Skip to main content

Advertisement

Log in

Joining of dissimilar aluminum alloys AA5154 and AA2024 by cold roll bonding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Composite sheets based on aluminum alloys are of great interest for the aerospace and automotive industries. Due to the difficulty of joining dissimilar aluminum alloys by cold plastic deformation, in particular cold roll bonding (CRB), composites are more often obtained by hot roll bonding. In the present study, a novel technology to produce a promising AA5154/AA2024/AA5154 composite with strong bonding between layers was developed. Tensile shear tests, microstructural, and fractographic analyses allow one to evaluate the influence of the most important CRB parameters on the bond strength between aluminum alloys: pretreatment parameters of the surfaces to be bonded, CRB schedule, and post- and intermediate heat treatment. These factors are turned out to be crucial for the bond formation between materials. The developed technology for producing AA5154/AA2024/AA5154 composites provides a shear-bond strength value of 168 MPa, which is comparable to the shear strength value of the deformed AA2024 alloy. The present study also provides comprehensive data for the process of joining dissimilar aluminum alloys AA5154 and AA2024, which can be used for multiscale FE modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Williams JC, Starke EA (2003) Progress in structural materials for aerospace systems. Acta Mater 51:5775–5799

    Article  Google Scholar 

  2. Liu J, Li M, Sheu S, Karabin ME, Schultz RW (2008) Macro- and micro-surface engineering to improve hot roll bonding of aluminum plate and sheet. Mater Sci Eng A 479:45–57. https://doi.org/10.1016/j.msea.2007.06.022

    Article  Google Scholar 

  3. Mikloweit A, Bambach M, Pietryga M, Hirt G (2014) Development of a testing procedure to determine the bond strength in joining-by-forming processes. Adv Mat Res 966–967:481–488. https://doi.org/10.4028/www.scientific.net/AMR.966-967.481

    Article  Google Scholar 

  4. Biryukova OD, Pesin AM, Pustovoitov DO (2022) Experience in obtaining laminated aluminum composites by asymmetric accumulative roll bonding. Lett Mater 12(4):373–378. https://doi.org/10.22226/2410-3535-2022-4-373-378

    Article  Google Scholar 

  5. Roy S, Nataraj BR, Suwas S, Kumar S, Chattopadhyay K (2012) Accumulative roll bonding of aluminum alloys 2219/5086 laminates: microstructural evolution and tensile properties. Mater Des 36:529–539. https://doi.org/10.1016/j.matdes.2011.11.015

    Article  Google Scholar 

  6. Ghalehbandi SM, Malaki M, Gupta M (2019) Accumulative roll bonding—a review. Appl Sci 9:3627. https://doi.org/10.3390/app9173627

    Article  Google Scholar 

  7. Bambach M, Pietryga M, Mikloweit A, Hirt G (2014) A finite element framework for the evolution of bond strength in joining-by-forming processes. J Mater Process Technol 214:2156–2168. https://doi.org/10.1016/j.jmatprotec.2014.03.015

    Article  Google Scholar 

  8. Heydari Vini M, Sedighi M, Mondali M (2018) Investigation of bonding behavior of AA1050/AA5083 bimetallic laminates by roll bonding technique. Trans Indian Inst Met 71(9):2089–2094. https://doi.org/10.1007/s12666-017-1058-1

    Article  Google Scholar 

  9. Su L, Lu Ch, Tieu AK, Deng G, Sun X (2013) Ultrafine grained AA1050/AA6061 composite produced by accumulative roll bonding. Mater Sci Eng A 559:345–351. https://doi.org/10.1016/j.msea.2012.08.109

    Article  Google Scholar 

  10. Mo T, Chen Z, Zhou Zh, Liu J, He W, Liu Q (2021) Enhancing of mechanical properties of rolled 1100/7075 Al alloys laminated metal composite by thermomechanical treatments. Mater Sci Eng A. 800:140313

    Article  Google Scholar 

  11. Ebrahimi SHS, Dehghani K, Aghazadeh J, Ghasemian MB, Zangeneh S (2018) Investigation on microstructure and mechanical properties of Al/Al-Zn-Mg–Cu laminated composite fabricated by accumulative roll bonding (ARB) process. Mater Sci Eng A 718:311–320. https://doi.org/10.1016/j.msea.2018.01.130

