Skip to main content
Log in

A correlation among industry 4.0, additive manufacturing, and topology optimization: a state-of-the-art review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper discusses additive manufacturing (AM) and topology optimization (TO) and their relationship with industrial revolution 4.0. An overview of different AM techniques is given, along with the importance of design for manufacturing and assembly in progressing AM. The potential of AM to build complicated geometries with great precision has attracted a lot of interest in recent years. TO, one of the major enabling technologies in AM, has been essential in building compliant systems with improved performance across numerous industries. The development of hybrid mechanisms that integrate both compliant and stiff pieces because of improvements in “TO” algorithms has improved their usefulness and efficiency. Augmented realty and digital twins (DTs) have been used with “TO” to improve product design visualization and collaboration. Synergies between IN 4.0, TO, and AM have been discussed along with their cross-domain relevance. Machine learning involvement for more robust integration of IN 4.0 with TO and AM have also been discussed. The development of the Digital Triad, which combines DTs, digital threads, and digital trust to enable effective and secure data sharing and cooperation, is the result of the convergence of internet-of-things, cloud computing, and big data analytics. However, concerns about data privacy and cybersecurity still need to be resolved. The use of machine learning algorithms for cyberattack detection and mitigation as well as secure block chain-based frameworks for managing intellectual property rights are just a few of the frameworks and tactics that researchers have suggested to lower cybersecurity risks in AM systems. The establishment of new standards and guidelines for the cybersecurity of AM systems is anticipated to result from ongoing research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

TO:

Topology optimization

AM:

Additive manufacturing

RP:

Rapid prototyping

DFM:

Design for manufacturing

DFAM:

Design for additive manufacturing

DFMA:

Design for manufacturing and assembly

DMLS:

Direct metal laser sintering

WAAM:

Wire arc additive manufacturing

FDM:

Fused deposition modeling

EBM:

Electron beam melting

SLS:

Selective laser sintering

HM:

Homogenization method

SIMP:

Solid isotropic material with penalization method

ESO:

Evolutionary structural optimizations

BESO:

Bi-directional evolutionary structural method

LSM:

Level set method

MAM:

Metal additive manufacturing

LENS:

Laser engineering net shape

NPJ:

Nano-particle jetting

SM:

Subtractive manufacturing

EQ:

Equality

INEQ:

Inequality

BC:

Boundary condition

MZD:

Minimized

DDM:

Direct digital manufacturing

CMS:

Cloud manufacturing services

PoA:

Point of access

CP:

Craft production

MP:

Mass production

MC:

Mass customization

AR:

Augmented reality

IN 4.0:

Industry 4.0

DT:

Digital twin

ML:

Machine learning

IoT:

Internet-of-things

MP:

Mass production

References

  1. Thoben K-D, Wiesner S, Wuest T (2017) “Industrie 4.0” and smart manufacturing – a review of research issues and application examples. Int J Autom Technol 11:4–16. https://doi.org/10.20965/ijat.2017.p0004

    Article  Google Scholar 

  2. Li ZZ, Zhu T, Xiao SN, et al (2023) Simulation method for train curve derailment collision and the effect of curve radius on collision response. Proc Inst Mech Eng F J Rail Rapid Transit 0:1294609545. https://doi.org/10.1177/09544097231154313

  3. Zhu T, Ding H, Wang C et al (2023) Parameters calibration of the GISSMO failure model for SUS301L-MT. Chinese J Mech Eng (English Edition) 36:1–12. https://doi.org/10.1186/s10033-023-00844-2

    Article  Google Scholar 

  4. Song F, Liu Y, Shen D et al (2022) Learning control for motion coordination in wafer scanners: toward gain adaptation. IEEE Trans Industr Electron 69:13428–13438. https://doi.org/10.1109/TIE.2022.3142428

    Article  Google Scholar 

  5. Kumar A (2018) Methods and materials for smart manufacturing: additive manufacturing, Internet of things, flexible sensors and soft robotics. Manuf Lett 15:122–125. https://doi.org/10.1016/j.mfglet.2017.12.014

    Article  Google Scholar 

  6. Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of Industry 4.0. Procedia Manuf 11:545–554. https://doi.org/10.1016/j.promfg.2017.07.148

    Article  Google Scholar 

  7. Guo K, Gou G, Lv H, Shan M (2022) Jointing of CFRP/5083 aluminum alloy by induction brazing: processing, connecting mechanism, and fatigue performance. Coatings 2022 12:1559. https://doi.org/10.3390/COATINGS12101559

  8. Bai X, Huang M, Xu M, Liu J (2023) Reconfiguration optimization of relative motion between elliptical orbits using Lyapunov-Floquet transformation. IEEE Trans Aerosp Electron Syst 59:923–936. https://doi.org/10.1109/TAES.2022.3193089

    Article  Google Scholar 

  9. Xia Y, Ding L, Tang ZC (2023) Interaction effects of multiple input parameters on the integrity of safety instrumented systems with the k-out-of-n redundancy arrangement under uncertainties. Qual Reliab Eng Int 39:2515–2536. https://doi.org/10.1002/QRE.3359

    Article  Google Scholar 

  10. Luo Z, Wang H, Li S (2022) Prediction of international roughness index based on stacking fusion model. Sustainability 2022 14:6949. https://doi.org/10.3390/SU14126949

  11. Deng Y, Lv J, Huang D, Du S (2023) Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer. Neurocomputing 548:126391. https://doi.org/10.1016/J.NEUCOM.2023.126391

    Article  Google Scholar 

  12. Fang JX, Wang JX, Wang YJ et al (2022) Microstructure evolution and deformation behavior during stretching of a compositionally inhomogeneous TWIP-TRIP cantor-like alloy by laser powder deposition. Mater Sci Eng, A 847:143319. https://doi.org/10.1016/J.MSEA.2022.143319

    Article  Google Scholar 

  13. Zhang P, Wang S, Lin Z et al (2023) Investigation on the mechanism of micro-milling CoCrFeNiAlX high entropy alloys with end milling cutters. Vacuum 211:111939. https://doi.org/10.1016/J.VACUUM.2023.111939

    Article  Google Scholar 

  14. Zhang K, Wang Z, Chen G et al (2022) Training effective deep reinforcement learning agents for real-time life-cycle production optimization. J Pet Sci Eng 208:109766. https://doi.org/10.1016/J.PETROL.2021.109766

    Article  Google Scholar 

  15. Cao B, Zhao J, Gu Y et al (2020) Security-aware industrial wireless sensor network deployment optimization. IEEE Trans Industr Inform 16:5309–5316. https://doi.org/10.1109/TII.2019.2961340

