Skip to main content
Log in

Grinding force prediction and surface integrity analysis of Ti-4822 alloy formed by laser-directed energy deposition

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ti-4822 TiAl alloy is a typical intermetallic compound with great potential applications in aeronautics and astronautics and is widely available to high-pressure compressors and low-pressure turbine blades of aero-engines. Laser-directed energy deposition (LDED) is appropriate to form the Ti-4822 parts with complex shapes and structures. However, the LDED Ti-4822 alloy is a typical hard-brittle and difficult machining material with a poor rough surface and thermal conductivity, leading to poor grinding surface integrity. Therefore, in order to investigate and improve the grinding performance of LDED Ti-4822 alloy, a new prediction model of grinding force was proposed based on the combination of single-grain grinding and dynamic active grains grinding simulation. The influence of grinding parameters and grinding wheel category on grinding force, grinding force ratio, grinding surface morphology, grinding debris, and microhardness of LDED Ti-4822 alloy was analyzed by the single-factor and orthogonal experiments. The experimental results demonstrated that low feed speed, small grinding depth, and high grinding speed are beneficial to reduce grinding force and surface roughness (minimum 0.19 μm). Compared with the CBN wheel, the diamond wheel is more appropriate for grinding LDED Ti-4822 alloy because of a smoother grinding surface with less defects and lower wheel wear. Significant surface hardening will be generated by grinding LDED Ti-4822 alloy. The maximum Vickers hardness can reach 776.6 HV, and the mean depth of grinding hardened layer is 20 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

F n :

Normal grinding force

F t :

Tangential grinding force

F n/F t :

Grinding force ratio

v s :

Grinding wheel speed

a p :

Grinding depth

v w :

Feeding speed

σ s :

Stress of the material

ε :

Strain of the material

σ y :

Yield stress of the material

E :

Elastic modulus

B :

Strain hardening coefficient

n :

Strain hardening exponent

λ f :

Failure parameter

ε p :

Equivalent plastic strain

ε d :

Failure plastic strain

RP:

Load application point in FEM model

d μ :

Average granulometric size of the grains

d max :

Maximum granulometric size of the grains

d min :

Minimum granulometric size of the grains

d :

Granulometric size of grains

σ :

Standard deviation

V g :

Volume content of the grains

S :

Grinding wheel organization number

L r :

Average distance of the grains

l c :

Length of the grinding contact arc

D :

Diameter of grinding wheel

b :

Grinding width of grinding wheel

N x :

Number of grains along the circumferential direction

N y :

Number of grains along the axial direction

\({\mathrm{N}}_{{\mathrm{x}}{\mathrm{y}}}\) :

Total number of the grains in the grinding zone

h max :

Maximum protrusion height of grains

a g max :

Maximum undeformed chip thickness of grains

a s :

Protrusion height of the static active grains

N s :

Number of static active grains

N d :

Number of dynamic active grains

F t p :

Tangential grinding force simulated by simulation of single-grain grinding

F np :

Normal grinding force simulated by simulation of single-grain grinding

G(d):

Matrix of the grain size in the grinding zone

G(h):

Matrix of protrusion height of the grains

G(a s):

Matrix of protrusion height of the static active grains

G(a d):

Matrix of protrusion height of the dynamic active grains

G(a g max):

Matrix of maximum undeformed chip thickness of grains

a(n)g max :

Maximum undeformed chip thickness of the nth cutting grain

max(G(a g max)):

Maximum value of the thicknesses matrix of maximum undeformed chip

\({\mathrm{a}}_{{\mathrm{g}}\mathrm{max(}{\mathrm{n}}\mathrm{)}}^{*}\) :

Maximum undeformed chip thickness of the nth static active grain

\({\mathrm{a}}_{{\mathrm{gmax}}\mathrm{(}{\mathrm{n}}\mathrm{)}}\) :

Maximum undeformed chip thickness of the nth dynamic active grain

\({\mathrm{L}}_{\mathrm{(}{\mathrm{n}}\mathrm{ }{\mathrm{n}}\mathrm{-1}\mathrm{)}}^{*}\) :

Space between the nth static active grain and the (n − 1)th dynamic active grain

\({\mathrm{L}}_{\mathrm{(}{\mathrm{n}}\mathrm{ }{\mathrm{n}}\mathrm{-1)}}\) :

Space between the nth and the (n − 1)th dynamic active grains

a s ( n ) :

