Skip to main content
Log in

Comparative analysis of the corrosion resistance of Bos taurus and Cocos nucifera–reinforced 1170 aluminum alloy in chloride-sulfate solution

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Aluminum matrix composites have immense industrial significance due to their excellent mechanical, tribological, and heat-resistant properties. Understanding the corrosion resistance of aluminum composites is highly important for the sustained operational lifespan of the composite. AA1170 aluminum alloy with separate particulate reinforcements of Bos taurus (BT) and Cocos nucifera (CN) (0 to 20% wt concentration) was evaluated for their corrosion resistance properties in 3.5% NaCl and 0.05 M H2SO4 solution by potentiodynamic polarization, open circuit potential analysis, potentiostatic analysis, optical and scanning electron microscopy, and X-ray diffractometry. Result analysis showed corrosion rates of monolithic aluminum alloy (0% particulate wt concentration) from both electrolytes (3.5% NaCl and 0.05 M H2SO4) are 0.204 and 0.259 mm/year. Corrosion rate of BT-reinforced composites from both solutions decreased with respect to BT particulate concentration to 0.087 and 0.216 mm/year at 20% BT. Whereas corrosion rate of CN-reinforced composites decreased to 0.161 mm/year in 3.5% NaCl and increased to 0.434 mm/year in 0.05 M H2SO4 at 20% CN concentration. The most passivated aluminum composites from polarization plots occurred at 5% BT and CN particulate concentrations. Increase in particulate concentration increased the vulnerability of the composite to localized corrosion. Open circuit potential plots show particulate reinforcements increased the thermodynamic instability of the surface properties of aluminum composite and its exposure to active-passive transition behavior. Optical and scanning electron microscopy indicates significant improvements in the corrosion resistance of BT and CN particle–reinforced aluminum compared to the unreinforced alloy. Significant surface deterioration, pitting corrosion, and intergranular corrosion were present. X-ray diffractometry showed the phases identified for BT particle–reinforced composite (Al2O3, CuS2, ZnS2, ZnCO3, and CuO2) significantly enhanced its corrosion resistance compared to the unreinforced and CN particle–reinforced composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dhananjaya Kumar LK, Sripad Kulkarni S, Deepu JN, Subramani N, Sivaprakash K (2021) Investigation of mechanical & corrosion properties of graphene, R-glass fiber reinforced aluminium 2024 hybrid composites. Mater Today: Proc 43(2):1684–1693. https://doi.org/10.1016/j.matpr.2020.10.036

    Article  Google Scholar 

  2. Ravishankar PVK, Suneelkumar NK (2022) Studies on the stress corrosion behaviour of aluminium 6061/red mud metal matrix composites. Mater Today: Proc 59(1):1225–1230. https://doi.org/10.1016/j.matpr.2022.03.427

    Article  Google Scholar 

  3. Lai SW, Chung DDL (1994) Fabrication of particulate aluminium-matrix composites by liquid metal infiltration. J Mater Sci 29(12):3128–3150. https://doi.org/10.1007/bf00356655

    Article  Google Scholar 

  4. Das S (2004) Development of aluminium alloy composites for engineering applications. Trans Indian Inst Met 57:325–334

    Google Scholar 

  5. Peters ST (1998) Handbook of composites, 2nd edn. Chapman & Hall, California, USA

    Book  Google Scholar 

  6. Karl K (2006) Metal matrix composites: custom-made materials for automotive and aerospace engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/3527608117

    Book  Google Scholar 

  7. Chawla N, Chawla KK (2006) Metal matrix composites. Springer Science and Business Media Inc., Berlin. https://doi.org/10.1007/978-3-030-28983-6

    Book  Google Scholar 

  8. Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana 28:319–334. https://doi.org/10.1007/BF02717141

    Article  Google Scholar 

  9. Manohar HS, Mungara SR, Anand SN, Sharan Teja RK (2020) Development and study on corrosion properties of Al6061/nano carbon black reinforced aluminium metal matrix composites. Mater Today: Proc 20(2):185–190. https://doi.org/10.1016/j.matpr.2019.10.172