    Article  Google Scholar 

  16. Dai X, Xiao Z, Jiang H et al (2023) Task co-offloading for D2D-assisted mobile edge computing in industrial Internet of things. IEEE Trans Industr Inform 19:480–490. https://doi.org/10.1109/TII.2022.3158974

    Article  Google Scholar 

  17. Newman S, Nassehi A, Imani Asrai R, Dhokia V (2012) Energy efficient process planning for CNC machining. CIRP J ManufSyst Technol 5. https://doi.org/10.1016/j.cirpj.2012.03.007

  18. Rohde J, Jahnke U, Lindemann C et al (2019) Standardised product development for technology integration of additive manufacturing. Virtual Phys Prototyp 14:141–147. https://doi.org/10.1080/17452759.2018.1532801

    Article  Google Scholar 

  19. Tofail SAM, Koumoulos EP, Bandyopadhyay A et al (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21:22–37. https://doi.org/10.1016/j.mattod.2017.07.001

    Article  Google Scholar 

  20. Mehrpouya M, Dehghanghadikolaei A, Fotovvati B, et al The potential of additive manufacturing in the smart factory Industrial 4.0: a review. https://doi.org/10.3390/app9183865

  21. Wang J, Liang F, Zhou H et al (2022) Analysis of position, pose and force decoupling characteristics of a 4-UPS/1-RPS parallel grinding robot. Symmetry 2022 14:825. https://doi.org/10.3390/SYM14040825

  22. Zhu ZY, Liu YL, Gou GQ et al (2021) Effect of heat input on interfacial characterization of the butter joint of hot-rolling CP-Ti/Q235 bimetallic sheets by Laser + CMT. Scientific Reports 2021 11:1–11. https://doi.org/10.1038/s41598-021-89343-9

  23. Fu ZH, Yang BJ, Shan ML et al (2020) Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones. Corros Sci 164:108337. https://doi.org/10.1016/J.CORSCI.2019.108337

    Article  Google Scholar 

  24. Niu X, Zhu SP, He JC et al (2022) Defect tolerant fatigue assessment of AM materials: size effect and probabilistic prospects. Int J Fatigue 160:106884. https://doi.org/10.1016/J.IJFATIGUE.2022.106884

    Article  Google Scholar 

  25. Liao D, Zhu SP, Keshtegar B et al (2020) Probabilistic framework for fatigue life assessment of notched components under size effects. Int J Mech Sci 181:105685. https://doi.org/10.1016/J.IJMECSCI.2020.105685

    Article  Google Scholar 

  26. Zhu Q, Chen J, Gou G et al (2017) Ameliorated longitudinal critically refracted—attenuation velocity method for welding residual stress measurement. J Mater Process Technol 246:267–275. https://doi.org/10.1016/J.JMATPROTEC.2017.03.022

    Article  Google Scholar 

  27. Lv Z, Wu J, Li Y, Song H (2022) Cross-layer optimization for industrial Internet of things in real scene digital twins. IEEE Internet Things J 9:15618–15629. https://doi.org/10.1109/JIOT.2022.3152634

    Article  Google Scholar 

  28. Lv Z, Chen D, Lou R, Song H (2021) Industrial security solution for virtual reality. IEEE Internet Things J 8:6273–6281. https://doi.org/10.1109/JIOT.2020.3004469

    Article  Google Scholar 

  29. Li XK, Zhu SP, Liao D et al (2022) Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory. Int J Fatigue 159:106788. https://doi.org/10.1016/J.IJFATIGUE.2022.106788

    Article  Google Scholar 

  30. Lehmhus D, Wuest T, Wellsandt S et al (2015) Cloud-based automated design and additive manufacturing: A usage data-enabled paradigm shift. Sensors (Switzerland) 15:32079–32122. https://doi.org/10.3390/s151229905

    Article  Google Scholar 

  31. Chen D, Heyer S, Ibbotson S et al (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625. https://doi.org/10.1016/j.jclepro.2015.05.009

    Article  Google Scholar 

  32. Campbell I, Bourell D, Gibson I (2012) Additive manufacturing: rapid prototyping comes of age. Rapid Prototyp J 18:255–258. https://doi.org/10.1108/13552541211231563

    Article  Google Scholar 

  33. Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  34. Liu J, Ma Y (2016) A survey of manufacturing oriented topology optimization methods. Adv Eng Softw 100:161–175. https://doi.org/10.1016/j.advengsoft.2016.07.017

    Article  Google Scholar 

  35. Mirzendehdel AM, Suresh K (2015) Multi-material topology optimization for additive manufacturing. Proceed ASME Design Eng Tech Conf 1A-2015. https://doi.org/10.1115/DETC2015-46268

  36. Tariq U, Joy R, Wu SH et al (2023) A state-of-the-art digital factory integrating digital twin for laser additive and subtractive manufacturing processes. Rapid Prototyp J ahead-of-print: https://doi.org/10.1108/RPJ-03-2023-0113

    Article  Google Scholar 

  37. Wu J, Aage N, Westermann R, Sigmund O (2018) Infill optimization for additive manufacturing-approaching bone-like porous structures. IEEE Trans Vis Comput Graph 24:1127–1140. https://doi.org/10.1109/TVCG.2017.2655523

    Article  Google Scholar 

  38. Olsen J, Kim IY (2020) Design for additive manufacturing: 3D simultaneous topology and build orientation optimization. Struct Multidiscip Optim 62:1989–2009. https://doi.org/10.1007/s00158-020-02590-8

    Article  Google Scholar 

  39. Osanov M, Carstensen J V., Tromme E, Guest JK (2016) Topology optimization for additive manufacturing: new projection-based design algorithms. 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference 1–9. https://doi.org/10.2514/6.2016-3213

  40. Horst D, Duvoisin C, Vieira R (2018) Additive manufacturing at Industry 4.0: a review. Int J Eng Tech Res 8:3–8

    Google Scholar 

  41. Haleem A, Javaid M (2019) Additive manufacturing applications in Industry 4.0: a review. J Indust Integr Manage 04. https://doi.org/10.1142/S2424862219300011

  42. Dopico M, Gomez A, De la Fuente D et al (2016) A vision of industry 4.0 from an artificial intelligence point of view. Proceedings of the 2016 International Conference on Artificial Intelligence, ICAI 2016 - WORLDCOMP 2016 407–413

  43. Mohammed MA (2022) Machine learning approaches, technologies, recent applications, advantages and challenges on manufacturing and Industry 4.0 applications. Int J Res Appl Sci Eng Technol 10:1114–1121. https://doi.org/10.22214/ijraset.2022.46362