Protrusion height of the nth static active grain

a d ( n ) :

Protrusion height of the nth dynamic active grain

a d ( n -1) :

Protrusion height of the (n − 1)th dynamic active grain

References

  1. Anwar S, Ahmed N, Pervaiz S, Ahmad S, Mohammad A, Saleh M (2020) On the turning of electron beam melted gamma-TiAl with coated and uncoated tools: a machinability analysis. J Mater Process Technol 282:116664. https://doi.org/10.1016/j.jmatprotec.2020.116664

    Article  Google Scholar 

  2. Janschek P (2015) Wrought TiAl blades. Mater Today: Proc 2(1):92–97. https://doi.org/10.1016/j.matpr.2015.05.024

    Article  Google Scholar 

  3. Wu X (2006) Review of alloy and process development of TiAl alloys. Intermetallics 14(10–11):1114–1122. https://doi.org/10.1016/j.intermet.2005.10.019

    Article  Google Scholar 

  4. Campbell TA, Ivanova OS (2013) 3D printing of multifunctional nanocomposites. Nano Today 8(2):119–120. https://doi.org/10.1016/j.nantod.2012.12.002

    Article  Google Scholar 

  5. Murr LE, Martinez E, Amato KN, Gaytan SM, Hernandez J, Ramirez DA, Shindo PW, Medina F, Wicker RB (2012) Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. J Market Res 1(1):42–54. https://doi.org/10.1016/S2238-7854(12)70009-1

    Article  Google Scholar 

  6. Zhang H, Dang J, Ming W, Xu X, Chen M, An Q (2020) Cutting responses of additive manufactured Ti6Al4V with solid ceramic tool under dry high-speed milling processes. Ceram Int 46(10):14536–14547. https://doi.org/10.1016/j.ceramint.2020.02.253

    Article  Google Scholar 

  7. Woo WS, Kim EJ, Jeong HI, Lee CM (2020) Laser-assisted machining of Ti-6Al-4V fabricated by DED additive manufacturing. Int J of Precis Eng Manuf-Green Tech 7(3):559–572. https://doi.org/10.1007/s40684-020-00221-7

    Article  Google Scholar 

  8. Razavi HA, Kurfess TR, Danyluk S (2003) Force control grinding of gamma titanium aluminide. Int J Mach Tools Manuf 43(2):185–191. https://doi.org/10.1016/S0890-6955(02)00113-X

    Article  Google Scholar 

  9. Bentley SA, Mantle AL, Aspinwall DK (1999) The effect of machining on the fatigue strength of a gamma titanium aluminide intertmetallic alloy. Intermetallics 7(8):967–969. https://doi.org/10.1016/S0966-9795(99)00008-4

    Article  Google Scholar 

  10. Bentley SA, Goh NP, Aspinwall DK (2001) Reciprocating surface grinding of a gamma titanium aluminide intermetallic alloy. J Mater Process Technol 118(1–3):22–28. https://doi.org/10.1016/S0924-0136(01)01033-0

    Article  Google Scholar 

  11. Bhaduri D, Soo SL, Aspinwall DK, Novovic D, Bohr S, Harden P, Webster JA (2017) Ultrasonic assisted creep feed grinding of gamma titanium aluminide using conventional and superabrasive wheels. CIRP Annals-Manuf Technol 66(1):341–344. https://doi.org/10.1016/j.cirp.2017.04.085

    Article  Google Scholar 

  12. Hood R, Cooper P, Aspinwall DK, Soo SL, Lee DS (2015) Creep feed grinding of γ-TiAl using single layer electroplated diamond superabrasive wheels. CIRP J Manuf Sci Technol 11:36–44. https://doi.org/10.1016/j.cirpj.2015.07.001

    Article  Google Scholar 

  13. Hood R, Lechner F, Aspinwall DK, Voice W (2007) Creep feed grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive. Int J Mach Tools Manuf 47(9):1486–1492. https://doi.org/10.1016/j.ijmachtools.2006.10.008

    Article  Google Scholar 

  14. Hood R, Aspinwall DK, Voice W (2007) Creep feed grinding of a gamma titanium aluminide intermetallic alloy using SiC abrasives. J Mater Process Technol 191(1–3):210–214. https://doi.org/10.1016/j.jmatprotec.2007.03.081