    Article  Google Scholar 

  10. Dinesh Kumar S, Ravichandran M, Jeevika A, Stalin B, Kailasanathan C, Karthick A (2021) Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route. Ceram Int 47(9):12951–12962. https://doi.org/10.1016/j.ceramint.2021.01.158

    Article  Google Scholar 

  11. Prabu SB, Karunamoorthy L, Kathiresan S, Mohan B (2006) Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J Mater Process Technol 171(2):268–273. https://doi.org/10.1016/j.jmatprotec.2005.06.071

    Article  Google Scholar 

  12. Satish Kumar T, Subramanian R, Shalini S (2015) Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced metal matrix composites (MMCs): a review. J Mater Res Technol 4:333–347. https://doi.org/10.1016/j.jmrt.2015.03.003

    Article  Google Scholar 

  13. Prasad SD, Krishna RA (2012) Tribological properties of A356.2/RHA composites. J Mater Sci Technol. https://doi.org/10.1016/S1005-0302(12)60069-3

  14. Alaneme KK, Sanusi KO (2015) Mechanical and wear behaviour of rice husk ash- alumina-graphite hybrid reinforced aluminium based composites. Int J Eng Sci Technol. https://doi.org/10.1016/j.jestch.2015.02.003

  15. Yekinni AA, Durowoju MO, Agunsoye JO (2019) Automotive application of hybrid composites of aluminum alloy matrix: a review of rice husk ash-based reinforcements. Int J Compos Mater 9(2):44–52. https://doi.org/10.5923/j.cmaterials.20190902.03

    Article  Google Scholar 

  16. Loto RT (2016) Electrochemical analysis of the corrosion inhibition properties of 4-hydroxy-3-methoxybenzaldehyde on low carbon steel in dilute acid media. Cogent Eng 3(1):1242107. https://doi.org/10.1080/23311916.2016.1242107

    Article  Google Scholar 

  17. Loto CA, Loto RT, Popoola API (2011) Electrode potential monitoring of effect of plants extracts addition on the electrochemical corrosion behaviour of mild steel reinforcement in concrete. Int J Elect Sci 6(8):3452–3465

    Google Scholar 

  18. Loto RT (2017) Anti-corrosion performance of the synergistic properties of benzenecarbonitrile and 5-bromovanillin on 1018 carbon steel in HCl environment. Sci Rep 7(1):17555. https://doi.org/10.1016/j.jmrt.2017.09.005

    Article  Google Scholar 

  19. Bhat MSN, Surappa MK, Nayak HVS (1991) Corrosion behaviour of silicon carbide particle reinforced 6061/Al alloy composites. J Mater Sci 26(18):4991

    Article  Google Scholar 

  20. Gnecco F, Beccaria AM (1999) Corrosion behaviour of Al–Si/SiC composite in sea water. Br Corros J 34(1):57

    Article  Google Scholar 

  21. Chintada S, Dora SP, Kare D (2022) Mechanical behavior and metallographic characterization of microwave sintered Al/SiC composite materials–an experimental approach. Silicon 14:7341–7352

    Article  Google Scholar 

  22. Kumar K, Dabade B, Wankhade L (2022) Determination of prediction model and optimization of process parameters for fabrication of Al-SiC composite using response surface methodology. Adv Mater Process. Technol 8:1983–1999

    Google Scholar 

  23. Baghel M, Krishna CM, Suresh S (2022) Development of Al-SiC composite material from rice husk and its parametric assessment. Mater Res Express 9:016518

    Article  Google Scholar 

  24. Polat S, Sun Y, Cevik E, Colijn H (2019) Microstructure and synergistic reinforcing activity of GNPs-B4C dual-micro and nano supplements in Al-Si matrix composites. J Alloy Compd 806:1230–1241

    Article  Google Scholar 

  25. Boopathi S, Thillaivanan A, Pandian M, Subbiah R, Shanmugam P (2022) Friction stir processing of boron carbide reinforced aluminium surface (Al-B4C) composite: mechanical characteristics analysis. Mater Today: Proc 50:2430–2435

    Google Scholar 

  26. Zhao J, Li Q (2022) Effect of magnetic-mechanical coupled stirring on the distribution of B4C particles in Al-B4C composites. J Mater Eng Perform 31:907–917