  44. Rana B, Rathore SS (2023) Industry 4.0 – Applications, challenges and opportunities in industries and academia: a review. Mater Today Proc 79:389–394. https://doi.org/10.1016/j.matpr.2022.12.162

    Article  Google Scholar 

  45. Nayyar A, Kumar A A. roadmap to Industry 4.0: smart production, sharp business and sustainable development

  46. Lins T, Oliveira RAR (2020) Cyber-physical production systems retrofitting in context of industry 4.0. Comput Ind Eng 139. https://doi.org/10.1016/j.cie.2019.106193

  47. Gumbo S, Twinomurinzi H, Bwalya K, Wamba SF (2023) Skills provisioning for the fourth industrial revolution: a bibliometric analysis. Procedia Comput Sci 219:924–932. https://doi.org/10.1016/j.procs.2023.01.368

    Article  Google Scholar 

  48. Muhammad S, Pan Y, Magazzino C et al (2022) The fourth industrial revolution and environmental efficiency: The role of fintech industry. J Clean Prod 381.https://doi.org/10.1016/j.jclepro.2022.135196

  49. David LO, Nwulu NI, Aigbavboa CO, Adepoju OO (2022) Integrating fourth industrial revolution (4IR) technologies into the water, energy & food nexus for sustainable security: A bibliometric analysis. J Clean Prod 363.https://doi.org/10.1016/j.jclepro.2022.132522

  50. Sharma V, Cali Ü, Sardana B et al (2021) Data-driven short-term natural gas demand forecasting with machine learning techniques. J Pet SciEng 206. https://doi.org/10.1016/j.petrol.2021.108979

  51. Serumaga-Zake JM, van der Poll JA (2021) Addressing the impact of fourth industrial revolution on south african manufacturing small and medium enterprises (SMEs). Sustainability (Switzerland) 13.https://doi.org/10.3390/su132111703

  52. Nayyar A, Kumar A. Advances in Science, Technology & Innovation IEREK Interdisciplinary Series for Sustainable Development A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development

  53. Zhang Y, Moon SK (2021) Data-driven design strategy in fused filament fabrication: Status and opportunities. J Comput Des Eng 8:489–509

    Google Scholar 

  54. Zhao Y (2016) A step toward an intelligent and integrated computer-aided design of apparel products. Doctoral thesis. University of Saskatchewan, Canda. https://harvest.usask.ca/handle/10388/ETD-2016-03-2471

  55. Wang L, von Laszewski G, Younge A et al (2010) Cloud computing: a perspective study. New Gener Comput 28:137–146. https://doi.org/10.1007/s00354-008-0081-5

    Article  MATH  Google Scholar 

  56. Ponoko (2021) Ponoko. https://www.ponoko.com/. Accessed 5 Dec 2021

  57. Shapeways (2021) Shapeways. https://www.shapeways.com/. Accessed 5 Dec 2021

  58. Gibson I, Rosen D, Stucker B (2015) Introduction and basic principles BT - additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. In: Gibson I, Rosen D, Stucker B (eds) Springer. New York, NY, New York, pp 1–18

    Google Scholar 

  59. Committee F42 on Additive Manufacturing Technologies. https://www.astm.org/committee-f42. Accessed on 24 Oct 2023

  60. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  Google Scholar 

  61. Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Technol 47:525–540. https://doi.org/10.1016/S0007-8506(07)63240-5

    Article  Google Scholar 

  62. Rezaie R, Badrossamay M, Ghaei A, Moosavi H (2013) Topology optimization for fused deposition modeling process. Procedia CIRP 6:521–526. https://doi.org/10.1016/j.procir.2013.03.098

    Article  Google Scholar 

  63. de Almeida HA, da Silva Bártolo PJ (2010) Virtual topological optimisation of scaffolds for rapid prototyping. Med Eng Phys 32:775–782. https://doi.org/10.1016/j.medengphy.2010.05.001

    Article  Google Scholar 

  64. Li S, Yuan S, Zhu J et al (2020) Additive manufacturing-driven design optimization: Building direction and structural topology. Addit Manuf 36:101406. https://doi.org/10.1016/j.addma.2020.101406

    Article  Google Scholar 

  65. Zhang B, Goel A, Ghalsasi O, Anand S (2019) CAD-based design and pre-processing tools for additive manufacturing. J Manuf Syst 52:227–241. https://doi.org/10.1016/j.jmsy.2019.03.005

    Article  Google Scholar 

  66. McConaha M, Venugopal V, Anand S (2020) Integration of machine tool accessibility of support structures with topology optimization for additive manufacturing. Procedia Manuf 48:634–642. https://doi.org/10.1016/j.promfg.2020.05.092

    Article  Google Scholar 

  67. Brika SE, Zhao Y, M B, J M (2017) Multi-objective build orientation optimization for powder bed fusion by laser. Indust Eng Manage 06. https://doi.org/10.4172/2169-0316.1000236

  68. Leutenecker-Twelsiek B, Klahn C, Meboldt M (2016) Considering part orientation in design for additive manufacturing. In: Procedia CIRP. Elsevier B.V., pp 408–413

  69. Morgan HD, Cherry JA, Jonnalagadda S et al (2016) Part orientation optimisation for the additive layer manufacture of metal components. Int J Adv Manuf Technol 86:1679–1687. https://doi.org/10.1007/s00170-015-8151-6

    Article  Google Scholar 

  70. van de Ven E, Maas R, Ayas C et al (2020) Overhang control based on front propagation in 3D topology optimization for additive manufacturing. Comput Methods Appl Mech Eng 369:113169. https://doi.org/10.1016/j.cma.2020.113169

    Article  MathSciNet  MATH  Google Scholar 

  71. Appleton E (2008) Product design for manufacture and assembly, assembly automation 28(3). https://doi.org/10.1108/aa.2008.03328cae.001

  72. Gentilini I, Shimada K (2011) Predicting and evaluating the post-assembly shape of thin-walled components via 3D laser digitization and FEA simulation of the assembly process. CAD Computer Aided Design 43:316–328. https://doi.org/10.1016/j.cad.2010.11.004

    Article  Google Scholar 

  73. Reintjes C, Lorenz U (2020) Bridging mixed integer linear programming for truss topology optimization and additive manufacturing. Springer, US

    MATH  Google Scholar 

  74. Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48:1031–1055. https://doi.org/10.1007/s00158-013-0978-6

    Article  MathSciNet  Google Scholar 

  75. Zhu J-H, Zhang W-H, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23:595–622. https://doi.org/10.1007/s11831-015-9151-2

    Article  MathSciNet  MATH  Google Scholar 

  76. Shi G, Guan C, Quan D et al (2020) An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing. Chin J Aeronaut 33:1252–1259. https://doi.org/10.1016/j.cja.2019.09.006