    Article  Google Scholar 

  12. Rezayat M, Akbarzadeh A (2012) Bonding behavior of Al–Al2O3 laminations during roll bonding process. Mater Des 36:874–879. https://doi.org/10.1016/j.matdes.2011.08.048

    Article  Google Scholar 

  13. Hausӧl T, Hӧppel HW, Gӧken M (2010) Tailoring materials properties of UFG aluminium alloys by accumulative roll bonded sandwich-like sheets. J Mater Sci 45:4733–4738. https://doi.org/10.1007/s10853-010-4678-y

    Article  Google Scholar 

  14. Nietsch JA, Gouverneur M, Schwab C, Bailly D, Martin M, Hirt G (2022) Bonding experiments at elevated temperatures: the effect of the sample storage time on the bond strength of metals. Steel Res Int 94(1):2200462. https://doi.org/10.1002/srin.202200462.

  15. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr Mater 39(9):1221–1227

    Article  Google Scholar 

  16. Zinong T, Bing Zh, Jun J, Zhiqiang L, Jianguo L (2020) A study on the hot roll bonding of aluminum alloys. Procedia Manuf 50:56–62. https://doi.org/10.1016/j.promfg.2020.08.011

    Article  Google Scholar 

  17. Bay N (1979) Cold pressure welding—the mechanisms governing bonding. J Eng Ind 101(2):121–127. https://doi.org/10.1115/1.3439484

    Article  Google Scholar 

  18. Le HR, Sutcliffe MPF, Wang PZ, Burstein GT (2004) Surface oxide fracture in cold aluminium rolling. Acta Mater 52:911–920. https://doi.org/10.1016/j.actamat.2003.10.027

    Article  Google Scholar 

  19. Jamaati R, Toroghinejad MR (2011) The role of surface preparation parameters on cold roll bonding of aluminum strips. J Mater Eng Perform 20(2):191–197. https://doi.org/10.1007/s11665-010-9664-7

    Article  Google Scholar 

  20. Mahallawy NE, Fathy A, Abdelaziem W, Hassan M (2015) Microstructure evolution and mechanical properties of Al/Al–12%Si multilayer processed by accumulative roll bonding (ARB). Mater Sci Eng A 647:127–135. https://doi.org/10.1016/j.msea.2015.08.064

    Article  Google Scholar 

  21. Lee S-H (2020) Fabrication and evaluation of AA6061/AA5052/AA6061/AA5052 multi-layer complex sheet by cold-roll bonding process. Arch Metall Mater 65:1093–1097. https://doi.org/10.24425/amm.2020.133223

    Article  Google Scholar 

  22. Govindaraj NV, Lauvdal S, Holmedal B (2013) Tensile bond strength of cold roll bonded aluminium sheets. J Mater Process Technol 213:955–960. https://doi.org/10.1016/j.jmatprotec.2013.01.007

    Article  Google Scholar 

  23. Madaah-Hosseini HR, Kokabi AH (2002) Cold roll bonding of 5754-aluminum strips. Mater Sci Eng A 335:186–190

    Article  Google Scholar 

  24. Naseri M, Reihanian M, Borhani E (2016) A new strategy to simultaneous increase in the strength and ductility of AA2024 alloy via accumulative roll bonding (ARB). Mater Sci Eng A 656:12–20. https://doi.org/10.1016/j.msea.2016.01.020

    Article  Google Scholar 

  25. Potapov AI, Gladkovskiy SV, Kokovikhin EA, Salikhyanov DR, Dvoynikov DA (2015) Determining the plastic strain resistance of metallic materials on an automated plastometric complex. Diagn, Resour Mech Mater Struct 2:24–43. https://doi.org/10.17804/2410-9908.2015.2.024-043. (In Russian)

    Article  Google Scholar 

  26. Graf M, Henseler T, Ullmann M, Kawalla R, Prahl U, Awiszus B (2019) Study on determination of flow behaviour of 6060-aluminium and AZ31-magnesium thin sheet by means of stacked compression test. IOP Conf. Ser: Mater Sci Eng 480:012023. https://doi.org/10.1088/1757-899X/480/1/012023

    Article  Google Scholar 

  27. Gao Ch, Li L, Chen X, Zhou D, Tang C (2016) The effect of surface preparation on the bond strength of Al-St strips in CRB process. Mater Des 107:205–211. https://doi.org/10.1016/j.matdes.2016.05.112

