Skip to main content

Advertisement

Log in

Research advances on primary machining technologies of zirconia ceramics

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Zirconia ceramics are widely used in aerospace, precision machinery, electronics, and biomedical fields because of their high temperature resistance, wear resistance, strong electromagnetic response, and biocompatibility. Nevertheless, high brittleness and low shear strength seriously hinder the large-scale application of zirconia ceramics in industrial production. This paper mainly reviews the research advances on primary machining technologies of zirconia ceramics from two aspects. One aspect is traditional machining of zirconia ceramics, which primarily focuses on the issues such as tool wear, machined surface quality, and cutting force in milling and grinding of zirconia ceramics. And the other aspect is non-traditional machining of zirconia ceramics, which primarily focuses on material removal rate and machined surface quality of zirconia ceramics using the electrical discharge machining (EDM) by assisting electrode method. The machinability and machining quality of zirconia composite ceramics by EDM with the adding conductive phase method have also been analyzed. Furthermore, for the auxiliary machining methods, the effects of ultrasonic vibration-assisted machining (UVAM) and laser-assisted machining (LAM) of zirconia ceramics are comparatively analyzed and elaborated. Subsequently, the research progress of traditional and non-traditional machining of zirconia ceramics is summarized and discussed. Finally, different machining methods of zirconia ceramics were prospected, and their future development trends were discussed, which provides a reference for further improving the machining efficiency and accuracy of zirconia ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Khanlar LN, Salazar Rios A, Tahmaseb A, Zandinejad A (2021) Additive manufacturing of zirconia ceramic and its application in clinical dentistry: a review. Dent J 9:104. https://doi.org/10.3390/dj9090104

    Article  Google Scholar 

  2. Lin C, Zhang C, Lin J (2007) Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the Pechini-type sol−gel process. J Phys Chem C 111:3300–3307. https://doi.org/10.1021/jp066615l

    Article  Google Scholar 

  3. Liu Y, Yang D, Riekehr L, Engqvist H, Fu L, Xia W (2022) Combining good mechanical properties and high translucency in yttrium-doped ZrO2-SiO2 nanocrystalline glass-ceramics. J Eur Ceram Soc 42:274–285. https://doi.org/10.1016/j.jeurceramsoc.2021.09.047

    Article  Google Scholar 

  4. Verma A, Dwivedi R, Prasad R, Bartwal KS (2013) Microwave-assisted synthesis of mixed metal-oxide nanoparticles. J Nanoparticles 2013:1–11. https://doi.org/10.1155/2013/737831

    Article  Google Scholar 

  5. Khodaii J, Adibi H, Barazandeh F, Solhtalab A, Rezaei M, Sarhan AAD (2020) Improvement of surface integrity in the grinding of bioceramic partially stabilized zirconia using analytical, numerical, and experimental methods. Ceram Int 46:13784–13797. https://doi.org/10.1016/j.ceramint.2020.02.168

    Article  Google Scholar 

  6. Ji M, Xu J, Li L, Yu D, Chen M, Mansori ME (2021) Nano-scale mechanical behaviors and material removal mechanisms of zirconia ceramics sintered at various temperatures. Ceram Int 47:32588–32598. https://doi.org/10.1016/j.ceramint.2021.08.154

    Article  Google Scholar 

  7. Ji M, Xu J, Li L, Yu D, Chen M, Geier N, Mansori ME (2022) Investigation of material removal mechanisms and ductile-brittle transition zone of zirconia ceramics sintered at various temperatures. J Mech Behav Biomed Mater 125:104944. https://doi.org/10.1016/j.jmbbm.2021.104944

    Article  Google Scholar 

  8. Galante R, Figueiredo-Pina CG, Serro AP (2019) Additive manufacturing of ceramics for dental applications: a review. Dent Mater 35:825–846. https://doi.org/10.1016/j.dental.2019.02.026

    Article  Google Scholar 

  9. Silvestre J, Silvestre N, de Brito J (2015) An overview on the improvement of mechanical properties of ceramics nanocomposites. J Nanomater 2015:1–13. https://doi.org/10.1155/2015/106494

    Article  Google Scholar 

  10. Zhang X, Wu X, Shi J (2020) Additive manufacturing of zirconia ceramics: a state-of-the-art review. J Mater Res Technol 9:9029–9048. https://doi.org/10.1016/j.jmrt.2020.05.131

    Article  Google Scholar 

  11. Shahmiri R, Standard OC, Hart JN, Sorrell CC (2018) Optical properties of zirconia ceramics for esthetic dental restorations: a systematic review. J Prosthet Dent 119:36–46. https://doi.org/10.1016/j.prosdent.2017.07.009

    Article  Google Scholar 

  12. Pekkan G, Pekkan K, Bayindir BÇ, Özcan M, Karasu B (2020) Factors affecting the translucency of monolithic zirconia ceramics: a review from materials science perspective. Dent Mater J 39:1–8. https://doi.org/10.4012/dmj.2019-098

    Article  Google Scholar 

  13. Dai S, Fu J, Lei H, Chen Y (2021) Study on the interaction between SiO2 and ZrO2 in the chemical mechanical polishing of zirconia ceramic with colloidal silica. Ceram Int 47:21642–21649. https://doi.org/10.1016/j.ceramint.2021.04.177

    Article  Google Scholar 

  14. Yang Z, Zhu L, Zhang G, Ni C, Lin B (2020) Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tools Manuf 156:103594. https://doi.org/10.1016/j.ijmachtools.2020.103594

    Article  Google Scholar 

  15. He Q, Jiang J, Yang X, Zhang L, Zhou Z, Zhong Y (2021) Additive manufacturing of dense zirconia ceramics by fused deposition modeling via screw extrusion. J Eur Ceram Soc 41:1033–1040. https://doi.org/10.1016/j.jeurceramsoc.2020.09.018

    Article  Google Scholar 

  16. Okada A (2008) Automotive and industrial applications of structural ceramics in Japan. J Eur Ceram Soc 28:1097–1104. https://doi.org/10.1016/j.jeurceramsoc.2007.09.016