    Article  Google Scholar 

  15. Xinxin XI, Wenfeng DING, Zhixin WU, Anggei L (2021) Performance evaluation of creep feed grinding of γ-TiAl intermetallics with electroplated diamond wheels. Chin J Aeronaut 34(6):100–109. https://doi.org/10.1016/j.cja.2020.04.031

    Article  Google Scholar 

  16. Chen T, Zhu Y, Xi X, Huan H, Ding W (2021) Process parameter optimization and surface integrity evolution in the high-speed grinding of TiAl intermetallics based on grey relational analysis method. Int J Adv Manuf Technol 117(9):2895–2908. https://doi.org/10.1007/s00170-021-07882-x

    Article  Google Scholar 

  17. Babu RP, Vamsi KV, Karthikeyan S (2018) On the formation and stability of precipitate phases in a near lamellar γ-TiAl based alloy during creep. Intermetallics 98:115–125. https://doi.org/10.1016/j.intermet.2018.04.017

    Article  Google Scholar 

  18. Zou L, Huang Y, Zhang G, Cui X (2019) Feasibility study of a flexible grinding method for precision machining of the TiAl-based alloy. Mater Manuf Processes 34(10):1160–1168. https://doi.org/10.1080/10426914.2019.1628255

    Article  Google Scholar 

  19. Luo J, Zhao Z, Shen J, Zhang C (2014) Elastic–plastic analysis of ultrafine-grained Si2N2O–Si3N4 composites by nanoindentation and finite element simulation. Ceram Int 5(40):7073–7080. https://doi.org/10.1016/j.ceramint.2013.12.039

    Article  Google Scholar 

  20. Wang H, Hu Y, Cong W, Hu Z (2019) A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration. Int J Mech Sci 155:450–460. https://doi.org/10.1016/j.ijmecsci.2019.03.009

    Article  Google Scholar 

  21. Ma Z, Wang Q, Chen H, Chen L, Qu S, Wang Z, Yu T (2022) A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic. J Mater Process Technol 302:117492. https://doi.org/10.1016/j.jmatprotec.2022.117492

    Article  Google Scholar 

  22. Zhang X, Kang Z, Li S, Shi Z, Wen D, Jiang J, Zhang Z (2019) Grinding force modelling for ductile-brittle transition in laser macro-micro-structured grinding of zirconia ceramics. Ceram Int 45(15):18487–18500. https://doi.org/10.1016/j.ceramint.2019.06.067

    Article  Google Scholar 

  23. Park HW, Liang SY (2008) Force modeling of micro-grinding incorporating crystallographic effects. Int J MachTools Manuf 48(15):1658–1667. https://doi.org/10.1016/j.ijmachtools.2008.07.004

    Article  Google Scholar 

  24. Malkin S, Hwang TW (1996) Grinding mechanisms for ceramics. CIRP Annals-Manuf Technol 45(2):569–580. https://doi.org/10.1016/S0007-8506(07)60511-3

    Article  Google Scholar 

  25. Zhou M, Zheng W (2016) A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites. Int J Adv Manuf Technol 87(9):3211–3224. https://doi.org/10.1007/s00170-016-8726-x

    Article  Google Scholar 

  26. Durgumahanti UP, Singh V, Rao PV (2010) A new model for grinding force prediction and analysis. Int J MachTools Manuf 50(3):231–240. https://doi.org/10.1016/j.ijmachtools.2009.12.004

    Article  Google Scholar 

  27. Chang HC, Wang JJJ (2008) A stochastic grinding force model considering random grit distribution. Int J MachTools Manuf 48(12–13):1335–1344. https://doi.org/10.1016/j.ijmachtools.2008.05.012

    Article  Google Scholar 

  28. Zhang JH, Ge PQ, Zhang L (2007) Research on the grinding force based on the probability statistics. China Mech Eng 18:2399–2402

    Google Scholar 

  29. Zhang Y, Wu T, Li C, Wang Y, Geng Y, Dong G (2022) Numerical simulations of grinding force and surface morphology during precision grinding of leucite glass ceramics. Int J Mech Sci 231:107562. https://doi.org/10.1016/j.ijmecsci.2022.107562

    Article  Google Scholar 

  30. Liu M, Li C, Zhang Y, Yang M, Gao T, Xin C, Wang X, Xu W, Zhou Z, Bo L, Zafar S, Runze L, SHARMA S, (2022) Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics. Chin J Aeronaut. https://doi.org/10.1016/j.triboint.2022.108196

