Skip to main content
Log in

Research and prospect of particle reinforced iron matrix composites

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Particle reinforced iron matrix composite (PRFMC) have attracted widespread attention because of their good physical and mechanical properties. In this paper, the preparation technology of PRFMC, the influence of particles on the mechanical properties of iron matrix composites (FMC) and the reinforcement mechanism are systematically reviewed. The results show that the preparation technology has a significant impact on the physical and mechanical properties of PRFMC. The defects in the traditional preparation technology are improved in the new preparation technology. The addition of reinforcing particles has a great influence on the mechanical properties of FMC, and the strengthening effect varies according to different reinforcing particles. The reinforcing mechanism of PRFMC mainly includes microstructure strengthening and micromechanical strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Tjong SC, Lau KC (1999) Sliding wear of stainless steel matrix composite reinforced with TiB2 particles. Mater Lett 41:153–158. https://doi.org/10.1016/s0167-577x(99)00123-8

    Article  Google Scholar 

  2. Bai HQ, Zhong LS, Shang Z et al (2018) Microstructure and impact properties of Ta-TaC core–shell rod-reinforced iron-based composite fabricated by in situ solid-phase diffusion. J Alloy Compd 768:340–348. https://doi.org/10.1016/j.jallcom.2018.07.267

    Article  Google Scholar 

  3. Yadav M, Kumaraswamidhas LA, Singh SK (2022) Investigation of solid particle erosion behavior of Al-Al2O3 and Al-ZrO2 metal matrix composites fabricated through powder metallurgy technique. Tribol Int 172:107636. https://doi.org/10.1016/j.triboint.2022.107636

    Article  Google Scholar 

  4. Balmon J, Fouvry S, Villechaise P, Paturaud J, Tschofen J, Feraille J (2023) Influence of SiC particles orientation on fretting crack extension in an Al-SiC metal matrix composite. Eng Fract Mech 281:109091. https://doi.org/10.1016/j.engfracmech.2023.109091

    Article  Google Scholar 

  5. Zhou XS, Dong HK, Wang YS, Yuan MN (2022) Microstructure characteristics and mechanical performance of Fe-Cr-Ni-Al-Ti superalloy fabricated by powder metallurgy. J Alloys Compd 918:165612. https://doi.org/10.1016/j.jallcom.2022.165612

    Article  Google Scholar 

  6. Kim CS, Cho K, Manjili MH, Nezafati M (2017) Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J Mater Sci 52–23:13319–13349. https://doi.org/10.1007/s10853-017-1378-x

    Article  Google Scholar 

  7. He HY, Fan G, Saba F, Tan ZQ, Su Z, Xiong DB, Li ZQ (2023) Enhanced distribution and mechanical properties of high content nanoparticles reinforced metal matrix composite prepared by flake dispersion. Compos Part B: Eng 252:110514. https://doi.org/10.1016/j.compositesb.2023.110514

    Article  Google Scholar 

  8. Guo RF, Hu ZJ, Shaga A, Shen P (2023) Development of a nacre-like metal-ceramic composite with a brick-and-mortar structure and high ceramic content. Compos Part A: Appl Sci Manuf 165:107347. https://doi.org/10.1016/j.compositesa.2022.107347

    Article  Google Scholar 

  9. Jiang JP, Li SB, Zhang WW, Yu WB, Zhou Y (2019) In situ formed TiCx in high chromium white iron composites: Formation mechanism and influencing factors. J Alloy Compd 788:873–880. https://doi.org/10.1016/j.jallcom.2019.02.292

    Article  Google Scholar 

  10. Matthews S, Ansbro J, Berndt CC, Ang ASM (2021) Thermally induced metallurgical transformations in WC-17Co thermal spray coatings as a function of carbide dissolution: Part 2 - Heat-treated coatings. Int J Refract Metals Hard Mater 96:105486. https://doi.org/10.1016/j.ijrmhm.2021.105486

    Article  Google Scholar 

  11. Pang XL, Song YZ, Shi NK, Xu M, Zhou C, Chen J (2022) Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites. Compos Part B: Eng 238:109883. https://doi.org/10.1016/j.compositesb.2022.109883

    Article  Google Scholar 

  12. Kambakas K, Tsakiropoulos P (2005) Solidification of high-Cr white cast iron–WC particle reinforced composites. Mater Sci Eng, A 413–414:538–544. https://doi.org/10.1016/j.msea.2005.08.215

    Article  Google Scholar 

  13. Kang N, Ma WY, Heraud L, Mansori ME, Li FH, Liu M, Liao HL (2018) Selective laser melting of tungsten carbide reinforced maraging steel composite. Addit Manuf 22104–110. https://doi.org/10.1016/j.addma.2018.04.031.