    Article  Google Scholar 

  17. Luo H, Guo M, Yin S, Chen F, Huang S, Lu A, Guo Y (2018) An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing. Appl Surf Sci 444:569–577. https://doi.org/10.1016/j.apsusc.2018.03.091

    Article  Google Scholar 

  18. Badwal S (1992) Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ion 52:23–32. https://doi.org/10.1016/0167-2738(92)90088-7

    Article  Google Scholar 

  19. Denry I, Kelly J (2008) State of the art of zirconia for dental applications. Dent Mater 24:299–307. https://doi.org/10.1016/j.dental.2007.05.007

    Article  Google Scholar 

  20. Manicone PF, Rossi Iommetti P, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications. J Dent 35:819–826. https://doi.org/10.1016/j.jdent.2007.07.008

    Article  Google Scholar 

  21. Qi B, Liang S, Li Y, Zhou C, Yu H, Li J (2022) ZrO2 matrix toughened ceramic material-strength and toughness. Adv Eng Mater 24:2101278. https://doi.org/10.1002/adem.202101278

    Article  Google Scholar 

  22. Liu X-M (2021) The influence of cerium oxide content on the crack growth in zirconia ceramic materials for engineering applications. Results Mater 10:100196. https://doi.org/10.1016/j.rinma.2021.100196

    Article  Google Scholar 

  23. Sarker S, Mumu HT, Al-Amin M, Alam MZ, Gafur MA (2022) Impacts of inclusion of additives on physical, microstructural, and mechanical properties of alumina and zirconia toughened alumina (ZTA) ceramic composite: a review. Mater Today Proc 62:2892–2918. https://doi.org/10.1016/j.matpr.2022.02.481

    Article  Google Scholar 

  24. Zhang D, Li C, Jia D, Wang S, Li R, Qi X (2014) Grinding model and material removal mechanism of medical nanometer zirconia ceramics. Recent Pat Nanotechnol 8:2–17. https://doi.org/10.2174/1872210507666131117183502

    Article  Google Scholar 

  25. Zhao K, Zhang G, Ma G, Shen C, Wu D (2020) Microstructure and mechanical properties of titanium alloy/zirconia functionally graded materials prepared by laser additive manufacturing. J Manuf Process 56:616–622. https://doi.org/10.1016/j.jmapro.2020.05.044

    Article  Google Scholar 

  26. Alghazzawi TF, Lemons J, Liu P-R, Essig ME, Janowski GM (2012) The failure load of CAD/CAM generated zirconia and glass-ceramic laminate veneers with different preparation designs. J Prosthet Dent 108:386–393. https://doi.org/10.1016/S0022-3913(12)60198-X

    Article  Google Scholar 

  27. Liang S, Ye H, Yuan F (2021) Changes in crystal phase, morphology, and flexural strength of as-sintered translucent monolithic zirconia ceramic modified by femtosecond laser. Appl Sci 11:6925. https://doi.org/10.3390/app11156925

    Article  Google Scholar 

  28. Huang X, He N, Li L, Zhao M (2011) Study of technological parameters of micro milling zirconia ceramics. Tool Eng:31–34. https://doi.org/10.16567/j.cnki.1000-7008.2011.12.008

  29. Kar S, Kumar S, Bandyopadhyay PP, Paul S (2020) Grinding of hard and brittle ceramic coatings: force analysis. J Eur Ceram Soc 40:1453–1461. https://doi.org/10.1016/j.jeurceramsoc.2019.12.058

    Article  Google Scholar 

  30. Grigoriev SN, Hamdy K, Volosova MA, Okunkova AA, Fedorov SV (2021) Electrical discharge machining of oxide and nitride ceramics: a review. Mater Des 209:109965. https://doi.org/10.1016/j.matdes.2021.109965

    Article  Google Scholar 

  31. Ferraris E, Reynaerts D, Lauwers B (2011) Micro-EDM process investigation and comparison performance of Al3O2 and ZrO2 based ceramic composites. CIRP Ann 60:235–238. https://doi.org/10.1016/j.cirp.2011.03.131

    Article  Google Scholar 

  32. O’Toole L, Kang C, Fang F (2020) Advances in rotary ultrasonic-assisted machining. Nanomanufacturing Metrol 3:1–25. https://doi.org/10.1007/s41871-019-00053-3

    Article  Google Scholar 

  33. You K, Yan G, Luo X, Gilchrist MD, Fang F (2020) Advances in laser assisted machining of hard and brittle materials. J Manuf Process 58:677–692. https://doi.org/10.1016/j.jmapro.2020.08.034

    Article  Google Scholar 

  34. Li H, Wen J, Li H (2010) Experimental studies on surface roughness of micro milling process. J Wuhan Univ Technol:187–191. https://doi.org/10.3963/j.issn.1671-4431.2010.14.041

  35. Khodaii J, Barazandeh F, Rezaei SM, Adibi H, Sarhan AAD (2019) Surface integrity and flexural strength improvement in grinding partially stabilized zirconia. J Cent South Univ 26:3261–3278. https://doi.org/10.1007/s11771-019-4251-z

    Article  Google Scholar 

  36. Patidar A, Mandal AK, Chaudhary AK, Jain V (2021) Surface roughness of sintered yttria stabilised zirconia (YSZ) using high speed moderate depth super-abrasive grinding. Mater Today Proc 44:2705–2709. https://doi.org/10.1016/j.matpr.2020.12.686

    Article  Google Scholar 

  37. Na Y, Lee US, Kim BH (2021) Experimental study on micro-grinding of ceramics for micro-structuring. Appl Sci 11:8119. https://doi.org/10.3390/app11178119

    Article  Google Scholar 

  38. Sabur A, Mohammed Mehdi S, Ali MY, Maleque MA, Moudood A (2015) Investigation of surface roughness in micro-EDM of nonconductive ZrO2 ceramic with powder mixed dielectric fluid. Adv Mater Res 1115:16–19. https://doi.org/10.4028/www.scientific.net/AMR.1115.16

