Skip to main content
Log in

Development of microstructure simulation methods of laser cladding layer

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser cladding is a new additive manufacturing technology that has emerged in recent years. It offers the advantages of a dense cladding layer structure and good bonding with the substrate, making it suitable for repairing parts surfaces and with broad application prospects. Mechanical properties are key performance indicators of the cladding layer. However, the small size and inhomogeneous structure of the cladding layer make it difficult to prepare mechanical properties tests. The microstructure is a key factor affecting the mechanical properties of the cladding layer. Therefore, it is urgent to carry out research on microstructure simulation of the laser cladding layer in order to obtain its mechanical properties. This paper provides a summary of the commonly used microstructure simulation methods, including the research achievements of phase field method, Monte Carlo (MC) method, and cellular automaton (CA) method in the microstructural simulation of laser cladding and metal solidification. The existing problems are analyzed, and the future development direction of this field is forecasted. The phase field method has high accuracy in its simulation results and does not require complex solid–liquid interface tracking, but its solution is complex, and its calculation efficiency is low due to the large calculation amount. The MC method is relatively simple to calculate and does not assume specific grains, but lacks physical basis for the quantitative analysis of the impact of various physical phenomena. The CA method is a commonly used microstructure simulation method with clear physical significance, high computational efficiency, and low cost and has broad prospects for development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  Google Scholar 

  2. Debroy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De Zhang AW (2018) Additive manufacturing of metallic components-process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  3. Liu Y, Dong LH, Wang HD (2019) Research progress on anisotropic characterization of laser cladding molding. Mater Rep 33(21):3541–3546. https://doi.org/10.11896/cldb.18080072

    Article  Google Scholar 

  4. Zhang PR (2018) On surface integrity and corrosion resistance of laser cladded Cr/Ni alloy finished by hybrid turning and burnishing. Dissertation, Shandong University. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C447WN1SO36whLpCgh0R0Z-iTEMuTidDzndci_h58Y6ouVstTMpqNV4P2MTF4MbEEKnXyqBOyxdfE5ouABm7-Zsb&uniplatform=NZKPT. Accessed 5 Mar 2018

  5. Li SC, Mo B, Xiao G, Sun FJ (2021) Microstructure characteristics and their influence factors during laser additive manufacturing of metal materials. Laser Optoelectron P 58(1):100007–1. https://doi.org/10.3788/LOP202158.0100007

    Article  Google Scholar 

  6. Ao XH, Liu JH, Xia HX, He QY, Ren C (2022) A review of meso-micro modeling and simulation methods of selective laser melting process. J Mech Eng 58(5):239–257. https://doi.org/10.3901/JME.2022.05.239

    Article  Google Scholar 

  7. Ren X, Dou CY, Gao ZY, Zhuang D, Qi PT, He W (2021) Research progress of numerical simulation in heat treatment. Mater Rep 35(19):19186–19194. https://doi.org/10.11896/cldb.20060193

    Article  Google Scholar 

  8. Zhou YX (2010) Simulation study on microstructure of nano-composite ceramic tool materials by phase-field method. Dissertation, Shandong University. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAk0Wn9WGrcQB-4K-VdUhdGdP3aPmPDOApDPEFjDoTp-RuEQvLIJpTaXShaDYo9OHYY&uniplatform=NZKPT. Accessed 20 Apr 2010

  9. Li QD (2012) Simulation of the microstructure evolution of pure metal during laser cladding using phase-field method. Dissertation, Hunan University. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkVR3-_UaYGQCi3Eil_xtLbzQR0YeeHDojEl8L1L7aJTJ5XyS2V9w69dNOrKa769oY&uniplatform=NZKPT. Accessed 10 Apr 2012

  10. Sun DJ, Liu JC, Li QD (2013) Phase-field method simulation of microstructure evolution at the bottom of melt pool in coaxial laser cladding. Chin J Lasers 40(4):0403005. https://doi.org/10.3788/CJL201340.0403005

    Article  Google Scholar 

  11. Keller T, Lindwall G, Ghosh S, Ma L, Lane BM, Zhang F, Kattner UR, Lass EA, Heigel JC, Idell Y, Williams ME, Allen AJ, Guyer JE, Levine LE (2017) Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater 139:244–253. https://doi.org/10.1016/j.actamat.2017.05.003

    Article  Google Scholar 

  12. Wang XQ, Chou K (2019) Microstructure simulations of Inconel 718 during selective laser melting using a phase field model. Int J Adv Manuf Tech 100(9):2147–2162