    Article  Google Scholar 

  27. Zabihi M, Qods F, Emadoddin E (2022) The effect of simple shear extrusion on the texture and porosity content of Al/Al2O3 composites. Iran J Mater Form 9:26–35

    Google Scholar 

  28. Dang X, Zhang B, Zhang Z, Hao P, Xu Y, Xie Y, Huang R, Wang K, Wang W, Wang Q (2021) Microstructural evolutions and mechanical properties of multilayered 1060Al/Al-Al2O3 composites fabricated by cold spraying and accumulative roll bonding. J Mater Res Technol 15:3895–3907

    Article  Google Scholar 

  29. Aydin F (2021) The investigation of the effect of particle size on wear performance of AA7075/Al2O3 composites using statistical analysis and different machine learning methods. Adv Powder Technol 32:445–463

    Article  Google Scholar 

  30. Zhang X, Yue XY, Ru HQ (2022) Effect of in-situ synthesized TiB2 on microstructure and mechanical property of Al/TiB2-SiC interpenetrating phase composites. J Asian Ceram Soc 10:531–544

    Article  Google Scholar 

  31. Mirbagheri SM, Baharzadeh E, Rafiei M (2022) Characterization of Al/(TiC+TiB2) hybrid composites containing different amounts of MWCNTs produced by SPS. J Mater Res 37:3575–3586

    Article  Google Scholar 

  32. Mathimurugan N, Vaishnav V, Praveen Kumar R, Boobalan P, Nandha S, Chenrayan V, Shahapurkar K, Tirth V, Alarifi IM, Eldirderi MMA, Khedher KM, Najm HM (2022) Room and high temperature tensile responses of TiB2-graphene Al 7075 hybrid composite processed through squeeze casting. Nanomaterials 12:3124

    Article  Google Scholar 

  33. Agrawal E, Tungikar V (2021) Wear performance of Al-TiC composite at elevated temperature. World J Eng 19:346–351

    Article  Google Scholar 

  34. Samal P, Vundavilli PR, Meher A, Mahapatra MM (2022) Multi-response modeling for sliding wear behavior of AA5052/TiC composites by stir casting: a comparative analysis using response surface methodology and fuzzy logic system. Proc Inst Mech Eng E: J Process Mech Eng 236:254–266

    Google Scholar 

  35. Alam MA, Ya HH, Azeem M, Yusuf M, Sapuan SM, Masood F (2021) Investigating the effect of mixing time on the crystallite size and lattice strain of the AA7075/TiC composites. Mater Werkst 52:1112–1120

    Article  Google Scholar 

  36. Aydın F (2021) Investigation of elevated temperature wear behavior of Al 2024-BN composites using statistical techniques. J Mater Eng Perform 30:8560–8578

    Article  Google Scholar 

  37. Corthay S, Firestein KL, Kvashnin DG, Kutzhanov MK, Matveev AT, Kovalskii AM, Leybo DV, Golberg DV, Shtansky DV (2021) Elevated-temperature high-strength h-BN-doped Al2014 and Al7075 composites: experimental and theoretical insights. Mater Sci Eng A 809:140969

    Article  Google Scholar 

  38. Corthay S, Kutzhanov MK, Matveev AT, Bondarev AV, Leybo DV, Shtansky DV (2022) Nanopowder derived Al/h-BN composites with high strength and ductility. J Alloy Compd 912:165199

    Article  Google Scholar 

  39. Jagannatham M, Chandran P, Sankaran S, Haridoss P, Nayan N, Bakshi SR (2020) Tensile properties of carbon nanotubes reinforced aluminum matrix composites: a review. Carbon 160:14–44

    Article  Google Scholar 

  40. Lee K, Son H, Cho K, Choi H (2022) Effect of interfacial bridging atoms on the strength of Al/CNT composites: machine-learning-based prediction and experimental validation. J Mater Res Technol 17:1770–1776

    Article  Google Scholar 

  41. Su J, Teng J (2021) Recent progress in graphene-reinforced aluminum matrix composites. Front Mater Sci 15:79–97

    Article  Google Scholar 

  42. Seyed Pourmand N, Asgharzadeh H (2020) Aluminum matrix composites reinforced with graphene: a review on production, microstructure, and properties. Crit Rev Solid State Mater Sci 45:289–337

