Skip to main content
Log in

Cable path optimization by fixing multiple guides on one link for industrial robot arms

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Several methods have been developed in recent years to automatically design cable paths for a given robot motion. However, an optimal solution may not be found when applied to complex motions such as inspection or assembly processes. Observation of experts’ works reveals that multiple guides are empirically fixed on one link to avoid cable collisions with peripheral devices and to lessen cable bending fatigue. This study proposes a cable path optimization method with multiple guides on one link to obtain the optimal solution for complex motions. Furthermore, it experimentally demonstrates its effectiveness. However, fixing multiple guides on one link may increase the computational burden because the solution search space will remarkably expand. Therefore, a combination of Hermite interpolation and interpolated coordinate system calculation using rotation-minimizing frames was introduced to reduce the significant burden of connected geometry computation. The connected geometry is the geometry of the cable segment which connects the guides at both ends and is used as an initial geometry in the physical simulation considering gravity to determine the convergent geometry of the cable segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Critical poses [16] are robot poses that are prone to applying stress to the cable with impulse, stretching, bending, and other movements. Various critical poses are extracted for each cable segment based on the robot motion. A critical pose is defined as a set of joint angles with a global extreme value. In critical poses, satisfying the stress constraints in Eq. (1) is difficult. Herein, it is assumed that if a cable path can satisfy the stress constraints in all critical poses, the cable path can also satisfy the stress constraints in other motion poses.

References

  1. International Federation of Robotics (2021) Executive summary world robotics 2021 industrial robots. https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2021.pdf. Accessed 01 Apr 2023

  2. Antman SS (1995) Nonlinear problems of elasticity. Springer

  3. Spillmann J, Teschner M (2007) CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 63–72

  4. Hergenröther E, Dähne P (2000) Real-time virtual cables based on kinematic simulation. In: Proc WSCG, pp 402–409. https://core.ac.uk/download/pdf/295568834.pdf

  5. Grégoire M, Schömer E (2007) Interactive simulation of one-dimensional flexible parts. Comput Aided Des 39:694–707. https://doi.org/10.1016/j.cad.2007.05.005

    Article  Google Scholar 

  6. Loock A, Schömer E (2001) A virtual environment for interactive assembly simulation: from rigid bodies to deformable cables. In: 5th World Multiconf Syst Cybern Informatics (SCI ’01) 2001, pp 325–332

  7. Lv N, Liu J, Ding X, Liu J, Lin H, Ma J (2017) Physically based real-time interactive assembly simulation of cable harness. J Manuf Syst 43:385–399. https://doi.org/10.1016/j.jmsy.2017.02.001

    Article  Google Scholar 

  8. Müller M, Heidelberger B, Hennix M, Ratcliff J (2007) Position based dynamics. J Vis Commun Image Represent 18:109–118. https://doi.org/10.1016/j.jvcir.2007.01.005

    Article  Google Scholar 

  9. Bullet real-time physics simulation. https://pybullet.org/wordpress/. Accessed 1 May 2023

  10. Havok physics. https://www.havok.com/havok-physics/. Accessed 1 May 2023

  11. Phys X. SDK. https://developer.nvidia.com/physx-sdk. Accessed 1 May 2023

  12. Kressin J (2013) Path optimization for multi-robot station minimizing dresspack wear. Master’s thesis, Chalmers University of Technology, Department of Signals and Systems. https://publications.lib.chalmers.se/records/fulltext/179859/179859.pdf

  13. Carlson JS, Kressin J, Hermansson T, Bohlin R, Sundbäck M, Hansson H (2016) Robot station optimization for minimizing dress pack problems. Procedia CIRP 44:389–394. https://doi.org/10.1016/j.procir.2016.01.022

    Article  Google Scholar 

  14. Hermansson T, Carlson JS, Linn J, Kressin J (2021) Quasi-static path optimization for industrial robots with dress packs. Robot Comput Integr Manuf 68:102055. https://doi.org/10.1016/j.rcim.2020.102055

    Article  Google Scholar 

  15. Iwamura S, Mizukami Y, Endo T, Matsuno F (2022) Cable-path optimization method for industrial robot arms. Robot Comput Integr Manuf 73:102245. https://doi.org/10.1016/j.rcim.2021.10224