    Article  Google Scholar 

  31. Jianhua Z, Hui L, Minglu Z, Yan Z, Liying W (2017) Study on force modeling considering size effect in ultrasonic-assisted micro-end grinding of silica glass and Al2O3 ceramic. Int J Adv Manuf Technol 89(1):1173–1192. https://doi.org/10.1007/s00170-016-9148-5

    Article  Google Scholar 

  32. Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J MachTools Manuf 122:81–97. https://doi.org/10.1016/j.ijmachtools.2017.06.002

    Article  Google Scholar 

  33. Qiong W, Yidu Z, Hongwei Z (2009) Corner-milling of thin walled cavities on aeronautical components. Chin J Aeronaut 22(6):677–684. https://doi.org/10.1016/S1000-9361(08)60158-2

    Article  Google Scholar 

  34. De-Andres A (1999) Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading. Int J Solids Struct 36(15):2231–2258. https://doi.org/10.1016/S0020-7683(98)00059-6

    Article  MATH  Google Scholar 

  35. Kad BK, Dao M, Asaro RJ (1995) Numerical simulations of stress-strain behavior in two-phase α2+ γ lamellar TiAl alloys. Mater Sci Eng A 192:97–103. https://doi.org/10.1016/0921-5093(94)03210-6

    Article  Google Scholar 

  36. Wang Y, Yuan H, Ding H, Chen R, Guo J, Fu H, Li W (2019) Effects of lamellar orientation on the fracture toughness of TiAl PST crystals. Mater Sci Eng A 752:199–205. https://doi.org/10.1016/j.msea.2019.02.087

    Article  Google Scholar 

  37. Kim HY, Wegmann G, Maruyama K (2002) Effect of stress axis orientation on the creep deformation behavior of Ti–48Al polysynthetically twinned (PST) crystals. Mater Sci Eng A 329:795–801. https://doi.org/10.1016/S0921-5093(01)01636-7

    Article  Google Scholar 

  38. Gasik MM (2009) Elastic properties of lamellar Ti–Al alloys. Comput Mater Sci 47(1):206–212. https://doi.org/10.1016/j.commatsci.2009.07.009

    Article  Google Scholar 

  39. Zhou L, Wang Y, Ma ZY, Yu XL (2014) Finite element and experimental studies of the formation mechanism of edge defects during machining of SiCp/Al composites. Int J MachTools Manuf 84:9–16. https://doi.org/10.1016/j.ijmachtools.2014.03.003

    Article  Google Scholar 

  40. Hou ZB, Komanduri R (2003) On the mechanics of the grinding process–part I. Stochastic nature of the grinding process. Int J MachTools Manuf 43(15):1579–1593. https://doi.org/10.1016/S0890-6955(03)00186-X

    Article  Google Scholar 

  41. Liu W, Deng Z, Shang Y, Wan L (2019) Parametric evaluation and three-dimensional modelling for surface topography of grinding wheel. Int J Mech Sci 155:334–342. https://doi.org/10.1016/j.ijmecsci.2019.03.006

    Article  Google Scholar 

  42. Zhang Z, Song Y, Huo F, Guo D (2012) Nanoscale material removal mechanism of soft-brittle HgCdTe single crystals under nanogrinding by ultrafine diamond grits. Tribol Lett 46(1):95–100. https://doi.org/10.1007/s11249-012-9924-9

    Article  Google Scholar 

  43. Qu S, Gong Y, Yang Y, Xu Y, Wang W, Xin B, Pang S (2020) Mechanical model and removal mechanism of unidirectional carbon fibre-reinforced ceramic composites. Int J Mech Sci 173:105465. https://doi.org/10.1016/j.ijmecsci.2020.105465

    Article  Google Scholar 

  44. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J MachTools Manuf 51(3):250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003

    Article  Google Scholar 

Download references

Funding

This research was financially supported by the National Nature Science Foundation (Grant No. 52005093) and the Fundamental Research Funds for the Central Universities (Grant No. N2203014), PR China. The authors also would like to thank the editors and reviewers for their elaborate work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Xin, B., Wang, X. et al. Grinding force prediction and surface integrity analysis of Ti-4822 alloy formed by laser-directed energy deposition. Int J Adv Manuf Technol 129, 445–467 (2023). https://doi.org/10.1007/s00170-023-12255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12255-7

Keywords

Navigation