    Article  Google Scholar 

  43. Joel H, Divya MR (2018) Fabrication and corrosion behaviour of aluminium alloy (LM-13) reinforced with nano-ZrO2 particulate chilled nano metal matrix composites (CNMMCs) for aerospace applications. J Mater. Sci. Chem. Eng 6(7). https://doi.org/10.4236/msce.2018.67015

  44. Suresh Kumar R, Senthil Kumar S, Rajendran C, Chelladurai SJS, Balcha G (2022) Investigation on corrosion behaviour of LM25-SiCp composite using Taguchi method. Adv Mater Sci Eng 4341018. https://doi.org/10.1155/2022/4341018

  45. Loto RT, Adeleke A Corrosion of aluminum alloy metal matrix composites in neutral chloride solutions. J Fail Anal & Preven 16:874–885. https://doi.org/10.1007/s11668-016-0157-3

  46. Deshpande M, Vagge ST, Narayan Murty SVS, Kale H, Gondil R (2019) Studies on electro-chemical corrosion of carbon fiber reinforced aluminium alloy AA7075. Sådhanå 44:229. https://doi.org/10.1007/s12046-019-1213-y

    Article  Google Scholar 

  47. Flachmann ML, Seitz M, Liebig WV, Weidenmann KA (2022) Characterization of the corrosion resistance of composite peened aluminum. J Materi Eng & Perform 31:3185–3191. https://doi.org/10.1007/s11665-021-06440-6

    Article  Google Scholar 

  48. Akinwamide SO, Abe BT, Akinribide OJ, Babatunde Abiodun Obadele BA, Olubambi PO (2020) Characterization of microstructure, mechanical properties and corrosion response of aluminium-based composites fabricated via casting—a review. Int J Adv Manuf Technol 109:975–991

    Article  Google Scholar 

  49. Oghenevweta JE, Aigbodion VS, Nyior GB, Asuke F (2014) Mechanical properties and microstructural analysis of Al-Si-Mg/carbonized maize stalk waste particulate composites. J King Saud Univ – Eng Sci 28(2):222-229

  50. Bodunrin MO, Alaneme KK, Chown LH (2015) Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J Mats Res Techn 4(4):434–445

    Article  Google Scholar 

  51. Kok M (2005) Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. J Mater Process Technol 161(3):381–387

    Article  Google Scholar 

  52. Bhandakkar A, Prasad RC, Sastry SM (2014) Fracture toughness of AA2024 aluminum fly ash metal matrix composites. Int J Compos Mater 4(2):108–124

    Google Scholar 

  53. Fatile OB, Akinruli JI, Amori AA (2014) Microstructure and mechanical behaviour of stir-cast Al-Mg-Sl alloy matrix hybrid composite reinforced with corn cob ash and silicon carbide. Int J Eng Technol Innov 4(4):251–259

    Google Scholar 

  54. Loh YR, Sujan D, Rahman ME, Das CA (2013) Sugarcane bagasse—the future composite material: a literature review. Resour Conserv Recycl 75:14–22

    Article  Google Scholar 

  55. Madakson PB, Yawas DS, Apasi A (2012) Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. Int J Eng Sci Technol 3(4):1190–1198

    Google Scholar 

  56. Anilkumar HC, Hebbar HS, Ravishankar KS (2011) Mechanical properties of fly ash reinforced aluminium alloy (Al6061) composites. Int J Mech Mater Eng 6(1):41–45

    Google Scholar 

  57. Aigbodion VS, Hassan SB, Dauda ET (2010) The development of mathematical model for the prediction of ageing behaviour for Al-Cu-Mg/Bagasse Ash Particulate Composites experimental study of ageing behaviour of Al-Cu-Mg/bagasse ash particulate composites. Trib Ind 9(10):28

    Google Scholar 

  58. Hihara LH, Latanision RM (1994) Corrosion of metal matrix composites. Int Mater Rev 39(6):245

    Article  Google Scholar 

  59. Yao HY, Zhu RZ (1998) Interfacial preferential dissolution on silicon carbide particulate/aluminum composites. Corrosion 54(7):499