    Article  Google Scholar 

  13. Radhakrishnan B, Gorti SB, Turner JA, Acharya R, Sharon JA, Staroselsky A, El-Wardany T (2018) Phase field simulations of microstructure evolution in IN718 using a surrogate Ni–Fe–Nb alloy during laser powder bed fusion. Metals-Basel 9(1):14. https://doi.org/10.3390/met9010014

    Article  Google Scholar 

  14. Jabbareh MA, Assadi H (2021) Modelling of microstructure evolution during laser processing of intermetallic containing Ni-Al alloys. Metals-Basel 11(7):1051. https://doi.org/10.3390/met11071051

    Article  Google Scholar 

  15. Hu WY, Chen CL (2007) Optimization of parameters related to dendritic growth in pure metal by phase-field method. Spec Cast Nonferrous Alloys 27(3):182–184. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7aLpFYbsPrqEj1nz59gXZ-uCwunyrc4sg4gZRxMcgTGJpRUnZTXirl_Mj0hHafOaP&uniplatform=NZKPT. Accessed Mar 2007

  16. Kellner M, Sprenger I, Steinmetz P, Hötzer J, Nestler B, Heilmaier M (2017) Phase-field simulation of the microstructure evolution in the eutectic NiAl-34Cr system. Comp Mater Sci 128:379–387. https://doi.org/10.1016/j.commatsci.2016.11.049

    Article  Google Scholar 

  17. Nandy J, Sarangi H, Sahoo S (2018) Microstructure evolution of Al-Si-10Mg in direct metal laser sintering using phase-field modeling. Adv Manuf 6(1):107–117. https://doi.org/10.1007/s40436-018-0213-1

    Article  Google Scholar 

  18. Nandy J, Sarangi H, Sahoo S (2017) Modeling of microstructure evolution in direct metal laser sintering: a phase field approach. IOP Conf Ser: Mater Sci Eng 178(1):012028. https://doi.org/10.1088/1757-899X/178/1/012028

    Article  Google Scholar 

  19. Xiong LD, Zhu GL, Mi GY, Wang CM, Jiang P (2021) A phase-field simulation of columnar-to-equiaxed transition in the entire laser welding molten pool. J Alloy Compd 858:157669. https://doi.org/10.1016/j.jallcom.2020.157669

    Article  Google Scholar 

  20. Azizi H, Ebrahimi A, Ofori-Opoku N, Greenwood M, Provatas N, Mohammadi M (2021) Characterizing the microstructural effect of build direction during solidification of laser-powder bed fusion of Al-Si alloys in the dilute limit: a phase-field study. Acta Mater 214:116983. https://doi.org/10.1016/j.actamat.2021.116983

    Article  Google Scholar 

  21. Zhang GY, Jing T, Liu BC (2002) Simulation of dendritic growth morphology of aluminum alloy using phase field method. Chin J of Nonferrous Met 12(5):875–877 https://doi.org/10.19476/j.ysxb.1004.0609.2002.05.004

    Google Scholar 

  22. Qin RS, Wallach ER, Thomson RC (2005) A phase-field model for the solidification of multicomponent and multiphase alloys. J Cryst Growth 279(1–2):163–169. https://doi.org/10.1016/j.jcrysgro.2005.02.005

    Article  Google Scholar 

  23. Liu H, Nie JF (2017) Phase field simulation of microstructures of Mg and Al alloys. Mater Sci Tech-Lond 33(18):2159–2172. https://doi.org/10.1080/02670836.2017.1375749

    Article  Google Scholar 

  24. Zhao YH, Zhang B, Hou H, Chen WP, Wang M (2019) Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process. J Mater Sci Technol 35(6):1044–1052. https://doi.org/10.1016/j.jmst.2018.12.009

    Article  Google Scholar 

  25. Wang L, Wang KH (2019) Investigation on microstructural patterns and hot crack in the molten pool via integrated finite-element and phase-field modeling. J Manuf Process 48:191–198. https://doi.org/10.1016/j.jmapro.2019.11.010

    Article  Google Scholar 

  26. Pirhayati P, Aval HJ (2020) Phase-field microstructure simulation during aluminum alloy friction surfacing. Surf Coat Tech 402:126496. https://doi.org/10.1016/j.surfcoat.2020.126496