    Article  Google Scholar 

  28. Cooper DR, Allwood JM (2014) The influence of deformation conditions in solid-state aluminium welding processes on the resulting weld strength. J Mater Process Technol 214:2576–2592. https://doi.org/10.1016/j.jmatprotec.2014.04.018

    Article  Google Scholar 

  29. Danesh Manesh H, Karimi Taheri A (2005) Theoretical and experimental investigation of cold rolling of tri-layer strip. J Mater Process Technol 166:163–172

    Article  Google Scholar 

  30. Jamaati R, Toroghinejad MR (2011) Cold roll bonding bond strengths: review. Mater Sci Technol 27(7):1101–1108. https://doi.org/10.1179/026708310X12815992418256

    Article  Google Scholar 

  31. Li L, Nagai K, Yin F (2008) Progress in cold roll bonding of metals. Sci Technol Adv Mater 9:023001. https://doi.org/10.1088/1468-6996/9/2/023001

    Article  Google Scholar 

  32. Arbo SM, Westermann I, Holmedal B (2018) Influence of stacking sequence and intermediate layer thickness in AA6082-IF steel tri-layered cold roll bonded composite sheets. Key Eng Mater 767:316–322. https://doi.org/10.4028/www.scientific.net/KEM.767.316

    Article  Google Scholar 

  33. Zhang W, Bay N (1996) A numerical model for cold welding of metals. CIRP Ann 45(1):215–220. https://doi.org/10.1016/S0007-8506(07)63050-9

    Article  Google Scholar 

  34. Wang Ch, Jiang Y, Xie J, Zhou D, Zhang X (2016) Effect of the steel sheet surface hardening state on interfacial bonding strength of embedded aluminum–steel composite sheet produced by cold roll bonding process. Mater Sci Eng A 652:51–58. https://doi.org/10.1016/j.msea.2015.11.039

    Article  Google Scholar 

  35. Akdesir M, Zhou D, Foadian F, Palkowski H (2016) Study of different surface pre-treatment methods on bonding strength of multilayer aluminum alloys/steel clad material. Int J Eng Res Sci 2(1):169–177

    Google Scholar 

  36. Salikhyanov D (2019) Contact mechanism between dissimilar materials under plastic deformation. CR Mec 347:588–600. https://doi.org/10.1016/j.crme.2019.07.002

    Article  Google Scholar 

  37. Jamaati R, Toroghinejad MR (2010) Investigation of the parameters of the cold roll bonding (CRB) process. Mater Sci Eng A 527:2320–2326. https://doi.org/10.1016/j.msea.2009.11.069

    Article  Google Scholar 

  38. Arabi H, Seyedein SH, Mehryab A, Tolaminejad B (2009) Mathematical modeling and simulation of the interface region of a tri-layer composite material, brass-steel-brass, produced by cold rolling. Int J Miner Metall Mater 16(2):189–196. https://doi.org/10.1016/S1674-4799(09)60032-7

    Article  Google Scholar 

  39. Salikhyanov D, Kamantsev I, Michurov N (2023) Technological shells in rolling processes of thin sheets from hard-to-deform materials. Article in Press, J Mater Eng Perform. https://doi.org/10.1007/s11665-023-07834-4

    Book  Google Scholar 

  40. Khaledi K, Brepols T, Reese S (2019) A multiscale description of bond formation in cold roll bonding considering periodic cracking of thin surface films. Mech Mater 137:103142. https://doi.org/10.1016/j.mechmat.2019.103142

    Article  Google Scholar 

Download references

Funding

This study was performed in the frame of grant no. 22–29-20243 “Multi-scale simulation of processes of joining dissimilar materials by plastic deformation” funded by the Russian Science Foundation (RSF) with the support of the government of the Sverdlovsk region.

Author information

Authors and Affiliations

Authors

Contributions

Denis Salikhyanov—conceptualization, methodology, experiment, investigation, and writing of original draft; Nikolay Michurov—methodology and microstructure analysis.

Corresponding author

Correspondence to Denis Salikhyanov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salikhyanov, D., Michurov, N. Joining of dissimilar aluminum alloys AA5154 and AA2024 by cold roll bonding. Int J Adv Manuf Technol 129, 255–277 (2023). https://doi.org/10.1007/s00170-023-12292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12292-2

Keywords

Navigation