    Article  Google Scholar 

  77. Ralf B, Andrzej G, Axel H (2005) Rethink assembly design. Assem Autom 25:262–266. https://doi.org/10.1108/01445150510626370

    Article  Google Scholar 

  78. Zhang W, Zhou L (2018) Topology optimization of self-supporting structures with polygon features for additive manufacturing. Comput Methods Appl Mech Eng 334:56–78. https://doi.org/10.1016/j.cma.2018.01.037

    Article  MathSciNet  MATH  Google Scholar 

  79. Guo X, Zhou J, Zhang W et al (2017) Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput Methods Appl Mech Eng 323:27–63. https://doi.org/10.1016/j.cma.2017.05.003

    Article  MathSciNet  MATH  Google Scholar 

  80. Wang Y, Gao J, Kang Z (2018) Level set-based topology optimization with overhang constraint: Towards support-free additive manufacturing. Comput Methods Appl Mech Eng 339:591–614. https://doi.org/10.1016/j.cma.2018.04.040

    Article  MathSciNet  MATH  Google Scholar 

  81. Naiju CD (2021) DFMA for product designers: a review. In: Materials Today: Proceedings. Elsevier Ltd, pp 7473–7478

  82. Mäntyjärvi K, Iso-Junno T, Nemi H, Mäkikangas J (2018) Design for additive manufacturing in extended dfma process. In: Key Engineering Materials. Trans Tech Publications Ltd, pp 342–347

  83. Li M, Wong BCL, Liu Y et al (2021) DfMA-oriented design optimization for steel reinforcement using BIM and hybrid metaheuristic algorithms. J Build Eng 44. https://doi.org/10.1016/j.jobe.2021.103310

  84. Sachs E, Cima M, Cornie J, Brancazio D, Bredt J, Curodeau A, Esterman M, Fan T, Harris C, Kremmin K, Lee SJ, Pruitt B, Williams P (1990) Three dimensional printing: rapid tooling and prototypes directly from CAD representation. Intern Solid Freeform Fabrication Symposium. pp 27–47. https://repositories.lib.utexas.edu/handle/2152/64236

  85. Bubna P, Humbert M, Wiseman M, Manes E (2016) Barriers to entry in automotive production and opportunities with emerging additive manufacturing techniques. SAE Technical Paper 2016-01-0329. https://doi.org/10.4271/2016-01-0329

  86. Sabiston G, Kim IY (2020) 3D topology optimization for cost and time minimization in additive manufacturing. Struct Multidiscip Optim 61:731–748. https://doi.org/10.1007/s00158-019-02392-7

    Article  Google Scholar 

  87. Kruth J-P, Mercelis P, Vaerenbergh JV et al (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11:26–36. https://doi.org/10.1108/13552540510573365

    Article  Google Scholar 

  88. Botelho E, Figiel Ł, Rezende MC, Lauke B (2003) Mechanical behavior of carbon fiber reinforced polyamide composites. Compos Sci Technol 63:1843–1855. https://doi.org/10.1016/S0266-3538(03)00119-2

    Article  Google Scholar 

  89. Peng Y, Wu Y, Wang K et al (2019) Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication. Compos Struct 207:232–239. https://doi.org/10.1016/j.compstruct.2018.09.014

    Article  Google Scholar 

  90. Duda T, Raghavan LV (2016) 3D Metal Printing Technology. IFAC-PapersOnLine 49:103–110. https://doi.org/10.1016/j.ifacol.2016.11.111

    Article  Google Scholar 

  91. University L VAT Photopolymerisation. https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/vatphotopolymerisation/. Accessed 23 Oct 2023

  92. Gibson I, Rosen D, Stucker B (2015) Vat photopolymerization processes BT - additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. In: Gibson I, Rosen D, Stucker B (eds) Springer. New York, NY, New York, pp 63–106

    Google Scholar 

  93. Khan S, Joshi K, Deshmukh S (2021) A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts. In: Materials Today: Proceedings. Elsevier Ltd, pp 2119–2127

  94. Singh J, Goyal KK, Sharma R (2023) Impact of FDM variables on the tensile property of 3D printed CF-PLA parts. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.07.226

    Article  Google Scholar 

  95. Galantucci LM, Lavecchia F, Percoco G (2008) Study of compression properties of topologically optimized FDM made structured parts. CIRP Annals 57:243–246. https://doi.org/10.1016/j.cirp.2008.03.009

    Article  Google Scholar 

  96. Gibson I, Rosen D, Stucker B (2015) Material jetting BT - additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. In: Gibson I, Rosen D, Stucker B (eds) Springer. New York, NY, New York, pp 175–203

    Google Scholar 

  97. Gibson I, Rosen D, Stucker B (2015) Binder jetting BT - additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. In: Gibson I, Rosen D, Stucker B (eds) Springer. New York, NY, New York, pp 205–218

    Google Scholar 

  98. Gibson I, Rosen D, Stucker B (2015) Sheet lamination processes BT - additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. In: Gibson I, Rosen D, Stucker B (eds) Springer. New York, NY, New York, pp 219–244

    Google Scholar 

  99. Gibson I, Rosen D, Stucker B (2015) Directed energy deposition processes BT - additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. In: Gibson I, Rosen D, Stucker B (eds) Springer. New York, NY, New York, pp 245–268

    Google Scholar 

  100. Zhang G, Zou B, Wang X et al (2023) Design, manufacturing and properties of controllable porosity of ceramic filters based on SLA-3D printing technology. Ceram Int 49:1009–1019. https://doi.org/10.1016/j.ceramint.2022.09.076

    Article  Google Scholar 

  101. Dong X, Wu J, Zhou Q et al (2023) Mechanical and dielectric properties of Si3N4-SiO2 ceramics prepared by digital light processing based 3D printing and oxidation sintering. Ceram Int. https://doi.org/10.1016/j.ceramint.2023.06.210

    Article  Google Scholar 

  102. Liguori A, Garfias González KI, Hakkarainen M (2023) Unexpected self-assembly of carbon dots during digital light processing 3D printing of vanillin Schiff-base resin. Polymer (Guildf) 283. https://doi.org/10.1016/j.polymer.2023.126252

  103. Tony A, Badea I, Yang C, Liu Y, Wells G, Wang K, Yin R, Zhang H, Zhang W (2023) The additive manufacturing approach to polydimethylsiloxane (PDMS) microfluidic devices: review and future directions. Polymers 15(8):926. https://doi.org/10.3390/polym15081926