    Article  Google Scholar 

  27. Yang M, Wang L, Yan WT (2021) Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. Npj Comput Mater 7(1):1–12. https://doi.org/10.1038/s41524-021-00524-6

    Article  Google Scholar 

  28. Zhang J, Wu LM, Zhang Y, Meng LB (2019) Phase field simulation of dendritic microstructure in additively manufactured titanium alloy. Met Powder Rep 74(1):20–24. https://doi.org/10.1016/j.mprp.2018.11.001

    Article  Google Scholar 

  29. Wang KF, Zhang JZ, Mi GF, Sun RX (2009) Development of simulation and study on Monte Carlo method for grain growth. Hot Work Technol (10):101–104. https://doi.org/10.14158/j.cnki.1001-3814.2009.10.056

  30. Xiao JL (2006) 3D simulation of grain growth in welding heat-affected zone by Monte Carlo technique. Dissertation, Harbin Institute of Technology. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4h_jQYuCnj_co8vp4jCXSivDpWurecxFtGfJ8rpRFPtsbCAdtSNHgkKMSRALbEZWay1JO9WtjjJB&uniplatform=NZKPT. Accessed Jun 2006

  31. Li W, Soshi M (2019) Modeling analysis of grain morphologies in directed energy deposition (DED) coating with different laser scanning patterns. Mater Lett 251:8–12. https://doi.org/10.1016/j.matlet.2019.05.027

    Article  Google Scholar 

  32. Li W, Soshi M (2019) Modeling analysis of the effect of laser transverse speed on grain morphology during directed energy deposition process. Int J Adv Manuf Tech 103(9):3279–3291. https://doi.org/10.1007/s00170-019-03690-6

    Article  Google Scholar 

  33. Rodgers TM, Madison JD, Tikare V (2017) Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comp Mater Sci 135:78–89. https://doi.org/10.1016/j.commatsci.2017.03.053

    Article  Google Scholar 

  34. Rodgers TM, Moser D, Abdeljawad F, Jackson ODU, Carroll JD, Jared BH, Bolintineanu DS, Mitchell JA, Madison JD (2021) Simulation of powder bed metal additive manufacturing microstructures with coupled finite difference-Monte Carlo method. Addit Manuf 41:101953. https://doi.org/10.1016/j.addma.2021.101953

    Article  Google Scholar 

  35. Sun ZJ, Tan XP, Tor SB, Chua CK (2018) Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater 10(4):127–136. https://doi.org/10.1038/s41427-018-0018-5

    Article  Google Scholar 

  36. Zhang Z, Tan ZJ, Yao XX, Hu CP, Ge P, Wan ZY, Li JY, Wu Q (2019) Numerical methods for microstructural evolutions in laser additive manufacturing. Comput Math Appl 78(7):2296–2307. https://doi.org/10.1016/j.camwa.2018.07.011

    Article  MathSciNet  MATH  Google Scholar 

  37. Ge P, Zhang Z, Tan ZJ, Hu CP, Zhao GZ, Guo X (2019) An integrated modeling of process-structure-property relationship in laser additive manufacturing of duplex titanium alloy. Int J Therm Sci 140:329–343. https://doi.org/10.1016/j.ijthermalsci.2019.03.013

    Article  Google Scholar 

  38. Sunny S, Yu HL, Mathews R, Malik A, Li W (2021) Improved grain structure prediction in metal additive manufacturing using a dynamic kinetic Monte Carlo framework. Addit Manuf 37:101649. https://doi.org/10.1016/j.addma.2020.101649

    Article  Google Scholar 

  39. Pauza J, Rollett A (2021) Simulation study of hatch spacing and layer thickness effects on microstructure in laser powder bed fusion additive manufacturing using a texture-aware solidification Potts model. J Mater Eng Perform 30(9):7007–7018. https://doi.org/10.1007/s11665-021-06110-7

    Article  Google Scholar 

  40. Liu S, Tian ZJ, Shen LD, Qiu MB, Gao XS (2021) Monte Carlo simulation of ceramic grain growth during laser ablation processing. Optik 227:165569. https://doi.org/10.1016/j.ijleo.2020.165569

    Article  Google Scholar 

  41. Liu S, Tian ZJ, Gao XS, Xie DQ (2020) Monte Carlo simulation of grain growth during laser ablation. Acta Phys Pol A 138(6). https://doi.org/10.12693/APhysPolA.138.819