    Article  Google Scholar 

  39. Smirnov A, Peretyagin P, Bartolomé JF (2018) Wire electrical discharge machining of 3Y-TZP/Ta ceramic-metal composites. J Alloys Compd 739:62–68. https://doi.org/10.1016/j.jallcom.2017.12.221

    Article  Google Scholar 

  40. Shinde B, Pawade R (2021) Study on analysis of kerf width variation in WEDM of insulating zirconia. Mater Manuf Process 36:1010–1018. https://doi.org/10.1080/10426914.2020.1854468

    Article  Google Scholar 

  41. Muñoz-Ferreiro C, López-Pernía C, Moriche R, Gommeringer A, Kern F, Poyato R, Gallardo-Lopez A (2022) Highly efficient electrical discharge machining of yttria-stabilized zirconia ceramics with graphene nanostructures as fillers. J Eur Ceram Soc 42:5943–5952. https://doi.org/10.1016/j.jeurceramsoc.2022.06.037

    Article  Google Scholar 

  42. Wdowik R, Porzycki J, Magdziak M (2017) Measurements of surface texture parameters after ultrasonic assisted and conventional grinding of ZrO2 based ceramic material characterized by different states of sintering. Procedia CIRP 62:293–298. https://doi.org/10.1016/j.procir.2016.06.049

    Article  Google Scholar 

  43. Juri AZ, Nakanishi Y, Yin L (2021) Microstructural influence on damage-induced zirconia surface asperities produced by conventional and ultrasonic vibration-assisted diamond machining. Ceram Int 47:25744–25754. https://doi.org/10.1016/j.ceramint.2021.05.301

    Article  Google Scholar 

  44. Juri AZ, Zhang Y, Kotousov A, Yin L (2021) Zirconia responses to edge chipping damage induced in conventional and ultrasonic vibration-assisted diamond machining. J Mater Res Technol 13:573–589. https://doi.org/10.1016/j.jmrt.2021.05.005

    Article  Google Scholar 

  45. Bowman KJ, Pfefferkorn FE, Shin YC (2002) Recrystallization textures during laser-assisted machining of zirconia ceramics. Mater Sci Forum 408–412:1669–1674. https://doi.org/10.4028/www.scientific.net/MSF.408-412.1669

    Article  Google Scholar 

  46. Kizaki T, Sugita N, Mitsuishi M (2016) Experimental analysis of the machinability in the thermally assisted milling process of zirconia ceramics. Precis Eng 45:176–186. https://doi.org/10.1016/j.precisioneng.2016.02.010

    Article  Google Scholar 

  47. De Zanet A, Casalegno V, Salvo M (2021) Laser surface texturing of ceramics and ceramic composite materials — a review. Ceram Int 47:7307–7320. https://doi.org/10.1016/j.ceramint.2020.11.146

    Article  Google Scholar 

  48. Faruk Biswas O, Sen A, Kibria G, Kunar S (2021) Parametric study of surface characteristics of laser micro-channel milling of zirconia (ZrO2) at defocused condition. Mater Today Proc 47:2288–2292. https://doi.org/10.1016/j.matpr.2021.04.222

    Article  Google Scholar 

  49. Liang X, Lin B, Liu X (2020) Analysis of local features of engineering ceramics grinding surface. Measurement 151:107205. https://doi.org/10.1016/j.measurement.2019.107205

    Article  Google Scholar 

  50. Akinribide OJ, Mekgwe GN, Akinwamide SO, Gamaoun F, Abeykoon C, Johnson OT, Olubambi PA (2022) A review on optical properties and application of transparent ceramics. J Mater Res Technol 21:712–738. https://doi.org/10.1016/j.jmrt.2022.09.027

    Article  Google Scholar 

  51. Zhang G, Wang Z, Chen W, Li J, Sun H, Zhang K (2020) Single-point grinding of alumina and zirconia ceramics under two-dimensional compressive prestress. Int J Precis Eng Manuf 21:1–9. https://doi.org/10.1007/s12541-019-00232-8

    Article  Google Scholar 

  52. Ferraris E, Mestrom T, Bian R, Reynaerts D, Lauwers B (2012) Machinability investigation on high speed hard turning of ZrO2 with PCD tools. Procedia CIRP 1:500–505. https://doi.org/10.1016/j.procir.2012.04.089

    Article  Google Scholar 

  53. Okada M, Yoshimoto F, Watanabe H, Nikawa M (2023) Drilling of alumina and zirconia ceramics using diamond-coated carbide drill. J Manuf Process 89:410–429. https://doi.org/10.1016/j.jmapro.2023.01.055

    Article  Google Scholar 

  54. Bian R, Ding W, Liu S, He N (2019) Research on high performance milling of engineering ceramics from the perspective of cutting variables setting. Materials 12:122. https://doi.org/10.3390/ma12010122

    Article  Google Scholar 

  55. Wu H, Zuo D, Sun Q, Xu F (2015) Tool wear in ZrO2 bioceramic milling processes. China Mech Eng:960-964+993. https://doi.org/10.3969/j.issn.1004-132X.2015.07.018

  56. Bian R, He N, Ding W, Liu S (2017) A study on the tool wear of PCD micro end mills in ductile milling of ZrO2 ceramics. Int J Adv Manuf Technol 92:2197–2206. https://doi.org/10.1007/s00170-017-0242-0

    Article  Google Scholar 

  57. Xue J, An L, Sun Q (2015) Research on fractal features in milling ZrO2 ceramics. Open Mech Eng J 9:552–557. https://doi.org/10.2174/1874155X01509010552

    Article  Google Scholar 

  58. Romanus H, Ferraris E, Bouquet J, Reynaerts D, Lauwers B (2014) Micromilling of sintered ZrO2 ceramic via cBN and diamond coated tools. Procedia CIRP 14:371–376. https://doi.org/10.1016/j.procir.2014.03.063

    Article  Google Scholar 

  59. Bian R, Ferraris E, Ynag Y, Qian J (2018) Experimental investigation on ductile mode micro-milling of ZrO2 ceramics with diamond-coated end mills. Micromachines 9:127. https://doi.org/10.3390/mi9030127

    Article  Google Scholar 

  60. Wang C, Wang X, Sun F (2018) Tribological behavior and cutting performance of monolayer, bilayer and multilayer diamond coated milling tools in machining of zirconia ceramics. Surf Coat Technol 353:49–57. https://doi.org/10.1016/j.surfcoat.2018.08.074

    Article  Google Scholar 

  61. Bian R, Ferraris E, Qian J, Reynaerts D, Li L, He N (2012) Micro-milling of fully sintered ZrO2 ceramics with diamond coated end mills. Key Eng Mater 523–524:87–92. https://doi.org/10.4028/www.scientific.net/KEM.523-524.87

    Article  Google Scholar 

  62. Bian R, Ferraris E, He N, Reynaerts D (2014) Process investigation on meso-scale hard milling of ZrO2 by diamond coated tools. Precis Eng 38:82–91. https://doi.org/10.1016/j.precisioneng.2013.07.007

    Article  Google Scholar 

  63. Deng B, Yang M, Zhou L, Wang H, Yan R, Peng F (2019) Smoothed particle hydrodynamics (SPH) simulation and experimental investigation on the diamond fly-cutting milling of zirconia ceramics. Procedia CIRP 82:202–207. https://doi.org/10.1016/j.procir.2019.04.001

    Article  Google Scholar 

  64. Qin Z, Sun Q, Wu H, Chen Q (2014) Study on the experimental of cutting force in milling of dental zirconia ceramics with PCD tool. China Ceram:62–66. https://doi.org/10.16521/j.cnki.issn.1001-9642.2014.09.015

  65. Xue J, Sun Q, Wu H, Chen Q (2013) Experimental study of cutting force in side milling of ZrO2 ceramics. Manuf Technol Mach Tool 115–118. https://doi.org/10.3969/j.issn.1005-2402.2013.07.034

  66. Yan X, Dong S, Li X, Zhao Z, Dong S, An L (2021) Optimization of machining parameters for milling zirconia ceramics by polycrystalline diamond tool. Materials 15:208. https://doi.org/10.3390/ma15010208

    Article  Google Scholar 

  67. Wang SL, Li L, He N, Bian R, Zhan Z, Liu J (2014) Research on tool wear of PCD micro end mill in machining of ZrO2 ceramics. Mater Sci Forum 800–801:20–25. https://doi.org/10.4028/www.scientific.net/MSF.800-801.20

    Article  Google Scholar 

  68. Bian R, He N, Li L, Qian J, Shi Z, Chen M (2014) Analysis on characteristics of milling force in micro-milling of ZrO2 ceramics. China Mech Eng:3200–3206. https://doi.org/10.3969/j.issn.1004-132X.2014.23.015

  69. Warhanek M, Pfaff J, Martin P, Schönbächler L, Boos J, Wegener K (2016) Geometry optimization of polycrystalline diamond tools for the milling of sintered ZrO2. Procedia CIRP 46:290–293. https://doi.org/10.1016/j.procir.2016.04.003

    Article  Google Scholar 

  70. Yin L, Spowage AC, Ramesh K, Huang H, Pickering JP, Vancoille EYJ (2004) Influence of microstructure on ultraprecision grinding of cemented carbides. Int J Mach Tools Manuf 44:533–543. https://doi.org/10.1016/j.ijmachtools.2003.10.022

    Article  Google Scholar 

  71. Choudhary A, Naskar A, Paul S (2018) High speed moderate depth grinding of alumina and yittria stabilized zirconia. Adv Mater Process Technol 4:603–613. https://doi.org/10.1080/2374068X.2018.1485401

    Article  Google Scholar 

  72. Anand PSP, Arunachalam N, Vijayaraghavan L (2018) Study on grinding of pre-sintered zirconia using diamond wheel. Mater Manuf Process 33:634–643. https://doi.org/10.1080/10426914.2017.1364761

    Article  Google Scholar 

  73. Li S, Wang Y, Wu Y, Zhang K, Zhang L (2015) The processing and application of a zirconia ceramic shaft. Mater Res Innov 19:S5–S376. https://doi.org/10.1179/1432891714Z.0000000001113

    Article  Google Scholar 

  74. Zhang X, Kang Z, Li S, Shi Z, Wen D, Jiang J, Zhang Z (2019) Grinding force modelling for ductile-brittle transition in laser macro-micro-structured grinding of zirconia ceramics. Ceram Int 45:18487–18500. https://doi.org/10.1016/j.ceramint.2019.06.067

    Article  Google Scholar 

  75. Zhu D, Song S, Qu C, Lv Y, Wu C (2020) Numerical investigation of crack initiation, propagation and suppression in robot-assisted abrasive belt grinding of zirconia ceramics via an improved chip-thickness model. Ceram Int 46:22030–22039. https://doi.org/10.1016/j.ceramint.2020.05.199

    Article  Google Scholar 

  76. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H, Wang J (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram Int 45:14908–14920. https://doi.org/10.1016/j.ceramint.2019.04.226

    Article  Google Scholar 

  77. Wan L, Li L, Deng Z, Deng Z, Liu W (2019) Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics. J Manuf Process 47:41–51. https://doi.org/10.1016/j.jmapro.2019.09.024

    Article  Google Scholar 

  78. Liu W, Tang D, Gu H, Wan L (2022) Experimental study on the mechanism of strain rate on grinding damage of zirconia ceramics. Ceram Int 48:21648–21655. https://doi.org/10.1016/j.ceramint.2022.04.142

    Article  Google Scholar 

  79. Yan C, Deng Z, Xia T, Liu W, Zhang H (2022) Investigation of dynamic fracture toughness on zirconia ceramic grinding performance with different grain sizes. Int J Adv Manuf Technol 121:5549–5561. https://doi.org/10.1007/s00170-022-09743-7

    Article  Google Scholar 

  80. Wu Y, Shen Y, Li S, Sun J, Nan H, Zhang K (2017) Simulation and experimental study on surface quality of zirconia ceramic grinding. Mach Electron:8–12. https://doi.org/10.3969/j.issn.1001-2257.2017.03.002

  81. Li S, Han G, Sun J, Chen W, Wang K (2019) Study on surface quality of zirconia ceramics used for bearing ground by diamond grinding wheel. Diam Abras Eng:75–81. https://doi.org/10.13394/j.cnki.jgszz.2019.6.0013

  82. Li S, Wang K, Sun J, Sui Y, Han G, Sha Y (2020) Research on grinding process optimization and roughness control of zirconia ceramics. Bull Chin Ceram Soc:271–277. https://doi.org/10.16552/j.cnki.issn1001-1625.2020.01.039

  83. Ma C, Wu W, Fu N, Wang X, Cheng P, Liu J (2018) Study on optimization of deposition parameters of silicon nitride thin films prepared by monocrystalline silicon target based on orthogonal test. Tool Eng:31–35. https://doi.org/10.16567/j.cnki.1000-7008.2018.04.006

  84. Rissanen J (1986) A predictive least-squares principle. IMA J Math Control Inf 3:211–222. https://doi.org/10.1093/imamci/3.2-3.211

    Article  Google Scholar 

  85. Ostertagová E (2012) Modelling using polynomial regression. Procedia Eng 48:500–506. https://doi.org/10.1016/j.proeng.2012.09.545

    Article  Google Scholar 

  86. Zhang K, Zhao G, Sun J, Han T, Liu C (2017) Simulated analysis and experimental research on grinding temperature of zirconia ceramic plane. Surf Technol:251–258. https://doi.org/10.16490/j.cnki.issn.1001-3660.2017.12.039

  87. Bayat M, Adibi H, Barzegar A, Rezaei SM (2022) Experimental and numerical investigation of heat generation and surface integrity of ZrO2 bioceramics in grinding process under MQL condition. J Mech Behav Biomed Mater 131:105226. https://doi.org/10.1016/j.jmbbm.2022.105226

    Article  Google Scholar 

  88. Wu Y, Wang W, Li S, Sun J, Liu C, Han T (2017) Experiments of surface roughness of zirconia ceramics under wet and dry grinding. J Shenyang Jianzhu Univ:1080–1087. https://doi.org/10.11717/j.issn:2095-1922.2017.06.15

  89. Xie G, Shang Z, Sheng X, Wu Y, Yu J (2011) Grinding force modeling for high-speed deep grinding of engineering ceramics. J Mech Eng 169–176. https://doi.org/10.3901/JME.2011.11.169

  90. Zhang K, Zhao G, Sun J, Wang Q, Wang W (2018) Zirconia ceramics plane grinding force simulation analysis and experimental research. Modul Mach Tool Autom Manuf Tech:60–63. https://doi.org/10.13462/j.cnki.mmtamt.2018.05.015

  91. Chen J, Shen J, Huang H, Xu X (2010) Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels. J Mater Process Technol 210:899–906. https://doi.org/10.1016/j.jmatprotec.2010.02.002

    Article  Google Scholar 

  92. Zhang X, Wang Z, Shi Z, Shi Z, Jiang R, Kang Z (2020) Improved grinding performance of zirconia ceramic using an innovative biomimetic fractal-branched grinding wheel inspired by leaf vein. Ceram Int 46:22954–22963. https://doi.org/10.1016/j.ceramint.2020.06.070

    Article  Google Scholar 

  93. Li SS, Xu JH, Fu YC, Xu HJ (2011) Force and energy in grinding zirconia ceramics by brazed monolayered diamond wheels. Key Eng Mater 487:80–83. https://doi.org/10.4028/www.scientific.net/KEM.487.80

    Article  Google Scholar 

  94. Zhang J, Wang W, Li S, Tao H (2018) Experimental study on grinding force of zirconia ceramics in dry/wet grinding environment. MATEC Web Conf 198:02004. https://doi.org/10.1051/matecconf/201819802004

    Article  Google Scholar 

  95. Ming W, Shen F, He W, Chen Z (2019) Review on research progress of EDM based on finite element method. Mach Tool Hydraul:177–186. https://doi.org/10.3969/j.issn.1001-3881.2019.20.040

  96. Volosova MA, Okunkova AA, Fedorov SV, Hamdy K, Mikhailova MA (2020) Electrical discharge machining non-conductive ceramics: combination of materials. Technologies 8:32. https://doi.org/10.3390/technologies8020032

    Article  Google Scholar 

  97. Bilal A, Jahan M, Talamona D, Perveen A (2018) Electro-discharge machining of ceramics: a review. Micromachines 10:10. https://doi.org/10.3390/mi10010010

    Article  Google Scholar 

  98. Ming W, Jia H, Zhang H, Zhang Z, Liu K, Du J, Shen F (2020) A comprehensive review of electric discharge machining of advanced ceramics. Ceram Int 46:21813–21838. https://doi.org/10.1016/j.ceramint.2020.05.207

    Article  Google Scholar 

  99. Pachaury Y, Tandon P (2017) An overview of electric discharge machining of ceramics and ceramic based composites. J Manuf Process 25:369–390. https://doi.org/10.1016/j.jmapro.2016.12.010

    Article  Google Scholar 

  100. Hösel T, Müller C, Reinecke H (2011) Spark erosive structuring of electrically nonconductive zirconia with an assisting electrode. CIRP J Manuf Sci Technol 4:357–361. https://doi.org/10.1016/j.cirpj.2011.05.005

    Article  Google Scholar 

  101. Hösel T, Müller C, Reinecke H (2012) Analysis of surface reaction mechanisms on electrically non-conductive zirconia, occurring within the spark erosion process chain. Key Eng Mater 504–506:1171–1176. https://doi.org/10.4028/www.scientific.net/KEM.504-506.1171

    Article  Google Scholar 

  102. Banu A, Ali MY, Rahman MA (2014) Micro-electro discharge machining of non-conductive zirconia ceramic: investigation of MRR and recast layer hardness. Int J Adv Manuf Technol 75:257–267. https://doi.org/10.1007/s00170-014-6124-9