    Article  Google Scholar 

  60. Loto RT, Busari AA (2019) An overview of ammonium chloride (NH4Cl) corrosion in the refining unit. J Phys Conf Ser 1378(2):022089. https://doi.org/10.1088/1742-6596/1378/2/022089

    Article  Google Scholar 

  61. Roseline S, Paramasivam V (2019) Microstructural and corrosion aspects of aluminum-zirconia metal matrix composites in acidic condition. SSRG Int J Mech Eng 6:19–23

    Article  Google Scholar 

  62. Candan S, Bilgic E (2004) Corrosion behavior of Al-60 vol.% SiCp composites in NaCl solution. Mater Lett 58:2787–2790

    Article  Google Scholar 

  63. Zakaria HM (2014) Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Eng J 5:831–838

    Article  Google Scholar 

  64. Ananda Murthy HC, Bheema Raju V, Shivakumara C (2013) Effect of TiN particulate reinforcement on corrosive behaviour of aluminium 6061 composites in chloride medium. Bull Mater Sci 36:1057–1066

    Article  Google Scholar 

  65. Seah KHW, Krishna M, Vijayalakshmi VT, Uchil J (2002) Corrosion behaviour of garnet particulate reinforced LM13 Al alloy MMCs. Corros Sci 44:917–925

    Article  Google Scholar 

  66. Aylor DW, Taylor D (1999) Corrosion of metal matrix composites. In: Davis JR (ed) ASM Handbook Vol. 13, Corrosion. ASM International, Materials Park, OH, pp 859–863

    Google Scholar 

  67. Hihara LH, Kondepudi PK (1993) The galvanic corrosion of SiC monofilament/ZE41 Mg metal-matrix composite in 0.5 M NaNO3. Corros Sci 34:1761–1772

    Article  Google Scholar 

  68. Hihara LH (2005) Corrosion of metal-matrix composites. In: Cramer SD, Covino BS Jr (eds) ASM Handbook Vol. 13 B, Corrosion: materials. ASM International, Materials Park, OH, pp 526–542

    Google Scholar 

  69. Nunes PCR, Ramanathan LV (1995) Corrosion behavior of alumina-aluminum and silicon carbide-aluminum metal-matrix composites. Corrosion 51:610–617

    Article  Google Scholar 

  70. Han YM, Chen XG (2015) Electrochemical behavior of Al-B4C metal matrix composites in NaCl solution. Materials 32:6455–6470

    Article  Google Scholar 

  71. Gurrappa I, Bhanu Prasad VV (2006) Corrosion characteristics of aluminium based metal matrix composites. Mater Sci Tech 22:115–122

    Article  Google Scholar 

  72. Cheng YL, Chen ZH, Wu HL, Wang HM (2007) The corrosion behaviour of the aluminum alloy 7075/SiCp metal matrix composite prepared by spray deposition. Mater Corros 58:280–284

    Article  Google Scholar 

  73. Liu ZS, Wu BT, Gu MY (2007) Effect of AlN particles on the corrosion behavior of Al/AlNp composites. J Mater Sci 42:5736–5741

    Article  Google Scholar 

  74. Nath D, Namboodhiri TKG (1989) Some corrosion characteristics of aluminium-mica particulate composites. Corros Sci 23:1215–1229

    Article  Google Scholar 

  75. Hihara LH, Latanision RM (1992) Galvanic corrosion of aluminum-matrix composites. Corrosion 48:546–552

    Article  Google Scholar 

  76. Trowsdale AG, Noble B, Harris SJ, Gibbins ISR, Thompson GE, Wood GC (1996) The influence of silicon carbide reinforcement on the pitting behaviour of aluminium. Corros Sci 38:177–191

    Article  Google Scholar 

  77. Paciej RC, Agarwala VS (1988) Influence of processing variables on the corrosion susceptibility of metal-matrix composites. Corrosion 44:680–684

    Article  Google Scholar 

  78. Yang Q, Luo JL (2001) Effects of hydrogen and tensile stress on the breakdown of passive films on type 304 stainless steel. Electrochim Acta 46(6):851–859

    Article  Google Scholar 

  79. Abd El Meguid EA, Mahmoud NA, Abd El Rehim SS (2000) The effect of some sulphur compounds on the pitting corrosion of type 304 stainless steel. Mater Chem Phys 63(1):67–74