  42. Hu KT, Qiu ST, Zhang H, Zhang XZ, Gan Y (2004) Computer simulation of solidification structure in continuous casting slab by Monte Carlo method. J Iron Steel Res 16(2):27–32. https://doi.org/10.13228/j.boyuan.issn1001-0963.2004.02.007

    Google Scholar 

  43. Rodgers TM, Mitchell JA, Tikare V (2017) A Monte Carlo model for 3D grain evolution during welding. Model Simul Mater Sc 25(6):064006. https://doi.org/10.1088/1361-651X/aa7f20

    Article  Google Scholar 

  44. He Y (2021) Prediction of recrystallized grain size during hot deformation of AZ31 magnesium alloy by Monte Carlo method. IOP Conf Series: Earth Environ Sci 742(1):012004. https://doi.org/10.1088/1755-1315/742/1/012004

    Article  Google Scholar 

  45. Chen F, Cui ZS, Dong DQ (2015) Research progress in cellular automaton simulation of microstructure evolution. J Mech Eng 51(4):30–39. https://doi.org/10.3901/JME.2015.04.030

    Article  Google Scholar 

  46. Gao Y (2016) Simulation of primary crystal structure and morphology for aluminum spot welded nugget. Dissertation, Nanjing University of Aeronautics and Astronautics. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkkyu7xrzFWukWIylgpWWcEhPMSlWFt9ibR2QDtDk0OQvB_wX4hE0Y9xFm6TMuRM-a&uniplatform=NZKPT. Accessed Mar 2016

  47. Wei L, Lin X, Wang M, Huang WD (2015) Cellular automaton simulation of the molten pool of laser solid forming process. Acta Phys Sin 64(1):018103. https://doi.org/10.7498/aps.64.018103

    Article  Google Scholar 

  48. Wei L, Cao YQ, Yang HO, Lin X, Wang M, Huang WD (2018) Numerical simulation of anomalous eutectic growth of Ni-Sn alloy under laser remelting of powder bed. Acta Metall Sin 54(12):1801–1808. https://doi.org/10.11900/0412.1961.2018.00139

    Article  Google Scholar 

  49. Zhan XH, Lin X, Gao ZN, Qi CQ, Zhou JJ, Gu DD (2018) Modeling and simulation of the columnar-to-equiaxed transition during laser melting deposition of Invar alloy. J Alloy Compd 755:123–134. https://doi.org/10.1016/j.jallcom.2018.04.313

    Article  Google Scholar 

  50. Shin YC, Bailey N, Katinas C, Tan WD (2018) Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition. Comput Mech 61(5):617–636. https://doi.org/10.1007/s00466-018-1545-1

    Article  MATH  Google Scholar 

  51. Tan WD, Li XX (2017) Numerical modeling of grain growth in laser engineered net shaping (LENS) of AISI 316 stainless steel. Int Manuf Sci Eng Conf 50732:V002T01A004. https://doi.org/10.1115/MSEC2017-2873

    Article  Google Scholar 

  52. Li XX, Tan WD (2018) Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing. Comp Mater Sci 153:159–169. https://doi.org/10.1016/j.commatsci.2018.06.019

    Article  Google Scholar 

  53. Gerstgrasser M, Jakob R, Pandya KS, Stirnimann J, Wegener K (2021) CA single track microstructure simulation of nickel base alloy CM247LC and stainless steel S316L, including experimental validation of S316L. Mater Design 199:109395. https://doi.org/10.1016/j.matdes.2020.109395

    Article  Google Scholar 

  54. Wang WL, Shi Q, Zhu X, Liu YH (2021) Numerical simulation of microstructure evolution in solidification process of ferritic stainless steel with cellular automaton. Crystals 11(3):309. https://doi.org/10.3390/cryst11030309

    Article  Google Scholar 

  55. Yu J, Xu QY, Cui K, Liu BC (2007) Numerical simulation of microstructure evolution based on a modified CA method. Acta Metall Sin 43(7):731–738. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7aLpFYbsPrqHctzOmE-iXsXWqtAiptzMEef8VKoZyfvNf2KLod2q-7-MtmIN3dLrD&uniplatform=NZKPT. Accessed Jul 2007

  56. Lian YP, Gan ZT, Yu C, Kats D, Liu WK, Wagner GJ (2019) A cellular automaton finite volume method for microstructure evolution during additive manufacturing. Mater Design 169:107672. https://doi.org/10.1016/j.matdes.2019.107672