  104. Bourell D, Kruth JP, Leu M et al (2017) Materials for additive manufacturing. CIRP Ann Manuf Technol 66:659–681. https://doi.org/10.1016/j.cirp.2017.05.009

    Article  Google Scholar 

  105. Chapman GM, Akehurst EE, Wright WB (1971) Cocoa butter and confectionery fats. Studies using programmed temperature X-ray diffraction and differential scanning calorimetry. J Am Oil Chem Soc 48:824–830. https://doi.org/10.1007/BF02609292

    Article  Google Scholar 

  106. Ledesma-Fernandez J, Tuck C, Hague R (2020) High viscosity jetting of conductive and dielectric pastes for printed electronics. Proceedings - 26th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference. SFF 2015:40–55

    Google Scholar 

  107. Gibson I, Rosen D, Stucker B (2015) Generalized additive manufacturing process chain BT - additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. In: Gibson I, Rosen D, Stucker B (eds) Springer. New York, NY, New York, pp 43–61

    Google Scholar 

  108. Thompson MK, Thompson JM (2017) Chapter 1 - Introduction to ANSYS and finite element modeling. In: Thompson MK, Thompson JMBT-AMA for FEA (eds). Butterworth-Heinemann, pp 1–9

  109. Maulana MR, Ahmad H, Mansor H (2022) FEA modelling of externally-strengthened concrete beam with CFRP plates under flexural test. Int J Integr Eng 14:258–271. https://doi.org/10.30880/ijie.2022.14.05.029

  110. Jiang H, Liu Z, Gao K (2017) Numerical simulation on rock fragmentation by discontinuous water-jet using coupled SPH/FEA method. Powder Technol 312:248–259. https://doi.org/10.1016/j.powtec.2017.02.047

    Article  Google Scholar 

  111. Mabogo M, Oliver GJ (2010) Numerical simulation of piercing using FEA with damage and SPH method

  112. Takami T, Matsui S, Oka M, Iijima K (2018) A numerical simulation method for predicting global and local hydroelastic response of a ship based on CFD and FEA coupling. Mar Struct 59:368–386. https://doi.org/10.1016/j.marstruc.2018.02.009

    Article  Google Scholar 

  113. Behrens BA, Rolfes R, Vucetic M, et al (2014) Material modelling of short fiber reinforced thermoplastic for the fea of a clinching test. In: Procedia CIRP. Elsevier B.V., pp 250–255

  114. Basavaraj Y, Joshi R, Setty GR, et al (2021) FEA of NX-11 unigraphics modeled connecting rod using different materials. In: Materials Today: Proceedings. Elsevier Ltd, pp 2807–2813

  115. Kumar Verma R, Kumar Jain A (2022) Modelling and analysis of two-wheeler connecting rod with different materials using FEA. Mater Today Proc 62:5867–5876. https://doi.org/10.1016/j.matpr.2022.04.621

    Article  Google Scholar 

  116. Karuthedath PL, Gupta A, Mamindlapelly B, Chowdhury R (2023) A continuous field adaptive mesh refinement algorithm for isogeometric topology optimization using PHT-Splines. Comput Methods Appl Mech Eng 412. https://doi.org/10.1016/j.cma.2023.116075

  117. Zheng X, Yang F, Shiau J et al (2023) Unlined length effect on the tunnel face stability and collapse mechanisms in c-ϕ soils: a numerical study with advanced mesh adaptive strategies. Comput Geotech 161. https://doi.org/10.1016/j.compgeo.2023.105576

  118. Liu S, Kim H, Huang W et al (2022) Multiscale and multiphysics FEA simulation and materials optimization for laser ultrasound transducers. Mater Today Commun 31.https://doi.org/10.1016/j.mtcomm.2022.103599

  119. Sabet FA, Koric S, Idkaidek A, Jasiuk I (2021) High-performance computing comparison of implicit and explicit nonlinear finite element simulations of trabecular bone. Comput Methods Programs Biomed 200. https://doi.org/10.1016/j.cmpb.2020.105870

  120. Zhang Y, Li Z, Hao R et al (2023) High-fidelity time-series data synthesis based on finite element simulation and data space mapping. MechSyst Signal Process 200. https://doi.org/10.1016/j.ymssp.2023.110630

  121. Maduabuchi C (2022) Thermo-mechanical optimization of thermoelectric generators using deep learning artificial intelligence algorithms fed with verified finite element simulation data. Appl Energy 315. https://doi.org/10.1016/j.apenergy.2022.118943

  122. Zhang C, Li Y, Jiang B, et al (2022) Mechanical properties prediction of composite laminate with FEA and machine learning coupled method. Compos Struct 299. https://doi.org/10.1016/j.compstruct.2022.116086

  123. Zheng AZ, Bian SJ, Chaudhry E, et al (2021) Voronoi diagram and Monte-Carlo simulation based finite element optimization for cost-effective 3D printing. J Comput Sci 50. https://doi.org/10.1016/j.jocs.2021.101301

  124. Jeong H, Bai J, Batuwatta-Gamage CP, et al (2023) A physics-informed neural network-based topology optimization (PINNTO) framework for structural optimization. Eng Struct 278. https://doi.org/10.1016/j.engstruct.2022.115484

  125. Yang X, Li H, Gao L (2023) Thermal-mechanical coupling topology optimization of multi-phase infill structures with a non-gradient porosity optimization method. Int J Heat Mass Transf 210. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124198

  126. You YH, Kou XY, Tan ST (2015) Adaptive meshing for finite element analysis of heterogeneous materials. CAD Computer Aided Design 62:176–189. https://doi.org/10.1016/j.cad.2014.11.011

    Article  Google Scholar 

  127. Gonçalves DC, Lopes JDF, Campilho RDSG, Belinha J (2022) Topology optimization using a natural neighbour meshless method combined with a bi-directional evolutionary algorithm. Math Comput Simul 194:308–328. https://doi.org/10.1016/j.matcom.2021.11.021

    Article  MathSciNet  MATH  Google Scholar 

  128. Yu Y, Qian K, Yang H, et al (2022) Hybrid IGA-FEA of fiber reinforced thermoplastic composites for forward design of AI-enabled 4D printing. J Mater Process Technol 302. https://doi.org/10.1016/j.jmatprotec.2022.117497

  129. Jiang J, Sun J, Ma H, et al (2023) Stress intensity factor of a cracked molar restored with different materials and designs: A 3D-FEA. J Mech Behav Biomed Mater 142. https://doi.org/10.1016/j.jmbbm.2023.105818

  130. Zhang K, Cheng G, xu L, (2019) Topology optimization considering overhang constraint in additive manufacturing. Comput Struct 212:86–100. https://doi.org/10.1016/j.compstruc.2018.10.011

    Article  Google Scholar 

  131. Zhou M, Liu Y, Lin Z (2019) Topology optimization of thermal conductive support structures for laser additive manufacturing. Comput Methods Appl Mech Eng 353:24–43. https://doi.org/10.1016/j.cma.2019.03.054

    Article  MathSciNet  MATH  Google Scholar 

  132. Phatak AM, Pande SS (2012) Optimum part orientation in rapid prototyping using genetic algorithm. J Manuf Syst 31:395–402. https://doi.org/10.1016/j.jmsy.2012.07.001

    Article  Google Scholar 

  133. Satya Hanush S, Manjaiah M (2022) Topology optimization of aerospace part to enhance the performance by additive manufacturing process. Mater Today Proc. https://doi.org/10.1016/J.MATPR.2022.02.074

    Article  Google Scholar 

  134. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224. https://doi.org/10.1016/0045-7825(88)90086-2

    Article  MathSciNet  MATH  Google Scholar 

  135. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202. https://doi.org/10.1007/BF01650949

    Article  Google Scholar 

  136. Wu J, Clausen A, Sigmund O (2017) Minimum compliance topology optimization of shell–infill composites for additive manufacturing. Comput Methods Appl Mech Eng 326:358–375. https://doi.org/10.1016/j.cma.2017.08.018

    Article  MathSciNet  MATH  Google Scholar 

  137. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896. https://doi.org/10.1016/0045-7949(93)90035-C

    Article  Google Scholar 

  138. Xie YM, Steven GP (1994) Optimal design of multiple load case structures using an evolutionary procedure. Eng Comput (Swansea) 11:295–302. https://doi.org/10.1108/02644409410799290

    Article  MATH  Google Scholar 

  139. Huang X, Xie YM (2008) A new look at ESO and BESO optimization methods. Struct Multidiscip Optim 35:89–92. https://doi.org/10.1007/s00158-007-0140-4

    Article  Google Scholar 

  140. Huang X, Xie YM, Burry MC (2007) Advantages of bi-directional evolutionary structural optimization (BESO) over evolutionary structural optimization (ESO). Adv Struct Eng 10:727–737. https://doi.org/10.1260/136943307783571436

    Article  Google Scholar 

  141. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246. https://doi.org/10.1016/S0045-7825(02)00559-5

  142. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method* 1. J Comput Phys 194:363–393. https://doi.org/10.1016/j.jcp.2003.09.032

    Article  MathSciNet  MATH  Google Scholar 

  143. Luo Z, Wang MY, Wang S, Wei P (2008) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76:1–26. https://doi.org/10.1002/nme.2092

    Article  MathSciNet  MATH  Google Scholar 

  144. Garaigordobil A, Ansola R, Santamaría J, Fernández de Bustos I (2018) A new overhang constraint for topology optimization of self-supporting structures in additive manufacturing. Struct Multidiscip Optim 58:2003–2017. https://doi.org/10.1007/s00158-018-2010-7

    Article  MathSciNet  Google Scholar 

  145. Huang X, Xie Y (2010) Evolutionary topology optimization of continuum structures: methods and applications. John Wiley & Sons 121–150. https://doi.org/10.1002/9780470689486.ch7

  146. Meisel N, Williams C (2015) An investigation of key design for additive manufacturing constraints in multimaterial three-dimensional printing. Journal of Mechanical Design 137. https://doi.org/10.1115/1.4030991

  147. Chang K-H (2015) Chapter 1 - Introduction to e-design. In: Chang K-HBT-DT and MUC (ed). Academic Press, Boston, pp 1–37

  148. Gebisa AW, Lemu HG (2017) A case study on topology optimized design for additive manufacturing. IOP Conf Ser Mater Sci Eng 276. https://doi.org/10.1088/1757-899X/276/1/012026

  149. Arora JS (2017) Chapter 2 - Optimum design problem formulation. In: Fourth E (ed) Arora JSBT-I to OD. Academic Press, Boston, pp 19–70

    Google Scholar 

  150. Tschorn JA, Fuchs D, Vietor T (2021) Potential impact of additive manufacturing and topology optimization inspired lightweight design on vehicle track performance. Int J Interact Des Manuf 15:499–508. https://doi.org/10.1007/s12008-021-00777-x

    Article  Google Scholar 

  151. Jiménez M, Romero L, Domínguez IA, et al (2019) Additive manufacturing technologies: an overview about 3D printing methods and future prospects. Complexity 2019.https://doi.org/10.1155/2019/9656938

  152. Lin J, Liu Q, He B, et al. A lightweight design method based on two-layer topology optimization of limited design space and parameter optimization. https://doi.org/10.25236/iccem.2021.045

  153. Liu B, Sha L, Huang K et al (2022) A topology optimization method for collaborative robot lightweight design based on orthogonal experiment and its applications. Int J Adv Robot Syst 19.https://doi.org/10.1177/17298814211056143

  154. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055. https://doi.org/10.1007/s00158-013-0978-6

    Article  MathSciNet  Google Scholar 

  155. Langelaar M (2018) Combined optimization of part topology, support structure layout and build orientation for additive manufacturing. Struct Multidiscip Optim 57:1985–2004. https://doi.org/10.1007/s00158-017-1877-z

    Article  MathSciNet  Google Scholar 

  156. Adam GAO, Zimmer D (2014) Design for additive manufacturing—element transitions and aggregated structures. CIRP J Manuf Sci Technol 7:20–28. https://doi.org/10.1016/j.cirpj.2013.10.001

    Article  Google Scholar 

  157. Kim G-W, Park Y-I, Park K (2020) Topology optimization and additive manufacturing of automotive component by coupling kinetic and structural analyses. Int J Automot Technol 21:1455–1463. https://doi.org/10.1007/s12239−020−0137−1

    Article  Google Scholar 

  158. Kladovasilakis N, Kosmidis G, Kyratsis P, Tzetzis D (2023) Topology optimization utilizing density-based approach for additive manufactured components: a case study of an automotive brake caliper. In: Kyratsis P, Manavis A, Davim JP (eds) Computational Design and Digital Manufacturing. Springer International Publishing, Cham, pp 91–106

    Chapter  Google Scholar 

  159. Yang T, Yi X, Lu S et al (2021) Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering 7:1224–1230. https://doi.org/10.1016/j.eng.2021.04.023

    Article  Google Scholar 

  160. Reisch RT, Janisch L, Tresselt J et al (2023) Prescriptive analytics - a smart manufacturing system for first-time-right printing in wire arc additive manufacturing using a digital twin. Procedia CIRP 118:759–764. https://doi.org/10.1016/j.procir.2023.06.130

    Article  Google Scholar 

  161. Zhang H, Prasad Vallabh CK, Zhao X (2023) Machine learning enhanced high dynamic range fringe projection profilometry for in-situ layer-wise surface topography measurement during LPBF additive manufacturing. Precis Eng. https://doi.org/10.1016/j.precisioneng.2023.06.015

    Article  Google Scholar 

  162. Zhang Y, Fiona Zhao Y (2022) A Web-based automated manufacturability analyzer and recommender for additive manufacturing (MAR-AM) via a hybrid Machine learning model. Expert SystAppl 199. https://doi.org/10.1016/j.eswa.2022.117189

  163. Desai M, Shah M (2021) An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clinical eHealth 4:1–11

    Article  Google Scholar 

  164. Laskowski R, Ahluwalia R, Hock GTW et al (2022) Concurrent modeling of porosity and microstructure in multilayer three-dimensional simulations of powder-bed fusion additive manufacturing of INCONEL 718. AdditManuf 60. https://doi.org/10.1016/j.addma.2022.103266

  165. Li MJ, Chen J, Lian Y et al (2023) An efficient and high-fidelity local multi-mesh finite volume method for heat transfer and fluid flow problems in metal additive manufacturing. Comput Methods ApplMech Eng 404. https://doi.org/10.1016/j.cma.2022.115828

  166. Meng L, McWilliams B, Jarosinski W et al (2020) Machine Learning in Additive Manufacturing: A Review. Jom 72:2363–2377. https://doi.org/10.1007/s11837-020-04155-y

    Article  Google Scholar 

  167. Akhavan J, Manoochehri S (2022) Sensory data fusion using machine learning methods for in-situ defect registration in additive manufacturing: a review. In: 2022 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2022. Institute of Electrical and Electronics Engineers Inc

  168. Dalzochio J, Kunst R, Pignaton E, Binotto A, Sanyal S, Favilla J, Barbosa J (2020) Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. 123:103298. https://doi.org/10.1016/j.compind.2020.103298

  169. He P, Wen J, Stojanovic V et al (2022) Finite-time control of discrete-time semi-Markov jump linear systems: A self-triggered MPC approach. J Franklin Inst 359:6939–6957. https://doi.org/10.1016/j.jfranklin.2022.06.043

    Article  MathSciNet  MATH  Google Scholar 

  170. Zhou C, Tao H, Chen Y et al (2022) Robust point-to-point iterative learning control for constrained systems: A minimum energy approach. Int J Robust Nonlinear Control 32:10139–10161. https://doi.org/10.1002/rnc.6354

    Article  MathSciNet  Google Scholar 

  171. Tao H, Qiu J, Chen Y et al (2023) Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion. J Franklin Inst 360:1454–1477. https://doi.org/10.1016/j.jfranklin.2022.11.004

    Article  MATH  Google Scholar 

  172. Mantovani S, Barbieri SG, Giacopini M et al (2020) Synergy between topology optimization and additive manufacturing in the automotive field. Proc Inst Mech Eng B J Eng Manuf. https://doi.org/10.1177/0954405420949209

    Article  Google Scholar 

  173. Primo T, Calabrese M, Del Prete A, Anglani A (2017) Additive manufacturing integration with topology optimization methodology for innovative product design. Int J Adv Manuf Technol 93:467–479. https://doi.org/10.1007/s00170-017-0112-9

    Article  Google Scholar 

  174. Seifi H, Rezaee Javan A, Xu S et al (2018) Design optimization and additive manufacturing of nodes in gridshell structures. Eng Struct 160:161–170. https://doi.org/10.1016/j.engstruct.2018.01.036

    Article  Google Scholar 

  175. Meng L, Zhang W, Quan D et al (2020) From topology optimization design to additive manufacturing: today’s success and tomorrow’s roadmap. Arch Comput Methods Eng 27:805–830. https://doi.org/10.1007/s11831-019-09331-1

    Article  Google Scholar 

  176. Arora JS (2004) 2 - Optimum design problem formulation. In: Second E (ed) Arora JSBT-I to OD. Academic Press, San Diego, pp 15–54

    Google Scholar 

  177. Rade J, Balu A, Herron E et al (2021) Algorithmically-consistent deep learning frameworks for structural topology optimization. Eng Appl Artif Intell 106. https://doi.org/10.1016/j.engappai.2021.104483

  178. Jankovics D, Gohari H, Tayefeh M, Barari A (2018) Developing topology optimization with additive manufacturing constraints in ANSYS®. IFAC-PapersOnLine 51:1359–1364. https://doi.org/10.1016/j.ifacol.2018.08.340

    Article  Google Scholar 

  179. Jankovics D, Gohari H, Barari A (2018) Constrained topology optimization for additive manufacturing of structural components In Ansys®. 1–5. https://doi.org/10.25071/10315/35404

  180. Ahmed S, Gupta MK (2021) Investigations on motorbike frame material and comparative analysis using generative design and topology optimization. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.12.040

    Article  Google Scholar 

  181. Høghøj LC, Träff EA (2021) An advection-diffusion based filter for machinable designs in topology optimization. https://doi.org/10.1016/j.cma.2021.114488

  182. Yamada T, Noguchi Y (2021) Topology optimization with a closed cavity exclusion constraint for additive manufacturing based on the fictitious physical model approach. https://doi.org/10.1016/j.addma.2022.102630

  183. Jankovics D, Barari A (2019) Customization of automotive structural components using additive manufacturing and topology optimization. IFAC-PapersOnLine 52:212–217. https://doi.org/10.1016/j.ifacol.2019.10.066

    Article  Google Scholar 

  184. Haertel JHK, Engelbrecht K, Lazarov BS, Sigmund O (2018) Topology optimization of a pseudo 3D thermofluid heat sink model. Int J Heat Mass Transf 121:1073–1088. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.078

    Article  Google Scholar 

  185. Zhao Z-L, Zhou S, Feng X-Q, Xie YM (2018) On the internal architecture of emergent plants. J Mech Phys Solids 119:224–239. https://doi.org/10.1016/j.jmps.2018.06.014

    Article  MathSciNet  Google Scholar 

  186. Du J, Olhoff N (2007) Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidiscip Optim 33:305–321. https://doi.org/10.1007/s00158-006-0088-9

    Article  Google Scholar 

  187. Du J, Yang R (2015) Vibro-acoustic design of plate using bi-material microstructural topology optimization. J Mech Sci Technol 29:1413–1419. https://doi.org/10.1007/s12206-015-0312-x