  14. Kwon H, Suh CY (2021) Hardening of Ti(CN)–Fe composites by microstructural refinement and solid solution strengthening of metallic phase. Ceram Int 47:13927–13933. https://doi.org/10.1016/j.ceramint.2021.01.260

    Article  Google Scholar 

  15. Niu CH, Zhang Q, Cheng LF, Ye F, Zhang LT (2023) Microstructure and mechanical properties of Cf/SiC composites with dispersed C-SiC interphase prepared by chemical vapor infiltration. Compos Part A: Appl Sci Manuf 165:107339. https://doi.org/10.1016/j.compositesa.2022.107339

    Article  Google Scholar 

  16. Perminov A, Bartzsch G, Asgarian A, Chattopadhyay K, Volkova O (2022) Utilization of L-PBF process for manufacturing an in-situ Fe-TiC metal matrix composite. J Alloys Compd 922:166281. https://doi.org/10.1016/j.jallcom.2022.166281

    Article  Google Scholar 

  17. Sharifitabar M, Vahdati Khaki J, Sabzevar MH (2016) Microstructure and wear resistance of in-situ TiC–Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding. Surf Coat Technol 285:47–56. https://doi.org/10.1016/j.surfcoat.2015.11.019

    Article  Google Scholar 

  18. Ru JJ, He H, Jiang YH, Zhou R, Hua YX (2019) Wettability and interaction mechanism for Ni-modified ZTA particles reinforced iron matrix composites. J Alloy Compd 786:321–329. https://doi.org/10.1016/j.jallcom.2019.01.342

    Article  Google Scholar 

  19. Qiwen W, Mingxing M, Cunyuan P, Xiaohui Y, Weiming Z (2013) Corrosion Resistance of Laser Produced in-situ Particle Reinforced Fe-matrix Composite Coating with High Nickel Content on Spheroidal Graphite Cast Iron. Phys Procedia 412:76–281. https://doi.org/10.1016/j.phpro.2013.03.079

    Article  Google Scholar 

  20. Li JF, Zhu ZC, Peng YX, Shen G (2020) Microstructure and wear characteristics of novel Fe-Ni matrix wear-resistant composites on the middle chute of the scraper conveyor. J Market Res 9(1):935–947. https://doi.org/10.1016/j.jmrt.2019.11.033

    Article  Google Scholar 

  21. Wu H, Xu WC, Shan DB, Wang XJ, Guo B, Jin BC (2023) Micromechanical modeling of damage evolution and fracture behavior in particle reinforced metal matrix composites based on the conventional theory of mechanism-based strain gradient plasticity. J Market Res 22:625–641. https://doi.org/10.1016/j.jmrt.2022.11.139

    Article  Google Scholar 

  22. Zhan JM, Yao XH, Zhang XQ (2021) Study on predicting the mechanical properties and fracturing behaviors of particle reinforced metal matrix composites by non-local approach. Mech Mater 155:103790. https://doi.org/10.1016/j.mechmat.2021.103790

    Article  Google Scholar 

  23. Parveez B, Wani MF (2021) Tribological behaviour of nano-zirconia reinforced iron-based self-lubricating composites for bearing applications. Tribol Int 159:106969. https://doi.org/10.1016/j.triboint.2021.106969

    Article  Google Scholar 

  24. Qi MF, Xu YZ, Li JY, Kang YL, Wulabieke Z (2021) Microstructure refinement and corrosion resistance improvement mechanisms of a novel Al-Si-Fe-Mg-Cu-Zn alloy prepared by ultrasonic vibration-assisted rheological die-casting process. Corros Sci 180:109180. https://doi.org/10.1016/j.corsci.2020.109180

    Article  Google Scholar 

  25. Wang XH, Liu SS, Zhao GL, Zhang M, Ying WL (2021) In-situ formation ceramic particles reinforced Fe-based composite coatings produced by ultrasonic assisted laser melting deposition processing. Opt Laser Technol 136:106746. https://doi.org/10.1016/j.optlastec.2020.106746

    Article  Google Scholar 

  26. Rocha MRDL, Virginie M, Khodakov A, Pollo L, Marcilio NR, Tessaro IC (2021) Preparation of alumina based tubular asymmetric membranes incorporated with coal fly ash by centrifugal casting. Ceram Int 47:4187–4196. https://doi.org/10.1016/j.ceramint.2020.09.296

    Article  Google Scholar 

  27. Xie ZM, Jiang RP, Li XQ, Zhang LH, Li AQ, He ZL (2022) Microstructural evolution and mechanical properties of TiB2/2195 composites fabricated by ultrasonic-assisted in-situ casting. Ultrason Sonochemistry 90:106203. https://doi.org/10.1016/j.ultsonch.2022.106203

    Article  Google Scholar 

  28. Gao Q, Sun DM, Jiang XS, Sun HL, Zhang YL, Fang YJ, Shu R (2022) Microstructure and mechanical properties of Cu–Fe-ZTA cermets prepared by vacuum hot pressing sintering. J Market Res 20:1814–1827. https://doi.org/10.1016/j.jmrt.2022.07.151

    Article  Google Scholar 

  29. Zhou YH, Wang ZN, Lin X, Jian ZY, Liu YQ, Ren YM, Zhang TC, Shao WT, Yang XG (2023) Impact toughness and fractography of diverse microstructure in Al-Cu alloy fabricated by arc-directed energy deposition. Addit Manuf 63:103414. https://doi.org/10.1016/j.addma.2023.103414

    Article  Google Scholar 

  30. Wen XL, Wang CB, Gong YD, Liu WB (2023) Microstructure and mechanical properties of FeCoNiCrAl high-entropy alloys by selective laser melting. Chinese J Mech Eng: Addit Manuf Front 2:100069. https://doi.org/10.1016/j.cjmeam.2023.100069

    Article  Google Scholar 

  31. Fujita K, Nakazawa K, Fujiwara H, Kikuchi S (2022) Effect of grain size on fatigue limit in CrMnFeCoNi high-entropy alloy fabricated by spark plasma sintering under four-point bending. Mater Sci Eng: A 857:144121. https://doi.org/10.1016/j.msea.2022.144121

    Article  Google Scholar 

  32. Gudipudi S, Nagamuthu S, Subbian KS, Chilakalapalli SPR (2020) Enhanced mechanical properties of AA6061-B4C composites developed by a novel ultra-sonic assisted stir casting. Eng Sci Technol, An Int J 23:1233–1243. https://doi.org/10.1016/j.jestch.2020.01.010

    Article  Google Scholar 

  33. Liu ZW, Han QY, Li JG, Huang WD (2012) Effect of ultrasonic vibration on microstructural evolution of the reinforcements and degassing of in situ TiB2p/Al–12Si–4Cu composites. J Mater Process Technol 212:365–371. https://doi.org/10.1016/j.jmatprotec.2011.09.021

    Article  Google Scholar 

  34. Chen M, Liu ZW, Zheng QL, Sun QQ, Zheng BH (2021) Rapid preparation of B4Cp/Al composites with homogeneous interface via ultrasound assisted casting method. J Alloys Compd 858:157659. https://doi.org/10.1016/j.jallcom.2020.157659

    Article  Google Scholar 

  35. Hu ZP, Liu Y, Chen SH, Liu SC, Yu LM, Liu YC (2023) Achieving high-performance pure tungsten by additive manufacturing: Processing, microstructural evolution and mechanical properties. Int J Refract Metals Hard Mater 113:106211. https://doi.org/10.1016/j.ijrmhm.2023.106211

    Article  Google Scholar 

  36. Gardner L (2023) Metal additive manufacturing in structural engineering – review, advances, opportunities and outlook. Structures 47:2178–2193. https://doi.org/10.1016/j.istruc.2022.12.039

    Article  Google Scholar 

  37. Zhang CH, Li Z, Zhang JK, Tang HB, Wang HM (2023) Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives. J Magnes Alloys 11:425–461. https://doi.org/10.1016/j.jma.2023.02.005

    Article  Google Scholar 

  38. Srivastava M, Rathee S, Tiwari A, Dongre M (2023) Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour. Mater Chem Phys 294:126988. https://doi.org/10.1016/j.matchemphys.2022.126988

    Article  Google Scholar 

  39. Wilms MB, Rittinghaus SK, Goßling M, Gökce B (2023) Additive manufacturing of oxide-dispersion strengthened alloys: Materials, synthesis and manufacturing. Prog Mater Sci 133:101049. https://doi.org/10.1016/j.pmatsci.2022.101049

    Article  Google Scholar 

  40. Peng ZL, Zhang J, Zhang MJ, Wang KM, Peng P (2022) Laser in-situ preparation and mechanical properties of VC reinforced Fe-based wear-resistant composite cladding. Ceram Int 48:28240–28249. https://doi.org/10.1016/j.ceramint.2022.06.129

    Article  Google Scholar 

  41. Wang CW, Wang HM, Li GR, Liu M, Zhang D, Wen HR, Ren WX, Gao LP, Chen JJ (2020) Microwave vacuum sintering of FeCoNi1·5 CuB0·5 Y0.2 high-entropy alloy: Effect of heat treatment on microstructure and mechanical property. Vacuum 181:109738. https://doi.org/10.1016/j.vacuum.2020.109738

    Article  Google Scholar 

  42. Shan RF, Yao RH, Wang H, Liu L, Zhao YY, Yao XH (2023) Microstructure, mechanical properties, in vitro degradation behavior and cytocompatibility of biodegradable Zn-3Fe-HAP composites prepared by vacuum heating-press sintering. J Alloys Compd 942:168832. https://doi.org/10.1016/j.jallcom.2023.168832

    Article  Google Scholar 

  43. Teslia S, Solodkyi I, Yurkova O, Bezdorozhev O, Bogomol I, Loboda P (2022) Phase compatibility in (WC-W2C)/AlFeCoNiCrTi composite produced by spark plasma sintering. J Alloys Compd 921:166042. https://doi.org/10.1016/j.jallcom.2022.166042

    Article  Google Scholar 

  44. Toroghinejad MR, Pirmoradian H, Shabani A (2022) Synthesis of FeCrCoNiCu high entropy alloy through mechanical alloying and spark plasma sintering processes. Mater Chem Phys 289:126433. https://doi.org/10.1016/j.matchemphys.2022.126433

    Article  Google Scholar 

  45. Zhang ZZ, Chen YB, Zhang Y, Gao KW, Zuo LL, Qi YS, Wei Y (2017) Tribology characteristics of ex-situ and in-situ tungsten carbide particles reinforced iron matrix composites produced by spark plasma sintering. J Alloy Compd 704:260–268. https://doi.org/10.1016/j.jallcom.2017.02.003

    Article  Google Scholar 

  46. Nandal R, Jakhar A, Duhan RK (2023) Review on synthesis of AA 6061 metal matrix alloy using stir casting method. Mater Today: Proc 78:462–468. https://doi.org/10.1016/j.matpr.2022.10.268

    Article  Google Scholar 

  47. Al-Bermani SS, Blackmore ML, Zhang W, Todd I (2010) The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V. Metall Mater Trans A 41(13):3422–3434. https://doi.org/10.1007/a11661-010-0397-x

    Article  Google Scholar 

  48. Jain H, Shadangi Y, Chakravarty D, Chattopadhyay K, Dubey AK, Mukhopadhyay NK (2023) Low-density Fe40Mn19Ni15Al15Si10C1 high entropy steel processed by mechanical alloying and spark plasma sintering: Phase evolution, microstructure and mechanical properties. Mater Sci Eng: A 869:144776. https://doi.org/10.1016/j.msea.2023.144776

    Article  Google Scholar 

  49. Manogar B, Yang F, Bolzoni L (2022) Correlation between microstructure and tensile properties of powder metallurgy Ti-6Nb-x(Fe or Mn) alloys. J Alloys Compd 926:166805. https://doi.org/10.1016/j.jallcom.2022.166805

    Article  Google Scholar 

  50. Li JF, Zhu ZC, Peng YX, Shen G (2021) Phase evolution and wear resistance of in-situ synthesized (Cr, W)23C6-WC composite ceramics reinforced Fe-based composite coatings produced by laser cladding. Vacuum 190:110242. https://doi.org/10.1016/j.vacuum.2021.110242

    Article  Google Scholar 

  51. Wu S, Qin Y, Fu DR, Fan L, Chen HH, Hong HP (2020) Preparation and mechanism of active Mo–Mn metallization on ZTA particles surface and interfacial bonding of reinforced iron matrix composite. Ceram Int 46:15972–15981. https://doi.org/10.1016/j.ceramint.2020.03.147

    Article  Google Scholar 

  52. Wang SF, Sun YF, Li GH (2022) Study on cobalt coating on ZTA particles by electroless plating and impact-abrasive wear behavior of ZTAp reinforced iron matrix composite. Wear 510–511:204489. https://doi.org/10.1016/j.wear.2022.204489

    Article  Google Scholar 

  53. Zhang WG, Li ZL, Wei H, Xiang XH, Zhang F, Shan Q (2022) Interfacial structure of WC-Fe metal-matrix composite (WC/Fe3W3C and Fe/Fe3W3C) stability, electronic and mechanical properties from first-principles calculations. Mater Today Commun 33:104470. https://doi.org/10.1016/j.mtcomm.2022.104470

    Article  Google Scholar 

  54. Li C, Li YF, Shi J, Li B, Goei R, Tok ALY (2022) The effect of multi-arc ion plating NiCr coating on interface characterization of ZrO2–Al2O3 ceramics reinforced iron-based composites. Vacuum 196:110758. https://doi.org/10.1016/j.vacuum.2021.110758

    Article  Google Scholar 

  55. Cho S, Kim J, Jo I, Park JH, Lee J, Hong HU, Lee BH, Hwang WR, Suh DW, Lee SK, Lee SB (2022) Effect of molybdenum on interfacial properties of titanium carbide reinforced Fe composite. J Mater Sci Technol 107:252–258. https://doi.org/10.1016/j.jmst.2021.08.047

    Article  Google Scholar 

  56. Qi XX, Li YL, Li FY, Du JY, Li C, Wang KA, Lu HY, Yang BJ (2022) Improving the properties of remanufactured wear parts of shield tunneling machines by novel Fe-based composite coatings. Ceram Int 48:6722–6733. https://doi.org/10.1016/j.ceramint.2021.11.223

    Article  Google Scholar 

  57. Xiao MY, Jiang FC, Guo CH, Song HL, Dong T (2023) Investigation on microstructure and mechanical properties of Fe-based amorphous coatings prepared via laser cladding assisted with ultrasonic vibration. Opt Laser Technol 162:109294. https://doi.org/10.1016/j.optlastec.2023.109294

    Article  Google Scholar 

  58. Li QT, Lei YP, Fu HG (2014) Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb) C particle in laser cladded Fe-based composite coating. Appl Surf Sci 316:610–616. https://doi.org/10.1016/j.apsusc.2014.08.052

    Article  Google Scholar 

  59. Zhang ZZ, Chen YB, Zuo LL, Zhang Y, Qi YS, Gao KW (2017) The effect of volume fraction of WC particles on wear behavior of in-situ WC/Fe composites by spark plasma sintering. Int J Refract Metal Hard Mater 69:196–208. https://doi.org/10.1016/j.ijrmhm.2017.08.009

    Article  Google Scholar 

  60. Prabhu TR, Varma VK, Vedantam S (2014) Effect of reinforcement type, size, and volume fraction on the tribological behavior of Fe matrix composites at high sliding speed conditions. Wear 309:247–255. https://doi.org/10.1016/j.wear.2013.10.001

    Article  Google Scholar 

  61. Li WY, Yang XF, Xiao JP, Hou QM (2021) Effect of WC mass fraction on the microstructure and friction properties of WC/Ni60 laser cladding layer of brake discs. Ceram Int 47:28754–28763. https://doi.org/10.1016/j.ceramint.2021.07.035

    Article  Google Scholar 

  62. Jiang JP, Li SB, Yu WB, Zhou Y (2019) Microstructural characterization and abrasive wear resistance of a high chromium white iron composite reinforced with in situ formed TiCx. Mater Chem Phys 224:169–174. https://doi.org/10.1016/j.matchemphys.2018.12.019

    Article  Google Scholar 

  63. Zhu JL, Zhong LS, Xu YH, Zhang SX, Lu ZX (2019) The investigation on the fabrication and microstructure of NbTi-(NbTi)C Fe-based composite. Vacuum 168:108862. https://doi.org/10.1016/j.vacuum.2019.108862

    Article  Google Scholar 

  64. Zhang C, Zhu JK, Zhang GQ, Hu YW (2022) Laser powder bed fusion of nano-TiB2 reinforced FeCoNiCr high-entropy alloy with enhanced strength and firm corrosion resistance. J Alloys Compd 927:167110. https://doi.org/10.1016/j.jallcom.2022.167110

    Article  Google Scholar 

  65. Yu W, Wang Y, Li Y, Qian XM, Wang HY, Chen Z, Wang ZD, Xu GM (2023) Texture evolution, segregation behavior, and mechanical properties of 2060 Al-Li (aluminium-lithium) composites reinforced by TiC (titanium carbide) nanoparticles. Compos Part B: Eng 255:110611. https://doi.org/10.1016/j.compositesb.2023.110611

    Article  Google Scholar 

  66. Xiang SQ, Ren SF, Liang YH, Zhang XF (2019) Fabrication of titanium carbide-reinforced iron matrix composites using electropulsing-assisted flash sintering. Mater Sci Eng: A 768:138459. https://doi.org/10.1016/j.msea.2019.138459

    Article  Google Scholar 

  67. Zhao CM, Zhu HG, Xie ZH (2022) In-situ TiC particles strengthen and ductilize Fe1.2MnNi0.8Cr high entropy alloy. Intermetallics 140:107398. https://doi.org/10.1016/j.intermet.2021.107398

    Article  Google Scholar 

  68. Yang PX, Yuan W, Song HW, Huang CG (2023) Reinforcement mechanisms of low-strength fragile material under in-plane shear loading by composite lattice structures. Compos Struct 306:116562. https://doi.org/10.1016/j.compstruct.2022.116562

    Article  Google Scholar 

  69. Chen HY, Kosiba K, Lu TW, Yao N, Liu Y, Wang YG, Prashanth KG, Suryanarayana C (2023) Hierarchical microstructures and strengthening mechanisms of nano-TiC reinforced CoCrFeMnNi high-entropy alloy composites prepared by laser powder bed fusion. J Mater Sci Technol 136:245–259. https://doi.org/10.1016/j.jmst.2022.06.053

    Article  Google Scholar 

  70. Zhou H, Zhang C, Wang W, Yasir M, Liu L (2015) Microstructure and Mechanical Properties of Fe-based Amorphous Composite Coatings Reinforced by Stainless Steel Powders. J Mater Sci Technol 31(1):43–47. https://doi.org/10.1016/j.jmst.2014.09.008

    Article  Google Scholar 

  71. Zhang MQ, Ning Z, Wang Q, Arakerec N, Zhou QH, Wang ZJ, Jin XQ, Keer LM (2018) Contact elasto-plasticity of inhomogeneous materials and a numerical method for estimating matrix yield strength of composites. Tribol Int 127:84–95. https://doi.org/10.1016/j.triboint.2018.06.001

    Article  Google Scholar 

  72. Zhou R, Liu Y, Liu B, Li J, Fang QH (2019) Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy alloy. Intermetallics 106:20–25. https://doi.org/10.1016/j.intermet.2018.12.001

    Article  Google Scholar 

  73. Ghazanfari H, Blais C, Alamdari H, Gariépy M, Schulz R (2018) Mechanically activated combustion synthesis of Fe 3 Al composite powders reinforced with sub-micrometer TiC particles. J Alloy Compd 761:71–79. https://doi.org/10.1016/j.jallcom.2018.05.145

    Article  Google Scholar 

  74. Li J, Zong BY, Wang YM, Zhuang WB (2010) Experiment and modeling of mechanical properties on iron matrix composites reinforced by different types of ceramic particles. Mater Sci Eng, A 527:7545–7551. https://doi.org/10.1016/j.msea.2010.08.029

    Article  Google Scholar 

  75. Zong BY, Guo XH, Derby B (2013) Stiffness of particulate reinforced metal matrix composites with damaged reinforcements. Mater Sci Technol 15(7):827–832

    Article  Google Scholar 

  76. Xu N, Zong BY (2008) Stress in particulate reinforcements and overall stress response on aluminum alloy matrix composites during straining by analytical and numerical modeling. Comput Mater Sci 43:1094–1100. https://doi.org/10.1016/j.commatsci.2008.03.002

    Article  Google Scholar 

  77. Carvalho NJM, Zoestbergen E, Kooi BJ, De Hosson JTM (2003) Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti, Al)N coatings. Thin Solid Films 429:179–189. https://doi.org/10.1016/S0040-6090(03)00067-1

    Article  Google Scholar 

  78. Yeom JT, Kim JH, Hong JK, Park NK, Chong SL (2009) Influence of initial micro structure on hot workability of Ti-6Al-4V alloy. Int J Modern Phys B 23(6 & 7):808–813. https://doi.org/10.1142/S02179792060063

    Article  Google Scholar 

  79. Krauß G, Kubler J, Trentini E (2002) Preparation and properties of pressureless infiltrated SiC and AlN particulate reinforced metal ceramic composites based on bronze and iron alloys. Mater Sci Eng, A 337:315–322. https://doi.org/10.1016/S0921-5093(02)00044-8

    Article  Google Scholar 

  80. Zhang GN, Yang X, Zhao Y, Yang ZC, Li T (2022) Microstructure and mechanical properties regulation and control of in-situ TiC reinforced CoCrFeNiAl0.2 high-entropy alloy matrix composites via high-gravity combustion route. J Alloys Compd 899:163221. https://doi.org/10.1016/j.jallcom.2021.163221

    Article  Google Scholar 

  81. Sistla HR, Newkirk JW, Liou FF (2015) Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of Alx FeCoCrNi2−x (x= 0.3, 1) high entropy alloys. Mater Des 81:113–121. https://doi.org/10.1016/j.matdes.2015.05.027

    Article  Google Scholar 

  82. Huang YJ, Zhang FL, Zhai MJ, Zhu MX, Zhou YM, Tang HQ, Xie DL (2021) Mechanical properties and tribological behavior of Fe/nano-diamond composite prepared by hot-press sintering. Int J Refract Metals Hard Mater 95:105412. https://doi.org/10.1016/j.ijrmhm.2020.105412

    Article  Google Scholar 

  83. Bai HQ, Zhong LS, Kang L, Wei JZ, Lv ZL, Xu YH (2021) A novel iron matrix composite fabricated by two-step in situ reaction: Microstructure, formation mechanism and mechanical properties. J Alloys Compd 855:157442. https://doi.org/10.1016/j.jallcom.2020.157442

    Article  Google Scholar 

  84. Wu J, Qiu H, Zhu HG, Xie ZH, Chen JL (2022) Microstructure and mechanical behaviors of in-situ SiC particle reinforced Fe2.5 CoNiCu high-entropy alloy composites. Mater Lett 311:131495. https://doi.org/10.1016/j.matlet.2021.131495

    Article  Google Scholar 

  85. Bai HQ, Zhong LS, Zhang T, Kang L, Liu Y, Zhuang WJ, Lv ZL, Xu YH (2021) The investigation on the fabrication and microstructure of a novel core-shell structure reinforced iron matrix composite. Vacuum 194:110611. https://doi.org/10.1016/j.vacuum.2021.110611

    Article  Google Scholar 

  86. Bai HQ, Zhong LS, Cui PJ, Shang Z, Lv ZL, Xu YH (2020) Microstructure and compressive properties of V-V8C7/Fe core-shell rod-reinforced iron-based composite fabricated via two-step in-situ reaction. Vacuum 176:109302. https://doi.org/10.1016/j.vacuum.2020.109302

    Article  Google Scholar 

  87. Zong BY, Wang Y, Li J, Xu N (2009) Modeling of mechanical behavior and design of microstructure on particulate reinforced materials. Int J Mod Phys B 23(6 & 7):1627–1633. https://doi.org/10.1142/S0217979209061378

    Article  Google Scholar 

  88. Lee J, Lee D, Song MH, Rhee W, Ryu HJ, Hong SH (2018) In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering. J Mater Sci Technol 34:1397–1404. https://doi.org/10.1016/j.jmst.2017.03.006

    Article  Google Scholar 

  89. Zhang WT, Chen HH, Prentki R (2017) Numerical analysis of the mechanical behavior of ZTAp/Fe composites. Comput Mater Sci 137:153–161. https://doi.org/10.1016/j.commatsci.2017.05.021

    Article  Google Scholar 

  90. Yao Y, Chen JH, Liu J, Chen SH (2022) An alternative constitutive model for elastic particle-reinforced hyperelastic matrix composites with explicitly expressed Eshelby tensor. Compos Sci Technol 221:109343. https://doi.org/10.1016/j.compscitech.2022.109343

    Article  Google Scholar 

  91. Liu SF, Li YZ, Wang Y, Wei YK, Zhang LL, Wang JY (2022) High wear resistance WC-Co reinforced GCr15 bearing steel composite prepared via selective laser melting (SLM). Int J Refract Metals Hard Mater 109:105988. https://doi.org/10.1016/j.ijrmhm.2022.105988

    Article  Google Scholar 

  92. Cao SL, Liang J, Zhou JS, Wang LQ (2020) Microstructure evolution and wear resistance of in-situ nanoparticles reinforcing Fe-based amorphous composite coatings. Surf Interfaces 21:100652. https://doi.org/10.1016/j.surfin.2020.100652

    Article  Google Scholar 

  93. Gao J, Li TH, Yan ZL, Liu S, Zhao YF, Tong WP (2022) Research on the interface and properties of spherical ZTA particles reinforced Fe-Cr-B matrix composite. J Market Res 191:1322–1331. https://doi.org/10.1016/j.jmrt.2022.05.119

    Article  Google Scholar 

  94. Xu SH, Qiu JW, Zhang HB, Cao HZ, Zhang GQ, Liu Y (2021) Friction behavior of Ti−30Fe composites strengthened by TiC particles. Trans Nonferrous Met Soc China 31:988–998. https://doi.org/10.1016/S1003-6326(21)65555-3

    Article  Google Scholar 

  95. Sun GJ, Wu SJ, Su GC (2010) Research on impact wear resistance of in situ reaction TiCp/Fe composite. Wear 269:285–290. https://doi.org/10.1016/j.wear.2010.04.011

    Article  Google Scholar 

  96. Huang L, Pan YF, Zhang JX, Liu AJ, Du Y, Luo FH (2020) Densification, microstructure and mechanical performance of TiC/Fe composites by spark plasma sintering. J Market Res 9(3):6116–6124. https://doi.org/10.1016/j.jmrt.2020.04.014

    Article  Google Scholar 

  97. Chen LY, Yu TB, Guan C, Zhao Y (2022) Microstructure and properties of metal parts remanufactured by laser cladding TiC and TiB2 reinforced Fe-based coatings. Ceram Int 48:14127–14140. https://doi.org/10.1016/j.ceramint.2022.01.299

    Article  Google Scholar 

  98. Gómez B, Jiménez-Suarez A, Gordo E (2009) Oxidation and tribological behaviour of an Fe-based MMC reinforced with TiCN particles. Int J Refract Metal Hard Mater 27:360–366. https://doi.org/10.1016/j.ijrmhm.2008.10.012

    Article  Google Scholar 

  99. Chen PH, Zhang Y, Zhang ZY, Li RQ, Zeng SS (2020) Tuning the microstructure, mechanical properties, and tribological behavior of in-situ VCp-reinforced Fe-matrix composites via manganese-partitioning treatment. Mater Today Commun 24:101135. https://doi.org/10.1016/j.mtcomm.2020.101135

    Article  Google Scholar 

  100. Moghaddam HZ, Sharifitabar M, Roudini G (2019) Microstructure and wear properties of Fe–TiC composite coatings produced by submerged arc cladding process using ferroalloy powder mixtures. Surf Coat Technol 361:91–101. https://doi.org/10.1016/j.surfcoat.2019.01.053

    Article  Google Scholar 

  101. Jiang JP, Li SB, Hu SJ, Zhang J, Yu WB, Zhou Y (2020) Comparison of high Cr white iron composites reinforced with directly added TiC and in situ formed TiCx. J Market Res 9(3):3140–3148. https://doi.org/10.1016/j.jmrt.2020.01.059

    Article  Google Scholar 

  102. Chen H, Lu YY, Wu KH, Wang XY, Liu DJ (2022) Effect of WC addition on TiC reinforced Fe matrix composites produced by laser deposition. Surf Coat Technol 434:128185. https://doi.org/10.1016/j.surfcoat.2022.128185

    Article  Google Scholar 

  103. Sun D, Cai YC, Zhu LS, Gao FF, Shan MD, Manladan SM, Geng KP, Han J, Jiang ZY (2022) High-temperature oxidation and wear properties of TiC-reinforced CrMnFeCoNi high entropy alloy composite coatings produced by laser cladding. Surf Coat Technol 438:128407. https://doi.org/10.1016/j.surfcoat.2022.128407

    Article  Google Scholar 

  104. Zou YM, Qiu ZG, Huang CJ, Zeng DH, Lupoi R, Zhang NN, Yin S (2022) Microstructure and tribological properties of Al2O3 reinforced FeCoNiCrMn high entropy alloy composite coatings by cold spray. Surf Coat Technol 434:128205. https://doi.org/10.1016/j.surfcoat.2022.128205

    Article  Google Scholar 

  105. Zhang M, Zhao GL, Wang XH, Liu SS, Ying WL (2020) Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing. Surf Coat Technol 403:126445. https://doi.org/10.1016/j.surfcoat.2020.126445

    Article  Google Scholar 

  106. Cao YB, Ren HT, Hu CS, Meng QX, Liu Q (2015) In-situ formation behavior of NbC-reinforced Fe-based laser cladding coatings. Mater Lett 147:61–63. https://doi.org/10.1016/j.matlet.2015.02.026

    Article  Google Scholar 

  107. Feng YL, Pang XT, Feng K, Feng YQ, Li ZG (2021) Residual stress distribution and wear behavior in multi-pass laser cladded Fe-based coating reinforced by M3(C, B). J Market Res 15:5597–5607. https://doi.org/10.1016/j.jmrt.2021.11.032

    Article  Google Scholar 

  108. Ding YJ, Xiao Z, Fang M, Gong S, Dai J (2023) Microstructure and mechanical properties of multi-scale α-Fe reinforced Cu–Fe composite produced by vacuum suction casting. Mater Sci Eng: A 864:144603. https://doi.org/10.1016/j.msea.2023.144603

    Article  Google Scholar 

  109. Guo SF, Su C (2017) Micro/nano ductile-phases reinforced Fe-based bulk metallic glass matrix composite with large plasticity. Mater Sci Eng, A 707:44–50. https://doi.org/10.1016/j.msea.2017.09.036

    Article  Google Scholar 

  110. Wu H, Huang SR, Zhao CM, Zhu HG, Xie ZH, Tu CL, Li XD (2020) Microstructures and mechanical properties of in-situ FeCrNiCu high entropy alloy matrix composites reinforced with NbC particles. Intermetallics 127:106983. https://doi.org/10.1016/j.intermet.2020.106983

    Article  Google Scholar 

  111. Zhong LS, Ye FX, Xu YH, Li JS (2014) Microstructure and abrasive wear characteristics of in situ vanadium carbide particulate-reinforced iron matrix composites. Mater Des 54:564–569. https://doi.org/10.1016/j.matdes.2013.08.097

    Article  Google Scholar 

  112. Zhong LS, Zhang X, Chen SL, Xu YH, Wu H, Wang J (2016) Fe–W–C thermodynamics and in situ preparation of tungsten carbide-reinforced iron-based surface composites by solid-phase diffusion. Int J Refract Metal Hard Mater 57:42–49. https://doi.org/10.1016/j.ijrmhm.2016.02.001

    Article  Google Scholar 

  113. Peng YB, Zhang W, Li TC, Zhang MY, Wang L, Song Y, Hu SH, Hu Y (2019) Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding. Int J Refract Metals Hard Mater 84:105044. https://doi.org/10.1016/j.ijrmhm.2019.105044

    Article  Google Scholar 

  114. Feng R, Rao Y, Liu CH, Xie X, Yu DJ, Chen Y, Ghazisaeidi M, Ungar T, Wang HM, An K, Liaw PK (2021) Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy. Nat Commun 12:3588. https://doi.org/10.1038/s41467-021-23689-6

    Article  Google Scholar 

  115. Kim SH, Kim H, Kim NJ (2015) Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518:77–79. https://doi.org/10.1038/nature14144