    Article  Google Scholar 

  80. Phanis SK, Satpati AK, Muthe KP, Vyas JC, Sundaresan RI (2003) Comparison of rolled and heat treated SS304 in chloride solution using electrochemical and XPS techniques. Corros Sci 45(11):2467–2483

    Article  Google Scholar 

  81. Ameer MA, Fekry AM, El-Taib F (2004) Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions. Electrochim Acta 50(1):43–49

    Article  Google Scholar 

  82. El-egamy SS, Badway WA Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions. J Appl Electrochem 34:1153–1158

  83. Refaey SAM, Taha F, Abd El-Malak AM (2005) Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl and Br anions. Appl Surf Sci 242(1-2):114–120

    Article  Google Scholar 

  84. Alaneme KK, Bodunrin MO, Olusegun SJ (2014) Corrosion behaviour of cold deformed and solution heat-treated alumina reinforced aluminium matrix composites in 0.3 M H2SO4 solution. Acta Tehnica Corviniensis – Bull Eng 7(1):27

    Google Scholar 

  85. Abdal Kadir NJ, Ahmed PA, Abdul Majed SA (2014) Influence of acidic and salt media on the corrosion behavior of aluminum matrix composites reinforced by Al2O3 particles. Eng &Tech 32(10):2351–2363

    Google Scholar 

  86. Luo Y, Wang X, Wei Guo W, Rohwerder M (2015) Growth behavior of initial product layer formed on mg alloy surface induced by polyaniline. J Electrochem Soc 162(6):C294–C301

    Article  Google Scholar 

  87. Cinderey RJ, Burstein GT (1992) The effects of chromate on the transient repassivation potential of aluminium in chloride solution. Corros Sci 33(3):493–498

    Article  Google Scholar 

  88. Dong ZH, Shi W, Zhang GA, Guo XP (2011) The role of inhibitors on the repassivation of pitting corrosion of carbon steel in synthetic carbonated concrete pore solution. Electrochim Acta 56:5890–5897

    Article  Google Scholar 

  89. Virtanen S (2012) Degradation of implant materials. Springer, New York, p 29

    Book  Google Scholar 

  90. Rundora NR, Van der Merwe JW, Klenam DEP, Bodunrin MO (2023) Enhanced corrosion performance of low-cost titanium alloys in a simulated diabetic environment. Mater Corros. https://doi.org/10.1002/maco.202313927

  91. Mishra AK, Balasubramaniam R, Tiwari S (2007) Corrosion inhibition of 6061-SiC by rare earth chlorides. Anti-Corros Methods Mater 54:37–46

    Article  Google Scholar 

  92. Reena Kumari PD, Nayak J, Nityananda Shetty A (2011) Corrosion behavior of 6061/Al-15 vol. pct. SiC(p) composite and the base alloy in sodium hydroxide solution. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2011.12.003

  93. Alaneme KK (2011) Corrosion behaviour of heat-treated Al-6063/SiCp composites immersed in 5 wt%. NaCl solution Leonardo J Sci 18:55–64

    Google Scholar 

  94. Akinwamide SO, Tshabalala N, Falodun OE, Oke SR, Akinribide OJ, Abe BT, Olubambi PA (2019) Microstructural and corrosion resistance study of sintered Al-tin in sodium chloride solution. Mater. Today: Proc. 18:2881–2886

    Google Scholar 

  95. Chen J, Qin Z, Martino T, Shoesmith DW (2017) Effect of chloride on Cu corrosion in anaerobic sulphide solutions. Corros Eng Sci Technol 52(1):40–44. https://doi.org/10.1080/1478422X.2016.1271161

    Article  Google Scholar 

  96. Bhaskaran G, Carcea A, Ulaganathan J, Wang S, Huang Y, Newman RC (2013) Fundamental aspects of stress corrosion cracking of copper relevant to the Swedish deep geologic repository concept, Technical Report TR-12-06. Swedish Nuclear Fuel and Waste Management Co., Stockholm https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/129/44129368.pdf?r=1

    Google Scholar 

  97. Sullivan JP, Barbour JC, Missert NA, Copeland RG, Mayer TM, Campin MJ (2004) The effects of varying humidity on copper sulfide film formation, SAND REPORT SAND2004-0670. Sandia National Laboratories https://www.osti.gov/servlets/purl/918785

