Skip to main content
Log in

Corrosion Characteristics of AZ31-B4C Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this research, influence of boron carbide (B4C) particles on the corrosion behavior of magnesium metal matrix composite is examined. AZ31-B4C composites are fabricated through ultrasonic vibration-assisted stir casting process by reinforcing varying amount of boron carbide (0.5–2 wt.%) in AZ31 alloy. Characterizations of the composites are carried out using optical microscope , scanning electron microscope (SEM) and energy-dispersive spectroscope (EDS). The optical images show equiaxed orientation of grains in fabricated composites. SEM analysis confirms uniform distribution of reinforcement particles in composites. EDAX result confirms the inclusion of B4C particles in the Mg matrix. The microhardness of all composites and base alloy is measured using Vickers’s microhardness tester. Microhardness values are found to be increased with increase in wt.% of B4C nanoparticles. Electrochemical corrosion tests are carried out on AZ31-B4C metal matrix composites in 3.5% NaCl solution. AZ31-1B4C composite is found to be the most corrosion-resistant material among tested materials. Furthermore, corrosion morphology of samples is scrutinized under SEM and EDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alvarez R B, Martin H J, Horstemeyer M F, Chandler M Q, Williams N, Wang P T, and Ruiz A, Corros Sci 52 (2010) 1635. https://doi.org/10.1016/j.corsci.2010.01.018.

    Article  CAS  Google Scholar 

  2. Kulekci M M, Int J Adv Manuf Technol 39 (2008) 851. https://doi.org/10.1007/s00170-007-1279-2.

    Article  Google Scholar 

  3. Avedesian M M, and Baker H, Magnesium and Magnesium Alloys, ASM International, 1999, ASM Speciality Handbook. ISBN: 978–0–87170–657–7.

  4. Makar G L, and Kruger J, Int Mater Rev 38 (1993) 138. https://doi.org/10.1179/imr.1993.38.3.138.

    Article  CAS  Google Scholar 

  5. Esmaily M, Svensson JE, Fajardo S, Birbilis N, Frankel GS, Virtanen S, and Johansson LG, Progress Mater Sci 89 (2017) 92. https://doi.org/10.1016/j.pmatsci.2017.04.011.

    Article  CAS  Google Scholar 

  6. Endo M, Hayashi T, Itoh I, Kim Y A, Shimamoto D, Muramatsu H, and Koide S, Appl Phys Lett 92 (2008) 063105. https://doi.org/10.1063/1.2842411.

    Article  CAS  Google Scholar 

  7. Titarmare V, Banerjee S, and Sahoo P, Mater Today: Proc (2021). https://doi.org/10.1016/j.matpr.2021.10.373.

    Article  Google Scholar 

  8. Esmaily M, Mortazavi N, Svensson J E, Halvarsson M, Jarfors, A E, Wessén M, Arrabal R, and Johansson L G, Mater Chem Phys 180 (2016) 29. https://doi.org/10.1016/j.matchemphys.2016.05.016.

    Article  CAS  Google Scholar 

  9. Chandrashekar A, Mohanavel V, Kaladgin A R, Kumar V, Ravichandran M, Arunkumar G L, and Basheer D, Surf Topogr Metrol Prop 9 (2021) 045046. https://doi.org/10.1088/2051-672x/ac41ff.

    Article  Google Scholar 

  10. Rahmani K, Majzoobi G H, Bakhtiari H, and Sadooghi A, Mater Chem Phys 271 (2021) 124946. https://doi.org/10.1016/j.matchemphys.2021.124946.

    Article  CAS  Google Scholar 

  11. Falcon L A, Bedolla B E, Lemus J, Leon C, Rosales I, and Gonzalez-Rodriguez J G, Int J Corros 2011 (2011) 896845. https://doi.org/10.1155/2011/896845.

    Article  CAS  Google Scholar 

  12. Mindivan H, Efe A, Kosatepe A H, and Kayali E S, Appl Surf Sci 318 (2014) 234. https://doi.org/10.1016/j.apsusc.2014.04.127.

    Article  CAS  Google Scholar 

  13. Raghav G R, Balaji, A N, Muthukrishnan D, Sruthi V, and Sajith E, Mater Res Express 5 (2018) 066523. https://doi.org/10.1088/2053-9591/aac862.

    Article  Google Scholar 

  14. Banerjee S, Sahoo P, and Davim J P, Adv Mech Eng, 13(2021) 16878140211009025. https://doi.org/10.1177/16878140211009025.

    Article  CAS  Google Scholar 

  15. Prema C E, Suresh S, Ramanan G, and Sivaraj M, Mater Res Express 7 (2020) 016524. https://doi.org/10.1088/2053-1591/ab6257.

    Article  CAS  Google Scholar 

  16. Toptan F, Rego A, Alves A C, and Guedes A, J Mech Behav Biomed Mater 152-163 (2016) 61. https://doi.org/10.1016/j.jmbbm.2016.01.024.

    Article  CAS  Google Scholar 

  17. Casati R, and Vedani M, Metals 4 (2014) 65. https://doi.org/10.3390/met4010065.

    Article  CAS  Google Scholar 

  18. Tiwari S, Balasubramaniam R, and Gupta M, Corros Sci49 (2007) 711. https://doi.org/10.1016/j.corsci.2006.05.047.

    Article  CAS  Google Scholar 

  19. Turan M E, Sun Y, Akgul Y, Turen Y, and Ahlatci H, J Alloy Compd 724 (2017) 14. https://doi.org/10.1016/j.jallcom.2017.07.022.