    Article  Google Scholar 

  103. Sabur A, Ali MY, Maleque MA, Khan AA (2013) Investigation of material removal characteristics in EDM of nonconductive ZrO2 ceramic. Procedia Eng 56:696–701. https://doi.org/10.1016/j.proeng.2013.03.180

    Article  Google Scholar 

  104. Sabur A, Ali MY, Maleque MA (2013) Modelling of material removal rate in EDM of nonconductive ZrO2 ceramic by Taguchi method. Appl Mech Mater 393:246–252. https://doi.org/10.4028/www.scientific.net/AMM.393.246

    Article  Google Scholar 

  105. Guo Y, Wang L, Zhang G, Hou P (2017) Multi-response optimization of the electrical discharge machining of insulating zirconia. Mater Manuf Process 32:294–301. https://doi.org/10.1080/10426914.2016.1176180

    Article  Google Scholar 

  106. Rodic D, Gostimirovic M, Sekulic M, Savkovic B, Strbac B (2022) Investigation an assisting electrode powder mixed electrical discharge machining of nonconductive ceramic. Int J Adv Manuf Technol 118:2419–2435. https://doi.org/10.1007/s00170-021-08061-8

    Article  Google Scholar 

  107. Schubert A, Zeidler H, Hahn M, Hackert-Oschätzchen M, Schneider J (2013) Micro-EDM milling of electrically nonconducting zirconia ceramics. Procedia CIRP 6:297–302. https://doi.org/10.1016/j.procir.2013.03.026

    Article  Google Scholar 

  108. Guo Y, Hou P, Shao D, Li Z, Wang L, Tang L (2014) High-speed wire electrical discharge machining of insulating zirconia with a novel assisting electrode. Mater Manuf Process 29:526–531. https://doi.org/10.1080/10426914.2014.892983

    Article  Google Scholar 

  109. Hou P, Guo Y, Shao D, Li Z, Wureli Y, Tang L (2014) Influence of open-circuit voltage on high-speed wire electrical discharge machining of insulating zirconia. Int J Adv Manuf Technol 73:229–239. https://doi.org/10.1007/s00170-014-5767-x

    Article  Google Scholar 

  110. Mahardika M, Mitsui K (2008) A new method for monitoring micro-electric discharge machining processes. Int J Mach Tools Manuf 48:446–458. https://doi.org/10.1016/j.ijmachtools.2007.08.023

    Article  Google Scholar 

  111. Chen Y-F, Lin Y-J, Lin Y-C, Chen S-L, Hsu L-R (2010) Optimization of electrodischarge machining parameters on ZrO2 ceramic using the Taguchi method. Proc Inst Mech Eng Part B J Eng Manuf 224:195–205. https://doi.org/10.1243/09544054JEM1437

    Article  Google Scholar 

  112. Hanaoka D, Ito R, Fukuzawa Y (2011) Electrical discharge machined surface of the insulating ZrO2 ceramics. J Adv Mech Des Syst Manuf 5:372–384. https://doi.org/10.1299/jamdsm.5.372

    Article  Google Scholar 

  113. Bonny K, De Baets P, Vleugels J, Salehi A, Van der Biest O, Lauwers B, Liu W (2008) Influence of secondary electro-conductive phases on the electrical discharge machinability and frictional behavior of ZrO2-based ceramic composites. J Mater Process Technol 208:423–430. https://doi.org/10.1016/j.jmatprotec.2008.01.020

    Article  Google Scholar 

  114. Landfried R, Kern F, Gadow R (2014) Influence of titanium carbide fraction on material properties and EDM of ZrO2-TiC ceramics. Key Eng Mater 611–612:637–642 https://doi.org/10.4028/www.scientific.net/KEM.611-612.637

    Article  Google Scholar 

  115. Gommeringer A, Schmitt-Radloff U, Ninz P, Kern F, Klocke F, Schneider S, Holsten M, Klink A (2018) ED-machinable ceramics with oxide matrix: influence of particle size and volume fraction of the electrical conductive phase on the mechanical and electrical properties and the EDM characteristics. Procedia CIRP 68:22–27. https://doi.org/10.1016/j.procir.2017.12.016

    Article  Google Scholar 

  116. Hess R, Olivier M, Schneider S, Heidemanns L, Klink A, Herrig T, Bergs T (2022) Numerical investigation of the EDM induced temperature field in a composite ceramic. Procedia CIRP 108:31–36. https://doi.org/10.1016/j.procir.2022.03.011

    Article  Google Scholar 

  117. Bonny K, De Baets P, Vleugels J, Salehi A, Van der Biest O, Lauwers B, Liu W (2009) EDM machinability and frictional behavior of ZrO2-WC composites. Int J Adv Manuf Technol 41:1085–1093. https://doi.org/10.1007/s00170-008-1551-0

    Article  Google Scholar 

  118. Vogeler F, Migdal A, Lauwers B, Ferraris E (2016) The effect of wire-EDM processing on the flexural strength of large scale ZrO2-TiN. Procedia CIRP 45:179–182. https://doi.org/10.1016/j.procir.2016.02.333

    Article  Google Scholar 

  119. Lauwers B, Brans K, Liu W, Vleugels J, Salehi S, Vanmeensel K (2008) Influence of the type and grain size of the electro-conductive phase on the wire-EDM performance of ZrO2 ceramic composites. CIRP Ann 57:191–194. https://doi.org/10.1016/j.cirp.2008.03.089

    Article  Google Scholar 

  120. Du J, Zhang H, Geng Y, Ming W, He W, Ma J, Cao Y (2019) A review on machining of carbon fiber reinforced ceramic matrix composites. Ceram Int 45:18155–18166. https://doi.org/10.1016/j.ceramint.2019.06.112

    Article  Google Scholar 

  121. Bharathi V, Anilchandra AR, Sangam SS, Shreyas S, Shankar SB (2021) A review on the challenges in machining of ceramics. Mater Today Proc 46:1451–1458. https://doi.org/10.1016/j.matpr.2021.03.019