    Article  Google Scholar 

  57. Qi HB, Zhang YH, Feng XF, Han RH, Wu D (2020) Simulation of solidification microstructure evolution in laser addition manufacturing of multicomponent alloy. Trans China Weld Inst 41(5):71–77. https://doi.org/10.12073/j.hjxb.20190823001

    Article  Google Scholar 

  58. Chai Q, Fang C, Hu JY, Xing Y, Huang DL (2020) Cellular automaton model for the simulation of laser cladding profile of metal alloys. Mater Design 195:109033. https://doi.org/10.1016/j.matdes.2020.109033

    Article  Google Scholar 

  59. Chai Q, Wang ZD, Fang C, Xing Y, Qiu XL, Zhou ZF (2021) Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding. Surf Coat Tech 422:127494. https://doi.org/10.1016/j.surfcoat.2021.127494

    Article  Google Scholar 

  60. Li B, Xu QY, Pan D, Liu BC, Xiong YC, Zhou YJ, Hong RZ (2008) Microstructure simulation of Zl114A alloy during low pressure die casting process. Acta Metall Sin 44(2):243–248. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7VSL-HJEdEx29VoC98HN8AAeuHxbPMqYtpmVHVeUnhu1Gh0uE1p2VDKWa4hS3BbMN&uniplatform=NZKPT. Accessed Feb 2008

  61. Yu YF, Li Y, Lin F, Yan WT (2021) A multi-grid cellular automaton model for simulating dendrite growth and its application in additive manufacturing. Addit Manuf 47:102284. https://doi.org/10.1016/j.addma.2021.102284

    Article  Google Scholar 

  62. Li H, Wang XB, Yu TB, Su PC, Wang WS (2013) 3D modeling and forming mechanism of Ti metallic powder via laser rapid prototyping. J Tsinghua Univ, Sci Technol (2):155–159. https://doi.org/10.16511/j.cnki.qhdxxb.2013.02.008

  63. Zhang M, Zhou YL, Xue Q, Li JH (2018) Numerical simulation of solidification process of Ti-45Al alloy weld pool. Trans Chin Weld Inst 39(3):6–10. https://doi.org/10.12073/j.hjxb.2018390058

    Article  Google Scholar 

  64. Xiong FY, Huang CY, Kafka OL, Lian YP, Yan WT, Chen MJ, Fang DN (2021) Grain growth prediction in selective electron beam melting of Ti-6Al-4V with a cellular automaton method. Mater Design 199:109410. https://doi.org/10.1016/j.matdes.2020.109410

    Article  Google Scholar 

  65. Shan BW, Huang WD, Lin X, Wei L (2008) Dendrite primary spacing selection simulation by the cellular automaton model. Acta Metall Sin 44(9):1042–1050. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7VSL-HJEdEx29VoC98HN8ADJziO9z1pW1wlgf_MCyN-NHIhNm1MlrweSLO9PQ10Ou&uniplatform=NZKPT. Accessed Sep 2008

  66. Zhang QY, Xue H, Tang QY, Pan SY, Rettenmayr M, Zhu MF (2018) Microstructural evolution during temperature gradient zone melting: Cellular automaton simulation and experiment. Comp Mater Sci 146:204–212. https://doi.org/10.1016/j.commatsci.2018.01.032

    Article  Google Scholar 

  67. Shi YF, Xu QY, Liu BC (2012) Simulation of eutectic growth in directional solidification by cellular automaton method. Acta Metall Sin 48(1):41–48. https://doi.org/10.3724/SP.J.1037.2011.00457

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (51875409), Tianjin Education Commission Project (2020ZD08), Tianjin Innovation Team Project (XC202051), and 2021 Tianjin Graduate Scientific Research Innovation Project (2021YJSS217).

Author information

Authors and Affiliations

Authors

Contributions

GM and GL analyzed and summarized the work of relevant literatures and wrote the manuscript. ZS, WL, and XW provided some material for the manuscript and the drawing of the picture. ML and FW reviewed the manuscript.

Corresponding author

Correspondence to Guohe Li.

Ethics declarations

Ethical approval

The authors confirm that this work does not contain any studies with human participants performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

The author grants the publisher the sole and exclusive license of the full copyright in the contribution, which license the publisher hereby accepts.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Li, G., Liu, M. et al. Development of microstructure simulation methods of laser cladding layer. Int J Adv Manuf Technol 129, 1017–1034 (2023). https://doi.org/10.1007/s00170-023-12359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12359-0

Keywords

Navigation