    Article  Google Scholar 

  16. Iwamura S, Mizukami Y, Endo T, Matsuno F (2022) Efficient cable path optimization based on critical robot poses for industrial robot arms. IEEE Access 10:66028–66044. https://doi.org/10.1109/ACCESS.2022.3184421

    Article  Google Scholar 

  17. Loris R, Palaniappan V, Marco M, Giuseppe B, Arash A, Dario P (2023) A human-centric framework for robotic task learning and optimization. J Manuf Syst 67:68–79. https://doi.org/10.1016/j.jmsy.2023.01.003

    Article  Google Scholar 

  18. Roveda L, Maggioni B, Marescotti E, Shahid AA, Zanchettin AM, Bemporad A, Piga D (2021) Pairwise preferences-based optimization of a path-based velocity planner in robotic sealing tasks. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, pp 1674–1681. https://doi.org/10.1109/IROS51168.2021.9636184

  19. Mon AA, Aye KK (1995) Hermite interpolation by Pythagorean hodograph curve. World Acad Sci Eng Technol 38:35–39

    Google Scholar 

  20. Wang W, Jüttler B, Zheng D, Liu Y (2008) Computation of rotation minimizing frames. ACM Trans Graph 27:1–18. https://doi.org/10.1145/1330511.1330513

    Article  Google Scholar 

  21. Hall CA, Meyer WW (1976) Optimal error bounds for cubic spline interpolation. J Approx Theor 16:105–122. https://doi.org/10.1016/0021-9045(76)90040-X

    Article  MathSciNet  MATH  Google Scholar 

  22. Mortenson ME (1999) Chapter 15. Mathematics for computer graphics applications. In: The Bezier curve. Industrial Press Inc., pp 264–275

  23. Bloomenthal J (1990) Calculation of reference frames along a space curve. Graph Gems 1:567–571. https://doi.org/10.1016/B978-0-08-050753-8.50124-8

    Article  Google Scholar 

  24. Yuan B, Du H, Wang H, Xiong W (2015) The simulation of cable harness based on mass-spring model. MATEC Web Conf 31:10002. https://doi.org/10.1051/matecconf/20153110002

    Article  Google Scholar 

  25. Dedieu JP (2015) Newton-Raphson method. In: Engquist B (ed) Encyclopedia of applied and computational mathematics. Springer, Berlin, Heidelberg, pp 1023–1028. https://doi.org/10.1007/978-3-540-70529-1_374

  26. Omron. Viper. http://www.ia.omron.com/products/family/3520/download/catalog.html. Accessed 1 May 2023

  27. SMC LEHF32EK2-32. http://ca01.smcworld.com/catalog/Electric/mpv/Electric-LEH/data/Electric-LEH.pdf. Accessed 1 May 2023

  28. SMC LE-CP-3. http://ca01.smcworld.com/catalog/Electric/mpv/Electric-LEC-JXC/data/Electric-LEC-JXC.pdf. Accessed 1 May 2023

  29. Basler ace series. https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/. Accessed 1 May 2023

  30. Basler cable GigE. https://www.baslerweb.com/en/products/cable/basler-cable-gige-cat-6-rj45-sl-hor-rj45-drc-p-5-m/. Accessed 1 May 2023

  31. Omron. Sysmac studio. https://automation.omron.com/en/ca/products/family/sysstdio. Accessed 1 May 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Mizukami.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1.49 MB)

Supplementary file2 (MP4 2.84 MB)

Appendices

Appendix 1. PV candidate set \({{\varvec{D}}}_{0,{\varvec{m}}}\)

\({D}_{0,m}\) [16] is given by

$${D}_{0,m}=\left\{{(S}_{m,{i}_{m} },{P}_{m,{j}_{m}},{P}_{m + 1,{j}_{m + 1}})\right|1\le {i}_{m}\le {I}_{m}, 1\le {j}_{m}\le {J}_{m},1\le {j}_{m + 1}\le {J}_{m + 1},1\le m<M\},$$
(5)

where {\({S}_{m,{i}_{m}}| 1\le {i}_{m}\le {I}_{m}\}\) denotes a candidate set of sub-segment numbers in \({C}_{m}\) that connects \({G}_{m}\) and \({G}_{m+1}\). \({I}_{m}\) denotes the candidate number of sub-segment numbers. {\({S}_{m,{i}_{m}}\)} are prepared as an arithmetic series of constant interval \(\Delta S\). Furthermore, {\({P}_{m,{j}_{m}}\left| 1\le {j}_{m}\le {J}_{m}\right\}\) denotes a candidate set of configurations of \({G}_{m}\), and \({J}_{m}\) represents the candidate number of configurations of \({G}_{m}\). {\({P}_{m + 1,{j}_{m + 1}}\left| 1\le {j}_{m + 1}\le {J}_{m + 1}\right\}\) indicates a candidate set of configurations of \({G}_{m + 1}\). \({J}_{m+1}\) represents the candidate number of configurations of \({G}_{m+1}\).

