Skip to main content

Metal Matrix Composites

  • Chapter
  • First Online:
Advances in Machining of Composite Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1625 Accesses

Abstract

The chapter introduces the various types of matrix and reinforcements used in metal matrix composites (MMCs) and gives an overview of the types of MMCs, namely fibre reinforced MMCs; particle reinforced MMCs and multi-layer laminates. Standard manufacturing processes for MMCs include Solid-State Processing Methods such as powder metallurgy, mechanical alloying, diffusion bonding and deformation processing, Liquid Processing Methods such as stir casting, melt infiltration, squeeze casting and melt deposition are also presented in Sect. 3. In addition, in situ processes and additive manufacturing of MMCs are also introduced. In Sect. 4, equations are provided to allow the prediction of the properties of MMCs such as density, modulus and strength. Strengthening mechanisms for particle reinforced composites are briefly explained in Sect. 5. A review of various mechanical properties of MMCs produced by different manufacturing techniques is provided in Sect. 6. Lastly, the chapter provides the use of MMCs in various industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chawla, K.K.: Composite materials. Springer New York, New York, NY (2012). https://doi.org/10.1007/978-0-387-74365-3

  2. Chawla, N., Chawla, K.K.: Metal matrix composites. Springer New York, New York, NY (2013). https://doi.org/10.1007/978-1-4614-9548-2

  3. Granta Design Limited, CES Edupack, (2019)

    Google Scholar 

  4. Lloyd, D.J.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1–23 (1994)

    Article  Google Scholar 

  5. Prasad, N.E., Wanhill, R.J.H.: Aerospace materials and material technologies. Springer Nature (2017)

    Google Scholar 

  6. Yang, J.-M., Hahn, T.H., Seo, H., Chang, P.-Y., Yeh, P.-C.: Damage tolerance and durability of fiber-metal laminates for aircraft structures (2010). http://www.tc.faa.gov/its/worldpac/techrpt/ar1018.pdf

  7. Gupta, M., Wong, W.L.E.: Magnesium-based nanocomposites: lightweight materials of the future. Mater. Charact. 105 (2015). https://doi.org/10.1016/j.matchar.2015.04.015

  8. Gupta, M., Wong, W.L.E.: Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scr. Mater. 52, 479–483 (2005). https://doi.org/10.1016/j.scriptamat.2004.11.006

    Article  Google Scholar 

  9. Gupta, M., Eugene, W.W.L.: Microwaves and metals (2011). https://doi.org/10.1002/9780470822746

  10. Rawal, S.: Metal-matrix composites for space applications. JOM. 14–17 (2001)

    Google Scholar 

  11. Hu, Y., Cong, W.: A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites. Ceram. Int. 44, 20599–20612 (2018). https://doi.org/10.1016/j.ceramint.2018.08.083

    Article  Google Scholar 

  12. Almangour, B.: Additive manufacturing of emerging materials (2018). https://doi.org/10.1007/978-3-319-91713-9

  13. Hull, D., Bacon, D.: Introduction to dislocations. Elsevier (2001). https://doi.org/10.1016/B978-0-7506-4681-9.X5000-7

  14. Kazim, O.: Ductility and strength of extruded SiC p/aluminium-alloy composites mit Coen, Kazim nel* 62, 275–282 (2002)

    Google Scholar 

  15. Raghavendra Rao, P.S., Mohan, C.B.: Study on mechanical performance of silicon nitride reinforced aluminium metal matrix composites. Mater. Today Proc. 2–6 (2020). https://doi.org/10.1016/j.matpr.2020.03.495

  16. Dobrzański, L.A., Włodarczyk, A., Adamiak, M.: The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles. J. Mater. