Skip to main content
Log in

Evaluation of cutting edge K-form factor in milling of 316L stainless steel: a study based on FEM

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The objective of this research is to simulate the cutting edge micro-geometry in machining stainless steel (SUS-316L). This paper based on finite element method (FEM) analyzes the cutting mechanism of different cutting edge symmetry geometries (K = 1) and asymmetry geometries (K = 0.5 and K = 2), studied plastic strain and residual stress, Mises stress and distribution of temperature, and also tool-chip contact length and the effective rake angle γeff. By drag finishing prepared three kinds of cutting edge roundness with symmetry (K = 1) and asymmetry (K = 0.5 and K = 2), which is cutting test for verifying the correctness of the model through chip geometry morphology. The simulation results suggest that waterfall tools (K = 0.5) can increase stress strain and peak cutting temperature compared with other cutting edge micro-geometry. At the same time, the trumpet tools (K = 2) also have a great influence on sub-surface and surface stress distribution. Therefore, the cutting edge segment on the flank face has significant the metal cutting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

K :

From-factor

:

Cutting edge segment on the rake face

:

Cutting edge segment on the flank face

:

Rake face

:

Flank face

φ :

Apex angle

r ε :

Edge radius of the tool (μm)

A :

plastic equivalent strain in (JC) (MPa)

B :

strain related constant in (JC) (MPa)

C :

strain-rate sensitivity constant in (JC)

m :

thermal softening exponent in (JC)

n :

strain-hardening parameter in (JC)

T m :

melting temperature of the work material (JC)

References

  1. Ng E-G, El-Wardany Tahany I, Dumitrescu M, Elbestawi Mohamed A (2002) Physics-based simulation of high speed machining. Mach Sci Technol 6(3):301–329. https://doi.org/10.1081/MST-120016248

    Article  Google Scholar 

  2. Mackerle J (1999) Finite element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 5:615. https://doi.org/10.1088/0965-0393/5/6/006

    Article  Google Scholar 

  3. Denkena B, Lucas A, Bassett E (2011) Effects of the cutting edge microgeometry on tool wear and its thermomechanical load. CIRP Ann Manuf Technol 60(1):73–76. https://doi.org/10.1016/j.cirp.2011.03.098

    Article  Google Scholar 

  4. Tiffe M, Aßmuth R, Saelzer J, Biermann D (2019) Investigation on cutting edge preparation and FEM assisted optimization of the cutting edge micro shape for machining of nickel-base alloy. Prod Eng 13:459–467. https://doi.org/10.1007/s11740-019-00900-8

    Article  Google Scholar 

  5. Bassett E, Köhler J, Denkena B (2012) On the honed cutting edge and its side effects during orthogonal turning operations of AISI1045 with coated WC-Co inserts. CIRP J Manuf Sci Technol 5:108–126. https://doi.org/10.1016/j.cirpj.2012.03.004

    Article  Google Scholar 

  6. Terwey I (2011) Steigerung der Leistungsfähigkeit von Vollhartmetallwendelbohrern durch Strahlspanen. Technische Universität Dortmund

    Google Scholar 

  7. Lv DJ, Wang YG, Yu X, Chen H, Gao Y (2021) Analysis of abrasives on cutting edge preparation by drag finishing. Int J Adv Manuf Technol 119(5-6):3583–3594. https://doi.org/10.21203/rs.3.rs-669967/v1

    Article  Google Scholar 

  8. Wyen CF (2012) Rounded cutting edges and their influence in machining titanium, vol VDI, Reihe 2. Fortschritt-Berichte Fertigungstechnik Null (685)

    Google Scholar 

  9. Denkena B, Reichstein M, Brodehl J, Lde LG (2005) Surface preparation, coating and wear performance of geometrically defined cutting Edges. In: 8th CIRP Int. Workshop on Modeling of Machining Operations, May 10–11. Chemnitz

    Google Scholar 

  10. Jiang L, Wang D (2019) Finite-element-analysis of the effect of different wiper tool edge geometries during the hard turning of AISI 4340 steel. Simul Modell Pract Theory 94:250–263. https://doi.org/10.1016/j.simpat.2019.03.006

    Article  Google Scholar 

  11. Jin X, Altintas Y (2011) Slip-line field model of micro-cutting process with round tool edge effect. J Mater Process Technol 211(3):339–355. https://doi.org/10.1016/j.jmatprotec.2010.10.006

    Article  Google Scholar 

  12. Molinari A, Cheriguene R, Miguelez H (2011) Numerical and analytical modeling of orthogonal cutting: the link between local variables and global contact characteristics. Int J Mech Sci 53(3):183–206. https://doi.org/10.1016/j.ijmecsci.2010.12.007

    Article  Google Scholar 

  13. Woon KS, Rahman M, Neo KS, Liu K (2008) The effect of tool edge radius on the contact phenomenon of tool-based micromachining. Int J Mach Tools Manuf 48(12-13):1395–1407. https://doi.org/10.1016/j.ijmachtools.2008.05.001

    Article  Google Scholar 

  14. Childs T (2006) Numerical experiments on the influence of material and other variables on plane strain continuous chip formation in metal machining. Int J Mech Sci 48(3):307–322. https://doi.org/10.1016/j.ijmecsci.2005.09.012

    Article  Google Scholar 

  15. Krebs E, Wolf M, Biermann D, Tillmann W, Stangier D (2018) High-quality cutting edge preparation of micro milling tools using wet abrasive jet machining process. Prod Eng Res Devel 12(1):45–51

    Article  Google Scholar 

  16. Bernard SE, Selvaganesh R, Khoshick G, Raj DS (2021) A novel contact area based analysis to study the thermo-mechanical effect of cutting edge radius using numerical and multi-sensor experimental investigation in turning. J Mater Process Technol 293:117085. https://doi.org/10.1016/j.jmatprotec.2021.117085

    Article  Google Scholar 

  17. Maiss O, Grove T, Denkena B (2017) Influence of asymmetric cutting edge roundings on surface topography. Prod Eng Res Devel 11:383–388. https://doi.org/10.1007/s11740-017-0742-7

    Article  Google Scholar 

  18. Schulze V, Autenrieth H, Deuchert M, Weule H (2010) Investigation of surface near residual stress states after micro-cutting by finite element simulation. CIRP Annals-Manuf Technol 59(1):117–120. https://doi.org/10.1016/j.cirp.2010.03.064

    Article  Google Scholar 

  19. Shen Q, Liu ZQ, Hua Y, Zhao JF, Lv WY, Mohsan A (2018) Effects of cutting edge microgeometry on residual stress in orthogonal cutting of Inconel 718 by FEM. Materials 11(6):1015. https://doi.org/10.3390/ma11061015

    Article  Google Scholar 

  20. Liu YX, Dong DA, Mathias S, Rachid M, AylinStahl J-EZ, Jin M (2021) Numerical and experimental investigation of tool geometry effect on residual stresses in orthogonal machining of Inconel 718. Simul Modell Pract Theory 106(1):102187. https://doi.org/10.1016/j.simpat.2020.102187

    Article  Google Scholar 

  21. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Annals-Manuf Technol 63(2):631–653. https://doi.org/10.1016/j.cirp.2014.05.009

    Article  Google Scholar 

  22. Denkena B, KHler J, Mengesha MS (2012) Influence of the cutting edge rounding on the chip formation process: Part 1. Investigation of material flow, process forces, and cutting temperature. Prod Eng 6(4-5):329–338. https://doi.org/10.1007/s11740-012-0366-x

    Article  Google Scholar 

  23. Lv DJ, Wang YG, Yu X (2020) Effects of cutting edge radius on cutting force, tool wear, and life in milling of SUS-316L steel. Int J Adv Manuf Technol 111:2833–2844. https://doi.org/10.1007/s00170-020-06286-7

