Mach Tools Manuf 77:56–65. https://doi.org/10.1016/j.ijmachtools.2013.10.007

    Article  Google Scholar 

  31. Janmanee P, Muttamara A (2012) Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension. Appl Surf Sci 258:7255–7265. https://doi.org/10.1016/j.apsusc.2012.03.054

    Article  Google Scholar 

  32. Le VT, Banh TL, Tran XT et al (2020) Studying the microhardness on the surface of SKD61 in PMEDM using tungsten carbide powder. Int J Mod Phys B 34:2040164. https://doi.org/10.1142/S0217979220401645

    Article  Google Scholar 

  33. Chakraborty T, Sahu DR, Mandal A, Acherjee B (2023) Feasibility of Jatropha and Rice bran vegetable oils as sustainable EDM dielectrics. Mater Manuf Process 38:50–63. https://doi.org/10.1080/10426914.2022.2089891

    Article  Google Scholar 

  34. Bezerra MA, Santelli RE, Oliveira EP et al (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  Google Scholar 

  35. Li X, Wang K, Liu L et al (2011) Application of the entropy weight and TOPSIS method in safety evaluation of coal mines. Procedia Eng 26:2085–2091. https://doi.org/10.1016/j.proeng.2011.11.2410

    Article  Google Scholar 

  36. Acherjee B, Misra D, Bose D, Acharyya S (2011) Optimal process design for laser transmission welding of acrylics using desirability function analysis and overlay contour plots. Int J Manuf Res 6:49. https://doi.org/10.1504/IJMR.2011.037913

    Article  Google Scholar 

  37. Hanif M, Wasim A, Shah AH et al (2019) Optimization of process parameters using graphene-based dielectric in electric discharge machining of AISI D2 steel. Int J Adv Manuf Technol 103:3735–3749. https://doi.org/10.1007/s00170-019-03688-0

    Article  Google Scholar 

  38. Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann Manuf Technol 54:64–87. https://doi.org/10.1016/S0007-8506(07)60020-1

    Article  Google Scholar 

  39. Furutania K, Saneto A, Takezawa H et al (2001) Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Precis Eng 25:138–144. https://doi.org/10.1016/S0141-6359(00)00068-4

    Article  Google Scholar 

  40. Ekmekci B, Yaşar H, Ekmekci N (2016) A discharge separation model for powder mixed electrical discharge machining. J Manuf Sci Eng 138:1–9. https://doi.org/10.1115/1.4033042

    Article  Google Scholar 

  41. Öpöz TT, Yaşar H, Ekmekci N, Ekmekci B (2018) Particle migration and surface modification on Ti6Al4V in SiC powder mixed electrical discharge machining. J Manuf Process 31:744–758. https://doi.org/10.1016/j.jmapro.2018.01.002

    Article  Google Scholar 

  42. Bui VD, Mwangi JW, Schubert A (2019) Powder mixed electrical discharge machining for antibacterial coating on titanium implant surfaces. J Manuf Process 44:261–270. https://doi.org/10.1016/j.jmapro.2019.05.032

    Article  Google Scholar 

  43. Le V, Banh T, Tran X, Nguyen THM (2019) Improving surface roughness by electrical discharge machining with tungsten powder. ASEAN Eng J 9:44–53. https://doi.org/10.11113/aej.v9.15507

    Article  Google Scholar 

  44. Sahu SK, Datta S (2019) Experimental studies on graphite powder-mixed electro-discharge machining of Inconel 718 super alloys: Comparison with conventional electro-discharge machining. Proc Inst Mech Eng Part E J Process Mech Eng 233:384–402. https://doi.org/10.1177/0954408918787104

    Article  Google Scholar 

  45. Shabgard M, Khosrozadeh B (2017) Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti–6Al–4V alloy in EDM process. J Manuf Process 25:212–219. https://doi.org/10.1016/j.jmapro.2016.11.016

    Article  Google Scholar 

  46. Tripathy S, Tripathy DK (2016) Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis. Eng Sci Technol an Int J 19:62–70. https://doi.org/10.1016/j.jestch.2015.07.010

    Article  Google Scholar 

  47. Baseri H, Sadeghian S (2016) Effects of nanopowder TiO2-mixed dielectric and rotary tool on EDM. Int J Adv Manuf Technol 83:519–528. https://doi.org/10.1007/s00170-015-7579-z

    Article  Google Scholar 

  48. Talla G, Gangopadhyay S, Biswas CK (2016) Effect of powder-suspended dielectric on the EDM characteristics of Inconel 625. J Mater Eng Perform 25:704–717. https://doi.org/10.1007/s11665-015-1835-0

    Article  Google Scholar 

  49. Jithin S, Raut A, Bhandarkar UV, Joshi SS (2020) Finite element model for topography prediction of electrical discharge textured surfaces considering multi-discharge phenomenon. Int J Mech Sci 177:105604. https://doi.org/10.1016/j.ijmecsci.2020.105604