    Article  Google Scholar 

  122. Xu W-X, Zhang L-C (2015) Ultrasonic vibration-assisted machining: principle, design and application. Adv Manuf 3:173–192. https://doi.org/10.1007/s40436-015-0115-4

    Article  Google Scholar 

  123. Yang Z, Zhu L, Ni C, Ning J (2019) Investigation of surface topography formation mechanism based on abrasive-workpiece contact rate model in tangential ultrasonic vibration-assisted CBN grinding of ZrO2 ceramics. Int J Mech Sci 155:66–82. https://doi.org/10.1016/j.ijmecsci.2019.02.031

    Article  Google Scholar 

  124. Ni C, Zhu L, Liu C, Yang Z (2018) Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V. Int J Mech Sci 142–143:97–111. https://doi.org/10.1016/j.ijmecsci.2018.04.037

    Article  Google Scholar 

  125. Gao GF, Zhao B, Xiang DH, Kong QH (2009) Research on the surface characteristics in ultrasonic grinding nano-zirconia ceramics. J Mater Process Technol 209:32–37. https://doi.org/10.1016/j.jmatprotec.2008.01.061

    Article  Google Scholar 

  126. Li Z, Zheng K, Liao W, Xiao X (2018) Tribological properties of surface topography in ultrasonic vibration-assisted grinding of zirconia ceramics. Proc Inst Mech Eng Part C J Mech Eng Sci 232:4203–4215. https://doi.org/10.1177/0954406217747914

    Article  Google Scholar 

  127. Li Z, Zheng K, Liao W, Xiao X (2018) Surface characterization of zirconia ceramics in ultrasonic vibration-assisted grinding. J Braz Soc Mech Sci Eng 40:379. https://doi.org/10.1007/s40430-018-1296-0

    Article  Google Scholar 

  128. Qiao J, Feng M, Li Y, Li S, Zeng J, Wu Y (2021) A study on tangential ultrasonic-assisted mirror grinding of zirconia ceramic curved surfaces. Int J Adv Manuf Technol 112:2837–2851. https://doi.org/10.1007/s00170-020-06512-2

    Article  Google Scholar 

  129. Qiao J, Wang Q, Wu H, Zeng J, Wu Y (2022) Experimental study on tangential ultrasonic-assisted mirror grinding of zirconia ceramics. Aeronaut Manuf Technol:69–75. https://doi.org/10.16080/j.issn1671-833x.2022.08.069

  130. Jia D, Li C, Zhang Y, Yang M, Zhang X, Li R, Ji H (2019) Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. Int J Adv Manuf Technol 100:457–473. https://doi.org/10.1007/s00170-018-2718-y

    Article  Google Scholar 

  131. Qiao J, Feng M, Wu H, Li S, Zeng J, Wu Y (2022) Experimental study on the effect of grinding path in tangential ultrasonic-assisted grinding for the curved surfaces of zirconia ceramics. Int J Adv Manuf Technol 118:1859–1872. https://doi.org/10.1007/s00170-021-08077-0

    Article  Google Scholar 

  132. Wang Z, Cong Y (2020) Study on machining quality of zirconia ceramic hole grinding based on rotating ultrasound vibration. Diam Abras Eng (1):24–28. https://doi.org/10.13394/j.cnki.jgszz.2020.1.0003

  133. Chai J, Li X, Shu R (2009) Technology research in ultrasonic grinding engineering ceramics. Manuf Technol Mach Tool:81–84. https://doi.org/10.3969/j.issn.1005-2402.2009.07.030

  134. Li S, Ma C, Sun J (2021) Research on quality control of rotary ultrasonic grinding of zirconia ceramic hole. Surf Technol 50(11):354–361. https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.11.038

    Article  Google Scholar 

  135. Yang Z, Zhu L, Lin B, Zhang G, Ni C, Sui T (2019) The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding. Ceram Int 45:8873–8889. https://doi.org/10.1016/j.ceramint.2019.01.216

    Article  Google Scholar 

  136. Zhang N, Wei X, Wang Y, Xie X (2019) Experimental study on grinding force of engineering ceramics by ultrasonic vibration grinding. Modul Mach Tool Autom Manuf Tech:23–25. https://doi.org/10.13462/j.cnki.mmtamt.2019.01.007

  137. Xiao X, Zheng K, Liao W, Meng H (2016) Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics. Int J Mach Tools Manuf 104:58–67. https://doi.org/10.1016/j.ijmachtools.2016.01.004

    Article  Google Scholar 

  138. Chen F, Bie W, Wang X, Zhao B (2022) Longitudinal-torsional coupled rotary ultrasonic machining of ZrO2 ceramics: an experimental study. Ceram Int 48:28154–28162. https://doi.org/10.1016/j.ceramint.2022.05.398

    Article  Google Scholar 

  139. Das S, Anil L, Pandivelan C (2021) Design and development of an ultrasonic stack assembly for ultrasonic vibration assisted grinding. Mater Today Proc 46:8778–8782. https://doi.org/10.1016/j.matpr.2021.04.118

    Article  Google Scholar 

  140. Zhang Y, An L (2018) Research progress on laser assisted machining. J Aeronaut Mater:77–85. https://doi.org/10.11868/j.issn.1005-5053.2017.000005

  141. Kizaki T, Ito Y, Tanabe S, Kim Y, Sugita V, Mitsuishi M (2016) Laser-assisted machining of zirconia ceramics using a diamond bur. Procedia CIRP 42:497–502. https://doi.org/10.1016/j.procir.2016.02.239

    Article  Google Scholar 

  142. Li G, Zhang D, Gong J, Wang L (2012) Laser-assisted machining technique for zirconia ceramics. J Jilin Univ:1409–1414. https://doi.org/10.13229/j.cnki.jdxbgxb2012.06.005