    Article  Google Scholar 

  116. Huang SR, Wu H, Zhu HG, Xie ZH, Cheng JL (2022) Enhanced tensile properties of CrMnFeCoNi0.8 high entropy alloy with in-situ TiC particles. Intermetallics 148:107639. https://doi.org/10.1016/j.intermet.2022.107639

    Article  Google Scholar 

  117. Prabhakar M, Prasad AK, Paswan MK (2020) Durability improvement of axle housings by compressive residual stress. Appl Mater Today 19:100584. https://doi.org/10.1016/j.apmt.2020.100584

    Article  Google Scholar 

  118. Li HY, Sun HL, Bowen P, Knott JF (2018) Effects of compressive residual stress on short fatigue crack growth in a nickel-based superalloy. Int J Fatigue 108:53–61. https://doi.org/10.1016/j.ijfatigue.2017.11.010

    Article  Google Scholar 

  119. Hu DJ, Grilli N, Yan WT (2023) Dislocation structures formation induced by thermal stress in additive manufacturing: Multiscale crystal plasticity modeling of dislocation transport. J Mech Phys Solids 173:105235. https://doi.org/10.1016/j.jmps.2023.105235

    Article  MathSciNet  Google Scholar 

  120. Sui YD, Zhou MJ, Jiang YH (2018) Characterization of interfacial layer of ZTA ceramic particles reinforced iron matrix composites. J Alloy Compd 741:1169–1174. https://doi.org/10.1016/j.jallcom.2018.01.199

    Article  Google Scholar 

  121. Zheng Y, Zhou Y, Feng YD, Teng XY, Yan ST, Li RF, Yu WB, Huang ZY, Li SB, Li ZW (2018) Synthesis and mechanical properties of TiC-Fe interpenetrating phase composites fabricated by infiltration process. Ceram Int 44:21742–21749. https://doi.org/10.1016/j.ceramint.2018.08.268

    Article  Google Scholar 

  122. Li C, Li YF, Shi J, Li B, Du YZ, Goei R, Gao YM, Shah IA, Zhao SY, Tok AIY (2022) Interfacial characteristics and wear performances of iron matrix composites reinforced with zirconia-toughened alumina ceramic particles. Ceram Int 48:1293–1305. https://doi.org/10.1016/j.ceramint.2021.09.214

    Article  Google Scholar 

  123. Wang Y, Qin Y, Fu DR, Chen HH, Pan YT, Zhu CY, Yao FQ (2020) Behaviors of ZTA (zirconia toughened alumina) reinforced iron composites under impact abrasive wear conditions. Wear 458–459:203397. https://doi.org/10.1016/j.wear.2020.203397

    Article  Google Scholar 

  124. Qin Y, Wang Y, Miao WC, Yang P, Fu DR, Fan L, Chen HH (2022) Interface modification and impact abrasive wear behavior of ZTA particle-reinforced iron-matrix composite. Wear 490–491:204205. https://doi.org/10.1016/j.wear.2021.204205

    Article  Google Scholar 

  125. Li C, Li YF, Shi J, Li B, Gao YM, Goei R, Li YH, Shah IA, Wu K, Zhao SY, Tok ATY (2022) Interfacial characterization and erosive wear performance of zirconia toughened alumina ceramics particles reinforced high chromium white cast irons composites. Tribol Int 165:107262. https://doi.org/10.1016/j.triboint.2021.107262

    Article  Google Scholar 

  126. Zhao SB, Xu S, Yang LJ, Huang YM (2022) WC-Fe metal-matrix composite coatings fabricated by laser wire cladding. J Mater Process Technol 301:117438. https://doi.org/10.1016/j.jmatprotec.2021.117438

    Article  Google Scholar 

  127. Peng JH, Dong HL, Hojamberdiev M, Yi DW, Yang YX, Bao HP, Li HQ, Mao DL, Meng LC (2017) Improving the mechanical properties of tantalum carbide particle-reinforced iron-based composite by varying the TaC contents. J Alloy Compd 726:896–905. https://doi.org/10.1016/j.jallcom.2017.08.050

    Article  Google Scholar 

  128. Qiu B, Xing SM, Dong Q (2019) Fabrication and wear behavior of ZTA particles reinforced iron matrix composite produced by flow mixing and pressure compositing. Wear 428–429:167–177. https://doi.org/10.1016/j.wear.2019.03.013

    Article  Google Scholar 

  129. Qiu B, Xing SM, Dong Q, Liu H (2020) Comparison of properties and impact abrasive wear performance of ZrO2-Al2O3/Fe composite prepared by pressure casting and infiltration casting process. Tribol Int 142:105979. https://doi.org/10.1016/j.triboint.2019.105979

    Article  Google Scholar 

Download references

Funding

This work is supported by The National Natural Science Foundation of China (51872122), Natural Science Foundation of Shandong Province (ZR2022ME041), Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program (2019KJB021), Shandong Provincial Central Leading Local Science and Technology Development Fund Project (YDZX2022003) and Taishan Scholars and Youth Innovation in Science & Technology Support Plan of Shandong Province University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xuefeng Yang, Kai wang, and Bowen Liu. The first draft of the manuscript was written by Wenlong Dong and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xuefeng Yang.

Ethics declarations

Conflicts interest

The authors declare that they have no known competing financial interests or personal relationships that could have appear to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research focus: Theory and engineering application of friction lubrication, metal matrix composites.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Yang, X., Wang, K. et al. Research and prospect of particle reinforced iron matrix composites. Int J Adv Manuf Technol 128, 3723–3744 (2023). https://doi.org/10.1007/s00170-023-12050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12050-4

Keywords

Navigation