Skip to main content
Log in

Enhancing mechanical and damping performance of 3D-printed aluminium-7075 with shape memory high-entropy alloy (SMHEA): parametric optimization and mathematical modeling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, we examined the applicability of a response surface approach in the experimental design, parametric optimization, and formulation of predictive models in the 3D printing of aluminium-7075/Ti48Zr20Hf15Al10Nb7 shape memory high-entropy alloy (SMHEA) composite. The input variables consist of the SMHEA dosage (A), laser power (B), and powder flow rate (C), which vary from 2 to 8 wt%, 400 to 800 W, and 1.44 to 7.2 g/min, respectively. In the meantime, the yield strength, tensile ductility and modulus, hardness, damping capacity, and loss modulus were examined. The ANOVA results indicated that the input variables A, B, and C had significant effects on the responses, resulting in mathematical models with a high degree of fitness that adequately represented the experimental outcomes. Optimal parametric optimization was achieved at 6.4 wt%, 388 watts, and 3.6 g/min with a desirability of 0.916%. Comparing the predicted responses to the validation results under optimal conditions revealed a deviation < ± 5%, validating the models’ potency to predict the responses. Thus, optimal parametric conditions for the development of a 3D-printed aluminum-7075/Ti48Zr20Hf15Al10Nb7 composite were confirmed to be adequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Rivera FJM, Arciniegas AJR (2020) Additive manufacturing methods: techniques, materials, and closed-loop control applications. The International Journal of Advanced Manufacturing Technology 109:17–31. https://doi.org/10.1007/s00170-020-05663-6

    Article  Google Scholar 

  2. Stavropoulos P, Foteinopoulos P, Stavridis J, Bikas H (2022) Increasing the industrial uptake of additive manufacturing processes: a training framework. Adv Indust Manufact Eng 6:100110. https://doi.org/10.1016/j.aime.2022.100110

    Article  Google Scholar 

  3. Nandhakumar R, Venkatesan K (2023) A process parameter review on selective laser melting-based additive manufacturing of single and multi-material: microstructure, physical properties, tribology, and surface roughness. Materials Today Communications 35:105538. https://doi.org/10.1016/j.mtcomm.2023.105538

    Article  Google Scholar 

  4. Oyesola M, Mpofu K, Mathe N, Fatoba S, Hoosain S, Daniya I (2021) Optimization of selective laser melting process parameters for surface quality performance of the fabricated Ti6Al4V. Int J Adv Manufact Technol 114:1585–1599. https://doi.org/10.1007/s00170-021-06953-3

    Article  Google Scholar 

  5. Meena VK, Kalra P, Sinha RK (2022) Additive manufacturing parameters optimization of Ti6Al4V ELI for medical implants. Surf Rev Lett 29:3. https://doi.org/10.1142/S0218625X22500408

    Article  Google Scholar 

  6. Costa A, Buffa G, Palmeri D, Pollara G, Fratini L (2022) Hybrid prediction-optimization approaches for maximizing parts density in SLM of Ti6Al4V titanium alloy. J Intell Manuf 33:1967–1989. https://doi.org/10.1007/s10845-022-01938-9

    Article  Google Scholar 

  7. Megerramova L, Isakov V, Shcherbinina L, Gusasyan S, Petrov M, Povalyukhin D, Volosevich D, Klimova-Korsmik O (2022) Design, simulation and optimization of an additive laser-based manufacturing process for gearbox housing with reduced weight made from AlSi10Mg alloy. Metals 12(1):67. https://doi.org/10.3390/met12010067

    Article  Google Scholar 

  8. Osman H, Liu L (2023) Additive manufacturing of high-entropy alloy composites: a review. Transact Nonferrous Metals Soc China 33(1):1–24. https://doi.org/10.1016/S1003-6326(22)66086-2

    Article  Google Scholar 

  9. Guo C, Li G, Li S, Hu X, Lu H, Li X, Xu Z, Chen Y, Li Q, Lu J, Zhu Q (2023) Additive manufacturing of Ni0based superalloys: residual stress, mechanisms of crack formation and strategies for crack inhibition. Nano Materials Sci 5(1):53–77. https://doi.org/10.1016/j.nanoms.2022.08.001

    Article  Google Scholar 

  10. Haghdadi N, Laleh M, Moyle M, Primig S (2021) Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci 56:64–107. https://doi.org/10.1007/s10853-020-05109-0

    Article  Google Scholar 

  11. Kumar JP, Smart R, Manova S, Akinwande AA, Kumar MS (2023) Mechanical and tribological assessment of AA7075 reinforced Si3N4/TaC/Ti hybrid metal matrix composites processed through stir casting process. Adv Materials Processing Technol. https://doi.org/10.1080/2374068X.2023.2215603