    Article  Google Scholar 

  188. Gao J, Xue H, Gao L, Luo Z (2019) Topology optimization for auxetic metamaterials based on isogeometric analysis. Comput Methods Appl Mech Eng 352:211–236. https://doi.org/10.1016/j.cma.2019.04.021

    Article  MathSciNet  MATH  Google Scholar 

  189. Wu J, Luo Z, Li H, Zhang N (2017) Level-set topology optimization for mechanical metamaterials under hybrid uncertainties. Comput Methods Appl Mech Eng 319:414–441. https://doi.org/10.1016/j.cma.2017.03.002

    Article  MathSciNet  MATH  Google Scholar 

  190. Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329. https://doi.org/10.1016/0020-7683(94)90154-6

    Article  MathSciNet  MATH  Google Scholar 

  191. Huang X, Radman A, Xie YM (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50:1861–1870. https://doi.org/10.1016/j.commatsci.2011.01.030

    Article  Google Scholar 

  192. Luh G-C, Lin C-Y (2009) Structural topology optimization using ant colony optimization algorithm. Appl Soft Comput 9:1343–1353. https://doi.org/10.1016/j.asoc.2009.06.001

    Article  Google Scholar 

  193. Fergani O, Berto F, Welo T, Liang SY (2016) Analytical modelling of residual stress in additive manufacturing. Fatigue Fract Eng Mater Struct 40(6):971–978. https://doi.org/10.1111/ffe.12560

  194. Allaire G, Jakabčin L (2017) Taking into account thermal residual stresses in topology optimization of structures built by additive manufacturing. pp 1–45.  https://hal.science/hal-01666081

  195. Cao L, Dolovich AT, Schwab AL et al (2015) Toward a unified design approach for both compliant mechanisms and rigid-body mechanisms: module optimization. Journal of Mechanical Design 137. https://doi.org/10.1115/1.4031294

  196. Sigmund O, Hougaard K (2008) Geometric properties of optimal photonic crystals. Phys Rev Lett 100:153904. https://doi.org/10.1103/PhysRevLett.100.153904

    Article  Google Scholar 

  197. Baumers M, Dickens P, Tuck C, Hague R (2016) The cost of additive manufacturing: machine productivity, economies of scale and technology-push. Technol Forecast Soc Change 102:193–201. https://doi.org/10.1016/j.techfore.2015.02.015

    Article  Google Scholar 

  198. Li C, Kim IY, Jeswiet J (2015) Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct Multidiscip Optim 51:547–564. https://doi.org/10.1007/s00158-014-1151-6

    Article  Google Scholar 

  199. Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53:175–192. https://doi.org/10.1007/s00158-015-1274-4

    Article  Google Scholar 

  200. Wong J, Ryan L, Kim IY (2018) Design optimization of aircraft landing gear assembly under dynamic loading. Struct Multidiscip Optim 57:1357–1375. https://doi.org/10.1007/s00158-017-1817-y

    Article  Google Scholar 

  201. Geomagic Reverse Engineering software

  202. Ohsaki M (1995) Genetic algorithm for topology optimization of trusses. Comput Struct 57:219–225. https://doi.org/10.1016/0045-7949(94)00617-C

    Article  MathSciNet  MATH  Google Scholar 

  203. Kawamura H, Ohmori H, Kito N (2002) Truss topology optimization by a modified genetic algorithm. Struct Multidiscip Optim 23:467–473. https://doi.org/10.1007/s00158-002-0208-0

    Article  Google Scholar 

  204. Wang S, Wang M, Tai K (2006) An enhanced genetic algorithm for structural topology optimization. Int J Numer Method Eng 65.https://doi.org/10.1002/nme.1435

  205. Corallo A, Lazoi M, Lezzi M (2020) Cybersecurity in the context of industry 4.0: A structured classification of critical assets and business impacts. vol 114:103165. https://doi.org/10.1016/j.compind.2019.103165

  206. Lezzi M, Lazoi M, Corallo A (2018) Cybersecurity for Industry 4.0 in the current literature: A reference framework. Comput Ind 103:97–110

    Article  Google Scholar 

  207. Ali MS, Vecchio M, Pincheira M et al (2019) Applications of blockchains in the Internet of things: a comprehensive survey. IEEE Commun Surveys Tutorials 21:1676–1717

    Article  Google Scholar 

  208. Guo H, Yu X (2022) A survey on blockchain technology and its security. Blockchain: Res Appl 100067. https://doi.org/10.1016/j.bcra.2022.100067

  209. Guo H, Yu X (2022) A survey on blockchain technology and its security. Blockchain: Res Appls 3:100067. https://doi.org/10.1016/j.bcra.2022.100067

  210. Bridges SM, Keiser K, Sissom N, Graves SJ (2015) Cyber security for additive manufacturing. In: ACM International Conference Proceeding Series. Association for Computing Machinery

  211. Sigmund O (2009) Topology optimization in nano-photonics. AIP Conf Proc 1176:26–28. https://doi.org/10.1063/1.3253908

    Article  Google Scholar 

  212. Shiwei Zhou, Scott Townsend, Yi Min Xie, Xiaodong Huang, Jianhu Shen and QL (2014) Design of fishnet metamaterials with broadband negative refractive index in the visible spectrum. Opt Lett 39:2415–2418. https://doi.org/10.1364/OL.39.002415

  213. Kiener L, Saudan H, Perruchoud G, Kruis J (2018) Compliant mechanisms re-design based on additive manufacturing and topology optimization. Proceedings of the 44th Aerospace Mechanisms Symposium, NASA Glenn Research Center, pp 239–245

  214. Di Cataldo S, Vinco S, Urgese G, Calignano F, Ficarra E, Macii A, Macii A (2021) Optimizing quality inspection and control in powder bed metal additive manufacturing: challenges and research directions. Proceedings of the IEEE 109(4):326–346. https://doi.org/10.1109/JPROC.2021.3054628

  215. Fiuk G, Mrzygłód MW (2021) Numerical benchmarks for topology optimization of structures with stress constraints. Bullet Polish AcadSci: Tech Sci 69. https://doi.org/10.24425/bpasts.2021.139317

  216. Fruleux T, Castro M, Correa D et al (2022) Geometric limitations of 3D printed continuous flax-fiber reinforced biocomposites cellular lattice structures. Compos Part C: Open Access 9. https://doi.org/10.1016/j.jcomc.2022.100313

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have made notable contribution. We have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Muhammad Arif Mahmood.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishfaq, K., Khan, M.D.A., Khan, M.A.A. et al. A correlation among industry 4.0, additive manufacturing, and topology optimization: a state-of-the-art review. Int J Adv Manuf Technol 129, 3771–3797 (2023). https://doi.org/10.1007/s00170-023-12515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12515-6

Keywords

Navigation