    Article  CAS  Google Scholar 

  20. Hihara L H, and Kondepudi P K, Corros Sci 34 (1993) 1761. https://doi.org/10.1016/0010-938X(93)90014-8.

    Article  CAS  Google Scholar 

  21. Nunez-Lopez C A, Skeldon P, Thompson G E, Lyon P, Karimzadeh H, and Wilks T E, Corros Sci37 (1995) 689. https://doi.org/10.1016/0010-938X(95)80003-4.

    Article  CAS  Google Scholar 

  22. Zucchi F, Trabanelli G, Grassi V, and Frignani A, Corrosion 60 (2004), 362. https://doi.org/10.5006/1.3287744.

    Article  CAS  Google Scholar 

  23. Chan W M, Cheng F T, Leung L K, Horylev R J and Yue T M, Corrosion behavior of magnesium alloy AZ91 and its MMC in NaCl solution. In Corrosion97. NACE-97441. (1997) https://doi.org/10.1007/s00339-017-1118-8.

  24. Nunez-Lopez C A, Habazaki H, Skeldon P, Thompson G E, Karimzadeh H, Lyon P, and Wilks TE, Corros Sci 38 (1996)1721. https://doi.org/10.1016/S0010-938X(96)00068-6.

    Article  CAS  Google Scholar 

  25. Ma X L, Dong L H, and Wang X, Mater Des 305-312 (2014) 56. https://doi.org/10.1016/j.matdes.2013.11.041.

    Article  CAS  Google Scholar 

  26. Banerjee S, Poria S, Sutradhar G, and Sahoo P, J Magnes Alloy 7 (2019) 681. https://doi.org/10.1016/j.jma.2019.07.004.

    Article  CAS  Google Scholar 

  27. Pardo A, Merino M, Coy A E, Viejo F, Arrabal R, and Feliú Jr S, Electrochim Acta 53 (2008) 7890. https://doi.org/10.1016/j.electacta.2008.06.001.

    Article  CAS  Google Scholar 

  28. Endo M, Hayashi T, Itoh I, Kim Y A, Shimamoto D, Muramatsu H, Shimizu Y, Morimoto S, Terrones M, Iinou S, and Koide S, Appl Phys Lett 92 (2008) 063105. https://doi.org/10.1063/1.2842411.

    Article  CAS  Google Scholar 

  29. Ganguly S, Mondal A K, Sarkar S, Basu A, Kumar S, and Blawert C, Corros Sci 166 (2020) 108444. https://doi.org/10.1016/j.corsci.2020.108444.

    Article  CAS  Google Scholar 

  30. Banerjee S, Poria S, Sutradhar G, and Sahoo P, IInt J Metal Cast 15 (2021) 1058. https://doi.org/10.1007/s40962-020-00538-8.

    Article  CAS  Google Scholar 

  31. Rashad M, Pan F, Asif M, and Chen X, J Magnes Alloy 5 (2017) 271. https://doi.org/10.1016/j.jma.2017.06.003.

    Article  CAS  Google Scholar 

  32. Turhan M C, Li Q, Jha H, Singer R F, and Virtanen S, Electrochim Acta 56 (2011) 7141. https://doi.org/10.1016/j.electacta.2011.05.082.

    Article  CAS  Google Scholar 

  33. Pathak S S, Blanton M D, Mendon S K, and Rawlins J W, Corros Sci 52 (2010) 1453. https://doi.org/10.1016/j.corsci.2009.11.032.

    Article  CAS  Google Scholar 

  34. Song G L, and Gannon P E,  Magnesium Technology Springer, Cham (2016), pp 285-290. https://doi.org/10.1007/978-3-319-48114-2_56.

    Chapter  Google Scholar 

  35. Turhan M C, Li Q, Jha H, Singer R F, and Virtanen S, Electrochim Acta 56 (2011) 7141. https://doi.org/10.1016/j.electacta.2011.05.082.

    Article  CAS  Google Scholar 

  36. Thirumalaikumarasamy D, Shanmugam K, and Balasubramanian V, J Magnes Alloy 2 (2014) 36. https://doi.org/10.1016/j.jma.2014.01.004.

    Article  CAS  Google Scholar 

  37. Wang Y, Wei M, Gao J, Hu J, and Zhang Y, Mater Lett 62 (2008) 2181. https://doi.org/10.1016/j.matlet.2007.11.045.

    Article  CAS  Google Scholar 

  38. Bakhsheshi-Rad H R, Hamzah E, Tok H Y, Kasiri-Asgarani M, Jabbarzare S, and Medraj M, J Mater Eng Perform 26 (2017) 653. https://doi.org/10.1007/s11665-016-2499-0.

    Article  CAS  Google Scholar 

  39. Kavimani V, Soorya Prakash K, and Arun Pandian M, Appl Phys A, 123 (2017) 1. https://doi.org/10.1007/s00339-017-1118-8.

    Article  CAS  Google Scholar 

  40. Ascencio M, Pekguleryuz M, and Omanovic S, Corros Sci 87 (2014) 489. https://doi.org/10.1016/j.corsci.2014.07.015.

    Article  CAS  Google Scholar 

  41. Banerjee S, Sarkar P, and Sahoo P, Improving corrosion resistance of magnesium nanocomposites by using electroless nickel coatings. Facta Universitatis, Series: Mechanical Engineering, (2021) Retrieved from http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/view/7833.

Download references

Acknowledgements

This paper was presented in TRIBOINDIA2021 with Abstract ID TI21036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titarmare, V.P., Banerjee, S. & Sahoo, P. Corrosion Characteristics of AZ31-B4C Composites. Trans Indian Inst Met 76, 2445–2461 (2023). https://doi.org/10.1007/s12666-022-02709-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02709-z

Keywords

Navigation