    Article  Google Scholar 

  50. Le Tao V (2021) The influence of additive powder on machinability and surface integrity of SKD61 steel by EDM process. Mater Manuf Process 36:1084–1098. https://doi.org/10.1080/10426914.2021.1885710

    Article  Google Scholar 

  51. Sahu AK, Thomas J, Mahapatra SS (2021) An intelligent approach to optimize the electrical discharge machining of titanium alloy by simple optimization algorithm. Proc Inst Mech Eng Part E J Process Mech Eng 235:371–383. https://doi.org/10.1177/0954408920964685

    Article  Google Scholar 

  52. Yue X, Yang X (2021) The role of discharge plasma on molten pool dynamics in EDM. J Mater Process Technol 293:117092. https://doi.org/10.1016/j.jmatprotec.2021.117092

    Article  Google Scholar 

  53. Zhao WS, Meng QG, Wang ZL (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129:30–33. https://doi.org/10.1016/S0924-0136(02)00570-8

    Article  Google Scholar 

  54. Feng X, Wong YS, Hong GS (2016) Characterization and geometric modeling of single and overlapping craters in micro-EDM. Mach Sci Technol 20:79–81. https://doi.org/10.1080/10910344.2015.1085317

    Article  Google Scholar 

  55. Jadam T, Sahu SK, Datta S, Masanta M (2019) EDM performance of Inconel 718 superalloy: application of multi-walled carbon nanotube (MWCNT) added dielectric media. J Brazilian Soc Mech Sci Eng 41:305. https://doi.org/10.1007/s40430-019-1813-9

    Article  Google Scholar 

  56. Paswan K, Pramanik A, Chattopadhyaya S (2020) Machining performance of Inconel 718 using graphene nanofluid in EDM. Mater Manuf Process 35:33–42. https://doi.org/10.1080/10426914.2020.1711924

    Article  Google Scholar 

  57. Marashi H, Sarhan AAD, Hamdi M (2015) Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel. Appl Surf Sci 357:892–907. https://doi.org/10.1016/j.apsusc.2015.09.105

    Article  Google Scholar 

  58. Le VT (2022) An investigation on machined performance and recast layer properties of AISI H13 steel by powder mixed-EDM in fine-finishing process. Mater Chem Phys 276:125362. https://doi.org/10.1016/j.matchemphys.2021.125362

    Article  Google Scholar 

  59. Le VT (2021) The machined performance and recast layer properties of AISI H13 steel processed by powder mixed EDM process: an investigation and comparison in fine-finishing and semi-finishing processes. J Brazilian Soc Mech Sci Eng 43:514. https://doi.org/10.1007/s40430-021-03243-7

    Article  Google Scholar 

  60. Yanatori K, Kunieda M (1995) Study on debris movement in EDM Gap. J Japan Soc Electr Mach Eng 29:19–27. https://doi.org/10.2526/jseme.29.61_19

    Article  Google Scholar 

  61. Danish M, Al-Amin M, Rubaiee S et al (2023) Investigation of coated 316L steel surface: Surface morphology, composition, corrosion, and biocompatibility using hydroxyapatite mixed-EDM process. Surf Coatings Technol 467:129689. https://doi.org/10.1016/j.surfcoat.2023.129689

    Article  Google Scholar 

  62. Davis R, Singh A, Debnath K et al (2021) Surface modification of medical-grade Ni55.6Ti44.4 alloy via enhanced machining characteristics of Zn Powder Mixed-μ-EDM. Surf Coatings Technol 425:127725. https://doi.org/10.1016/j.surfcoat.2021.127725

    Article  Google Scholar 

  63. Le Tao V (2022) The evaluation of machining performances and recast layer properties of AISI H13 steel processed by tungsten carbide powder mixed EDM process in the semi-finishing process. Mach Sci Technol 26:428–459. https://doi.org/10.1080/10910344.2022.2129983

    Article  Google Scholar 

Download references

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.99–2021.29.

Author information

Authors and Affiliations

Authors

Contributions

Van Tao Le: proposal, design of the study; Van Tao Le, Long Hoang, Van Thao Le, and Truong Son Vu: performing experiments, writing—original draft preparation; Van Tao Le, Long Hoang, Van Thao Le, Mohd Fathullah Ghazali, Manh Tung Do, and Trung Thanh Nguyen: reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Van Tao Le.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, V.T., Hoang, L., Ghazali, M.F. et al. Optimization and comparison of machining characteristics of SKD61 steel in powder-mixed EDM process by TOPSIS and desirability approach. Int J Adv Manuf Technol 130, 403–424 (2024). https://doi.org/10.1007/s00170-023-12680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12680-8

Keywords

Navigation