Appendix 2. PV candidate set \({{\varvec{D}}}_{1,{\varvec{m}}}\)

\({D}_{1,m}\) Satisfying stress constraints in the attachment test is given by

$$\begin{array}{c}{D}_{1,m}=\left\{{(S}_{m,{i}_{m} },{P}_{m,{j}_{m}},{P}_{m + 1,{j}_{m + 1}})\in {D}_{0,m}\right|\\ {\mathrm{ Impulse}}_{\mathrm{th}}\ge {\mathrm{Impulse}}_{({S}_{m,{i}_{m}},{P}_{m,{j}_{m}},{P}_{m + 1,{j}_{m + 1}})}\left(\theta \right),\\ \begin{array}{c}{\mathrm{ Stretch}}_{\mathrm{th}}\ge {\mathrm{Stretch}}_{\left({S}_{m,{i}_{m}},{P}_{m,{j}_{m}},{P}_{m + 1,{j}_{m + 1}}\right)}\left(\theta \right), \\ {\mathrm{ Curvature}}_{\mathrm{th}} \le {\mathrm{Curvature}}_{\left({S}_{m,{i}_{m}},{P}_{m,{j}_{m}},{P}_{m + 1,{j}_{m + 1}}\right)}\left(\theta \right),\\ for \forall \theta \in {{\Theta }^{\mathrm{^{\prime}}}}_{m}\},\end{array}\end{array}$$
(6)

where \({\mathrm{Impulse}}_{({S}_{m,{i}_{m}},{P}_{m,{j}_{m}},{P}_{m + 1,{j}_{m + 1}})}\left(\theta \right)\) represents the maximum impulse received by each sub-segment of \({C}_{m},\) when the joint angles are set to \({\mathrm{\Theta {\prime}}}_{m}\) that contains only the initial pose as one of the arbitrary poses. Similarly, \({\mathrm{Stretch}}_{({S}_{m,{i}_{m}},{P}_{m,{j}_{m}},{P}_{m + 1,{j}_{m + 1}})}\left(\theta \right)\) and \({\mathrm{Curvature}}_{({S}_{m,{i}_{m}},{P}_{m,{j}_{m}},{P}_{m + 1,{j}_{m + 1}})}\left(\theta \right)\) are the maximum stretch and minimum curvature radius of the sub-segments, respectively.

Appendix 3. PV candidate set \({{\varvec{D}}\boldsymbol{^{\prime}}}_{0,{\varvec{m}}}\)

\({D{\prime}}_{0,m}\) Satisfying the adjacency condition between \({D}_{0,m}\) and \({D}_{2,m-1}\) in the attachment test [16] is given by

$$\begin{array}{c}{D{\prime}}_{0,m}=\left.\left\{({S}_{m,{i}_{m}},{P}_{m,{j}_{m}},{P}_{m + 1,{j}_{m + 1}})\right.\right|\\ \left({S}_{m-1,{i}_{m-1}},{P}_{m-1,{j}_{m-1}},{P}_{m,{j}_{m}}\right)\in {D}_{2,m-1},\\ \left. \left({S}_{m,{i}_{m}},{P}_{m,{j}_{m}},{P}_{m + 1,{j}_{m + 1}}\right)\in {D}_{0,m}\right\},\end{array}$$
(7)

Compared to \({D}_{0,m}\), \({D{\prime}}_{0,m}\) includes fewer PVs. Thus, the burden can be reduced by applying the adjacency condition in CSAT [16].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwamura, S., Mizukami, Y., Endo, T. et al. Cable path optimization by fixing multiple guides on one link for industrial robot arms. Int J Adv Manuf Technol 129, 4275–4292 (2023). https://doi.org/10.1007/s00170-023-12507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12507-6

Keywords

Navigation