    Article  Google Scholar 

  12. Kumar MS, Akinwande AA, Yang CH, Margabandu V, Romanovksi V (2023) Investigation on mechanical behavior of Al-Mg-Si hybridized with calcined eggshell and TiO2 particulates. Biomass Conversion Bioref. https://doi.org/10.1007/s13399-023-04215-8

    Article  Google Scholar 

  13. Ogunsanya OA, Akinwande AA, Radhakrishnan RM, Talabi HK, Kumar MS, Margabandu V, Bhowmik A (2023) Experimental investigation on the mechanical performance of the Al2O3 and ZrO2 added Al-Mg-Si alloy for structural applications. J Process Mechan Eng. https://doi.org/10.1177/09544089231159777

    Article  Google Scholar 

  14. Olorunyolemi OC, Ogunsanya O, Akinwande AA, Balogun OA, Kumar MS (2022) Enhanced mechanical behavior and grain characteristics of aluminum matrix composites by cold rolling and reinforcement addition (rice husk ash and coal fly ash). J Process Mechan Eng. https://doi.org/10.1177/09544089221124462

    Article  Google Scholar 

  15. Talabi HK, Ojomo AM, Folorunsho OE, Akinfolarin JF, Kumar JP, Akinwande AA, Kumar MS (2022) Development of hybrid aluminium alloy composites modified with locally sourced environmental wastes. Adv Mat Processing Technol. https://doi.org/10.1080/2374068X.2022.2096831

    Article  Google Scholar 

  16. Ogunsanya OA, Akinwande AA, Balogun OA, Romanovksi V, Kumar MS (2022) Mechanical and damping behavior of artificially aged Al6061/TiO2 reinforced composites for aerospace applications. Part Sci Technol. https://doi.org/10.1080/02726351.2022.2065652

    Article  Google Scholar 

  17. Balogun OA, Akinwande AA, Adediran AA, Ogunsanya OA, Ademati AO, Kumar MS, Erinle TJ, Akinlabi E (2022) Microstructure and particle size effects on selected mechanical properties of waste glass-reinforced aluminum matrix composites. Mater Today: Proc 62:4589–4598. https://doi.org/10.1016/j.matpr.2022.05.330

    Article  Google Scholar 

  18. Mohammed A, Majid DIAA, Ishak MR, Uday MB (2018) A brief research review for improvement methods the wettability between ceramic reinforcement particulate and aluminum matrix composites. IOP Conference Series: Mat Sci Eng 203:012002. https://doi.org/10.1088/1757-899X/203/1/012002

    Article  Google Scholar 

  19. Olaniran O, Akinwande AA, Adediran AA, Jen TC (2022) Microstructural characterization and properties of aluminum 7075/Mo prepared by microwave sintering for high-strength application. Adv Mat Process Technol. https://doi.org/10.1080/2374068X.2022.2130894

    Article  Google Scholar 

  20. Malaki M, Tehrani AF, Nirounmand B, Gupta M (2021) Wettability Metal Matrix Composites Metals 11(7):1034. https://doi.org/10.3390/met11071034

    Article  Google Scholar 

  21. Huang X, Zhang J, Miao J, Cinkilic E, Wang Q, Luo AA (2022) On the interactions between molten aluminum and high entropy alloy particles during aluminum matrix composite processing. J Alloy Compd 895:162712. https://doi.org/10.1016/j.jallcom.2021.162712

    Article  Google Scholar 

  22. Zhang Y, Li X, Gu H, Li R, Chen P, Kong C, Yu H (2021) Insight of high-entropy alloy particles-reinforced 2219 Al matrix composites via the ultrasonic casting technology. Mater Charact 182:111548. https://doi.org/10.1016/j.matchar.2021.111548

    Article  Google Scholar 

  23. Huan C, He Y, Su Q, Zuo L, Ren C, Xu H, Dong K, Liu Y (2022) Properties of AlFeNiCrCoTi0.5 high-entropy alloy particle-reinforced 6061Al composites prepared by extrusion. Metals 12:1325. https://doi.org/10.3390/met12081325

    Article  Google Scholar 

  24. Li S, Cong D, Chen Z, Li S, Song C, Cao Y, Nie Z, Wang Y (2021) A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery. Materials Res Lett 9:263–269. https://doi.org/10.1080/21663831.2021.1893233

    Article  Google Scholar 

  25. Chang SH, Kao WP, Hsiao KY, Yeh JW, Lu MY, Tsai CW (2021) High-temperature shape memory properties of Cu15Ni35Ti25Hf12.5Zr12.5 high entropy alloy. J Market Res 14:1235–1242. https://doi.org/10.1016/j.jmrt.2021.07.008