  143. Pfefferkorn FE, Shin YC, Tian Y, Incropera FP (2004) Laser-assisted machining of magnesia-partially-stabilized zirconia. J Manuf Sci Eng 126:42–51. https://doi.org/10.1115/1.1644542

    Article  Google Scholar 

  144. Pfefferkorn FE, Incropera FP, Shin YC (2005) Heat transfer model of semi-transparent ceramics undergoing laser-assisted machining. Int J Heat Mass Transf 48:1999–2012. https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.035

    Article  Google Scholar 

  145. Ma Z, Wang Z, Wang X, Yu T (2020) Effects of laser-assisted grinding on surface integrity of zirconia ceramic. Ceram Int 46:921–929. https://doi.org/10.1016/j.ceramint.2019.09.051

    Article  Google Scholar 

  146. Ma Z, Wang Q, Chen H, Chen L, Meng F, Chen X, Qu S, Wang Z, Yu T (2022) Surface prediction in laser-assisted grinding process considering temperature-dependent mechanical properties of zirconia ceramic. J Manuf Process 80:491–503. https://doi.org/10.1016/j.jmapro.2022.06.019

    Article  Google Scholar 

  147. Li HN, Axinte D (2017) On a stochastically grain-discretised model for 2D/3D temperature mapping prediction in grinding. Int J Mach Tools Manuf 116:60–76. https://doi.org/10.1016/j.ijmachtools.2017.01.004

    Article  Google Scholar 

  148. Li C, Li X, Wu Y, Zhang F, Huang H (2019) Deformation mechanism and force modelling of the grinding of YAG single crystals. Int J Mach Tools Manuf 143:23–37. https://doi.org/10.1016/j.ijmachtools.2019.05.003

    Article  Google Scholar 

  149. Wu C, Li B, Liu Y, Liang SY (2017) Surface roughness modeling for grinding of silicon carbide ceramics considering co-existence of brittleness and ductility. Int J Mech Sci 133:167–177. https://doi.org/10.1016/j.ijmecsci.2017.07.061

    Article  Google Scholar 

  150. Ma Z, Wang Q, Chen H, Chen L, Qu S, Wang Z, Yu T (2022) A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic. J Mater Process Technol 302:117492. https://doi.org/10.1016/j.jmatprotec.2022.117492

    Article  Google Scholar 

  151. Kim D-H, Lee C-M (2016) A study on the laser-assisted ball-end milling of difficult-to-cut materials using a new back-and-forth preheating method. Int J Adv Manuf Technol 85:1825–1834. https://doi.org/10.1007/s00170-015-8014-1

    Article  Google Scholar 

  152. Kizaki T, Ogasahara T, Sugita N, Mitsuishi M (2014) Ultraviolet-laser-assisted precision cutting of yttria-stabilized tetragonal zirconia polycrystal. J Mater Process Technol 214:267–275. https://doi.org/10.1016/j.jmatprotec.2013.09.015

    Article  Google Scholar 

  153. Xu S, Yao Z, Cai H, Wang H (2017) An experimental investigation of grinding force and energy in laser thermal shock-assisted grinding of zirconia ceramics. Int J Adv Manuf Technol 91:3299–3306. https://doi.org/10.1007/s00170-017-0013-y

    Article  Google Scholar 

  154. Xu S, Yao Z, He J, Xu J (2018) Grinding characteristics, material removal, and damage formation mechanisms of zirconia ceramics in hybrid laser/grinding. J Manuf Sci Eng 140:071010. https://doi.org/10.1115/1.4039645

    Article  Google Scholar 

  155. Mota YA, Cotes C, Carvalho RF, Machado JPB, Leite FPP, Souza ROA, Ozcan M (2017) Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging: mechanical durability of zirconia after aging. J Biomed Mater Res B Appl Biomater 105:1972–1977. https://doi.org/10.1002/jbm.b.33720

    Article  Google Scholar 

  156. Ayode Otitoju T, Ugochukwu Okoye P, Chen G, Li Y, Onyeka Okoye M, Li S (2020) Advanced ceramic components: materials, fabrication, and applications. J Ind Eng Chem 85:34–65. https://doi.org/10.1016/j.jiec.2020.02.002

    Article  Google Scholar 

  157. Yin Y, Xu J, Ji M, Li L, Chen M (2023) A critical review on sintering and mechanical processing of 3Y-TZP ceramics. Ceram Int 49:1549–1571. https://doi.org/10.1016/j.ceramint.2022.10.159

    Article  Google Scholar 

  158. Curtis AR, Wright AJ, Fleming GJP (2006) The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. J Dent 34:195–206. https://doi.org/10.1016/j.jdent.2005.06.006

    Article  Google Scholar 

  159. Liu XQ, Chen XM (2004) Microstructures and mechanical properties of 8Y-FSZ ceramics with BaTiO3 additive. Ceram Int 30:2269–2275. https://doi.org/10.1016/j.ceramint.2004.01.006

    Article  Google Scholar 

  160. Saha S, Nandy A, Meikap AK, Pradhan SK (2015) Microstructure characterization and electrical transport properties of nanocrystalline Fe and Fe-doped cubic zirconia cermets synthesized by mechanical alloying. Mater Res Bull 68:66–74. https://doi.org/10.1016/j.materresbull.2015.03.030

    Article  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This work was funded by the Scientific and Technological Project of Henan Province (grant numbers 232102220048 and 232102221026), Young Backbone Teacher Cultivation Plan for Higher Education of Henan University (grant number 2020GGJS129), and Key Research and Development Projects of Henan Province in 2022 (grant number 221111240200).

Author information

Authors and Affiliations

Authors

Contributions

Jinguang Du: writing original draft. Jianzhou Su: writing original draft and editing. Junxiao Geng: writing guidance. Liuyang Duan: check original draft. Wenbin He: guiding framework of paper and check original draft.

Corresponding author

Correspondence to Wenbin He.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Su, J., Geng, J. et al. Research advances on primary machining technologies of zirconia ceramics. Int J Adv Manuf Technol 130, 23–55 (2024). https://doi.org/10.1007/s00170-023-12591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12591-8

Keywords

Navigation