    Article  Google Scholar 

  24. Wyen CF, Wegener K (2010) Influence of cutting edge radius on cutting forces in machining titanium. CIRP Annals - Manuf Technol 59(1):93–96. https://doi.org/10.1016/j.cirp.2010.03.056

    Article  Google Scholar 

  25. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Eng Fract Mech 21:541–548

    Google Scholar 

  26. Srs A, Gla B, Tz A (2019) Finite element simulations of chip serration in titanium alloy cutting by considering material failure. Procedia CIRP 82:320–325. https://doi.org/10.1016/j.procir.2019.04.153

    Article  Google Scholar 

  27. Bonnet C, Valiorgue F, Rech J, Claudin C, Hamdi H, Bergheau JM, Gilles P (2008) Identification of a friction model-application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool. Int J Mach Tools Manuf 48(11):1211–1223. https://doi.org/10.1016/j.ijmachtools.2008.03.011

    Article  Google Scholar 

  28. Shashank S, Sameehan S, Joshi MV, Pantawane MR, Sangram M, Narendra B, Dahotre (2023) Multiphysics multi-scale computational framework for linking process–structure–property relationships in metal additive manufacturing: a critical review. Int Mater Rev 213:112107. https://doi.org/10.1080/09506608.2023.2169501

    Article  Google Scholar 

  29. Li P, Chang ZY (2022) A hybrid model for turning force based on shear and extrusion deformation considering cutting-edge radius. J Manuf Processes 84:134–148. https://doi.org/10.1016/j.jmapro.2022.09.007

    Article  Google Scholar 

  30. Özel T, Ulutan D (2012) Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Annals-Manuf Technol 61(1):547–550. https://doi.org/10.1016/j.cirp.2012.03.100

    Article  Google Scholar 

  31. Wang HSJ (2019) Feasibility study of the Ti(C7N3)-based cermet micro-mill based on dynamic fatigue behavior and modeling of the contact stress distribution on the round cutting edge. Int J Mech Sci 155:143–158. https://doi.org/10.1016/j.ijmecsci.2019.02.038

    Article  Google Scholar 

  32. Karpat Y, Özel T (2008) Analytical and thermal modeling of high-speed machining with chamfered tools. J Manuf Sci. Eng 130(1):011001. https://doi.org/10.1115/1.2783282

    Article  Google Scholar 

  33. Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48(1):1–14. https://doi.org/10.1016/j.ijmachtools.2007.08.011

    Article  Google Scholar 

  34. Fan YH, Wang T, Hao ZP, Liu XY, Gao S, Li RL (2018) Surface residual stress in high speed cutting of superalloy Inconel 718 based on multiscale simulation. J Manuf Processes 31(1):480–493. https://doi.org/10.1016/j.jmapro.2017.12.011

    Article  Google Scholar 

  35. Nasr M, Ng EG, Elbestawi MA (2007) Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L. Int J Mach Tools Manuf 47(2):401–411. https://doi.org/10.1016/j.ijmachtools.2006.03.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Guohong Tool System (Wuxi) Co., Ltd for providing the experimental conditions and software simulation, including drag finishing and cutting experimental devices, tools, workpiece materials, and the third wave AdvantEdge software.

Author information

Authors and Affiliations

Authors

Contributions

Dejin Lv: methodology, data curation, formal analysis, writing original draft. Xin Yu: investigation, data curation. Yongguo Wang: supervision, writing — review and editing.

Corresponding author

Correspondence to Yongguo Wang.

Ethics declarations

Ethics approval

Ethics approval was not required for this research.

Consent to participate

Not applicable.

Consent for publication

The authors do agree that the copyright of this paper is transferred to Springer’s journal “The International Journal of Advanced Manufacturing Technology” when the paper is accepted for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, D., Yu, X. & Wang, Y. Evaluation of cutting edge K-form factor in milling of 316L stainless steel: a study based on FEM. Int J Adv Manuf Technol 128, 5223–5236 (2023). https://doi.org/10.1007/s00170-023-12098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12098-2

Keywords

Navigation