    Article  Google Scholar 

  26. Adesina OS, Akinwande AA, Adediran AA, Balogun OA, Sanyaolu OO, Romanovski V (2023) Morphological evolution and strength performance of green-aluminium-7075 hybrid composites modeled by response surface analysis. Multiscale Multidiscip Model, Experiments Design. https://doi.org/10.1007/s41939-023-00162-z

    Article  Google Scholar 

  27. Adesina OA, Akinwande AA, Balogun OA, Adediran A, A, Sanyaolu O. O., Romanovski V., (2023) Statistical analysis and optimization of the experimental results on performance of green aluminium-7075 hybrid composites. J Compos Sci 7:115. https://doi.org/10.3390/jcs7030115

    Article  Google Scholar 

  28. Bambach M, Fuhenschuh A, Buhl J, Jensch F, Schmidt J (2020) Mathematical modeling and optimization for powder-based additive manufacturing. Procedia Manufacturing 47:1159–1163. https://doi.org/10.1016/j.promfg.2020.04.158

    Article  Google Scholar 

  29. Abdulla H, An H, Barsoum I, Maalouf M (2022) Mathematical modeling of multi-performance metrics and process parameter optimization in laser powder bed fusion. Metals 12:2098. https://doi.org/10.3390/met12122098

    Article  Google Scholar 

  30. Razzaq AM, Majid DL, Ishak MR, Basheer UM (2020) Mathematical modeling and analysis of tribological properties of AA6063 aluminium alloy reinforced with fly ash by using response surface methodology. Crystals 10:403. https://doi.org/10.3390/cryst10050403

    Article  Google Scholar 

  31. Akinwande AA, Adesina OA, Adediran AA, Balogun OA, Mukuro D, Balogun OA, Tee KF, Kumar MS (2023) Microstructure, process optimization, and strength response modelling of green-aluminium-6061 composite as automobile material. Ceramics 6(1):386–415. https://doi.org/10.3390/ceramics6010023

    Article  Google Scholar 

  32. Akinwande AA, Balogun OA, Danso H, Romanovski V, Ademati AO, Oyediran AO (2023) Development of insulating masonry bricks from wood fiber and varying milled glass proportion. J Civil Eng Construct 12(1):40–54. https://doi.org/10.32732/jcec.2023.12.1.40

    Article  Google Scholar 

  33. Balogun OA, Daramola OO, Adediran AA, Bello OS (2022) Investigation of jute/Tetracarpidium conophorum reinforced polypropylene composites for automobile application: mechanical, wear and flow properties. Alexandia Engineering. https://doi.org/10.1016/j.aej.2022.10.026

    Article  Google Scholar 

  34. Akinwande AA, Balogun OA, Romanovski V, Danso H, Kamarou M, Ademati AO (2022) Mechanical performance and Taguchi optimization of kenaf fiber/cement-paperboard composite for interior application. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19449-8

    Article  Google Scholar 

  35. Akinwande AA, Balogun OA, Romanovski V, Danso H, Adematii AO, Adetula YV (2022) Recycling of waste wig fiber in the production of cement-adobe for building envelope: physio-hydric properties. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-18649-6

    Article  Google Scholar 

  36. Adediran AA, Akinwande AA, Balogun OA, Bello OS, Akinbowale MK, Adesina OS, Ojo AA (2022) Mechanical and optimization studies of polypropylene hybrid biocomposites. Sci Rep 12:2468. https://doi.org/10.1038/s41598-022-06304-6

    Article  Google Scholar 

  37. Akinwande AA, Adediran AA, Balogun OA, Yibowei M, Barnabas A, Talabi HK, Olorunfemi BJ (2022) Optimization of selected casting parameters on the mechanical behavior of Al 6061/glass powder composites. Heliyon 8:e09350. https://doi.org/10.1016/j.heliyon.2022.e09350

    Article  Google Scholar 

  38. Akinwande AA, Balogun OA, Adediran AA, Adesina AA, Romanovski V, Jen TC (2023) Experimental analysis, statistical modeling and parametric optimization of quinary-(CoCrFeMnNi)100–x/TiCx high-entropy-alloy (HEA) manufactured by laser additive manufacturing. Results Eng 17:100802. https://doi.org/10.1016/j.rineng.2022.100802

    Article  Google Scholar 

  39. Daramola OO, Akinwande AA, Adediran AA, Balogun OA, Olajide JL, Adesoyin KJ, Adewuyi B, Jen TC (2023) Optimization of the mechanical properties of polyester/coconut shell ash (CSA) composite for light-weight engineering applications. Sci Rep 13(1):1066. https://doi.org/10.1038/s41598-022-26632-x