    Google Scholar 

  98. Stenlid JH, Campos dos Santos E, Johansson AJ, LGM P (2021) Properties of interfaces between copper and copper sulphide/oxide films. Corros Sci 183:109313. https://doi.org/10.1016/j.corsci.2021.109313

    Article  Google Scholar 

  99. Kaleva A, Tassaing T, Saarimaa V, Le Bourdon G, Väisänen P, Markkula A, Levänen E (2020) Formation of corrosion products on zinc in wet supercritical and subcritical CO2: in-situ spectroscopic study. Corros Sci 174:108850. https://doi.org/10.1016/j.corsci.2020.108850

    Article  Google Scholar 

  100. Adeloju S, Duan YY (1994) Corrosion resistance of CU2O and CuO on copper surfaces in aqueous media. Bri Corr J 29:4. https://doi.org/10.1179/000705994798267485

    Article  Google Scholar 

  101. Wang Y, Li L, Wang M, Tan H, Zhang S (2021) Effect of ZnS/PbS deposits on high temperature corrosion of waterwall tubes in reducing atmosphere. Fuel Process Techno 216:106793. https://doi.org/10.1016/j.fuproc.2021.106793

    Article  Google Scholar 

  102. Shikama T, Sakai Y, Okada M (1986) Silicon oxide coatings as protection against corrosion. Thin Solid Films 145(1):89–97. https://doi.org/10.1016/0040-6090(86)90255-5

    Article  Google Scholar 

  103. Zhang Y, Xiao J, Zhang Y, Liu W, Pei W, Zhao A, Zhang W, Zeng L (2021) The study on corrosion behavior and corrosion resistance of ultralow carbon high silicon iron-based alloy. Mater. Res. Express 8:026504. https://doi.org/10.1088/2053-1591/abdc52

    Article  Google Scholar 

  104. Moretti G, Guidi F, Canton R, Battagliarin M, Rossetto G (2005) Corrosion protection and mechanical performance of SiO2 films deposited via PECVD on OT59 brass. Anti-Corros Methods Mater 52(5):266–275. https://doi.org/10.1108/00035590510615758

    Article  Google Scholar 

  105. Osorio-Celestino GR, Hernandez M, Solis-Ibarra D, Tehuacanero-Cuapa S, Rodríguez-Gómez A, Gómora-Figueroa AP (2020) Influence of calcium scaling on corrosion behavior of steel and aluminum alloys. ACS Omega 8(28):17304–17313

    Article  Google Scholar 

  106. Bell WA (1962) Effect of calcium carbonate on corrosion of aluminium in waters containing chloride and copper. J Appl Chem 12(2):53–55. https://doi.org/10.1002/jctb.5010120201

    Article  Google Scholar 

  107. Ekuma CE, Idenyi NE, Ossi CD (2007) The effects of manganese addition on the corrosion susceptibility of cast alumunium alloy in acidic environment. Trends Appl Sci Res 2(2):170–174

    Article  Google Scholar 

  108. Hajšman J, Kučerová L, Karolína Burdová K (2021) The influence of varying aluminium and manganese content on the corrosion resistance and mechanical properties of high strength steels. Metals 11(9):1446. https://doi.org/10.3390/met11091446

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the institutional support of Covenant University towards the success of the research.

Author information

Authors and Affiliations

Authors

Contributions

Roland Tolulope Loto is responsible for supervision; conceptualization; and writing—original draft preparation. Ademola Ogunleye, Adeniyi Oladipupo, Sonia Ofordum, and Abisola Ale are responsible for visualization; investigation; validation; methodology; data curation; and writing—original draft preparation

Corresponding author

Correspondence to Roland Tolulope Loto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loto, R.T., Ogunleye, A., Oladipupo, A. et al. Comparative analysis of the corrosion resistance of Bos taurus and Cocos nucifera–reinforced 1170 aluminum alloy in chloride-sulfate solution. Int J Adv Manuf Technol 129, 2031–2047 (2023). https://doi.org/10.1007/s00170-023-12419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12419-5

Keywords

Navigation