    Article  Google Scholar 

  40. Balogu OA, Akinwande AA, Ogunsanya OA, Ademati AO, Adediran AA, Erinle TJ, Akinlabi ET (2022) Central composite design and optimization of selected stir casting parameters on flexural strength and fracture toughness mTiO2p/Al 7075 composites. Mater Today: Proc 62(Part 6):4574–4583. https://doi.org/10.1016/j.matpr.2022

    Article  Google Scholar 

  41. Akinwande AA, Adediran AA, Balogun OA, Olorunfemi BJ, Kumar MS (2021) Optimization of flexural strength of recycled polyethylene-terephthalate (PET) eco-composite using response surface methodology. E3S Web Conferences 309:01904. https://doi.org/10.1051/e3sconf/202130901094

    Article  Google Scholar 

  42. Adediran AA, Akinwande AA, Balogun OA, Bayode O, Kumar MS (2021) Optimization studies of stir casting parameters and mechanical properties of TiO2 reinforced Al 7075 composite using response surface methodology. Sci Rep 11(1):19860. https://doi.org/10.1038/s41598-021-99168-1

    Article  Google Scholar 

  43. ASTM E8/E8M-21 (2021) Standard test methods for tension testing of metallic materials. ASTM International. https://doi.org/10.1520/E0008_E0008M-21

  44. ASTM E 92-17 (2017) Standard test methods for Vickers hardness and Knoop hardness of metallic materials. ASTM International. https://doi.org/10.1520/E0092-17

  45. ASTM E756-05 (2017) Standard test methods for measuring vibration-damping properties of materials. ASTM International. https://doi.org/10.1520/E0756-05R17

  46. Olaniran O, Akinwande AA, Adediran AA, Jen TC (2023) Process maps and regression models for the physio-thermo-mechanical properties of sintered Al7075-molybdenum composite. Mater Lett 332:133527. https://doi.org/10.1016/j.matlet.2022.133527

    Article  Google Scholar 

  47. Ademati OA, Akinwande AA, Balogun OA, Romanovski V (2022) Optimization of bamboo fiber-reinforced composite-clay bricks for development of low-cost farm settlements toward boosting rural agribusiness in Africa. J Mat Civil Eng 34(12):04022335. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004489

    Article  Google Scholar 

  48. Akinwande AA, Balogun OA, Romanovski V (2022) Modeling, multi-response optimization, and performance reliability of green metal composites produced from municipal wastes. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-20023-5

    Article  Google Scholar 

  49. Akinwande AA, Folorunso DO, Balogun OA, Danso H, Romanovski V (2022) Paperbricks produced from wastes: modeling and optimization of compressive strength by response surface approach. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-22774-7

    Article  Google Scholar 

  50. Adesina OS, Adediran AA, Akinwande AA, Daramola OO, Sanyaolu OO (2022) Modelling and optimizing tensile behavior of developed aluminum hybrid composite. Surf Rev Lett 29(9):2250120. https://doi.org/10.1142/S0218625X22

    Article  Google Scholar 

  51. Ogunbiyi O, Tian Y, Akinwande AA, Rominiyi AL (2023) AA7075/HEA composites fabricated by microwave sintering: assessment of the microstructural features and response surface optimization. Intermetallics 155:107830. https://doi.org/10.1016/j.intermet.2023.107830

    Article  Google Scholar 

  52. Akinwande AA, Moskovskikh D, Romanovskaia E, Balogun OA, Kumar JP, Romanovski V (2023) Applicability of extreme vertices design in the compositional optimization of 3D-printed lightweight-high-entropy-alloy/B4C/ZeO2/titanium trihybrid aero-composite. Mathematical and Computational Applications 28:54. https://doi.org/10.3390/mca28020054

    Article  Google Scholar 

  53. Mermedes K, Algin Z, Oleiwi SM, Nassani DE (2017) Optimization od lightweight GCBFS and FA geopolymer mortars by response surface method. Constr Build Mater 139:159–171. https://doi.org/10.1016/j.conbuildmat.2017/02.050

    Article  Google Scholar 

  54. Akinwande AA, Folorunso DO, Balogun OA, Romanovski V (2022) Mathematical modelling, multi-objective optimization, and compliance reliability of paper-derived eco-composites. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-062-20714-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. A. A.: conceptualization, methodology, writing-original draft, editing. D. M.: methodology, investigation. V. R.: conceptualization, methodology, supervision.

Corresponding author

Correspondence to Abayomi Adewale Akinwande.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinwande, A.A., Moskovskikh, D. & Romanovski, V. Enhancing mechanical and damping performance of 3D-printed aluminium-7075 with shape memory high-entropy alloy (SMHEA): parametric optimization and mathematical modeling. Int J Adv Manuf Technol 130, 369–383 (2024). https://doi.org/10.1007/s00170-023-12651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12651-z

Keywords

Navigation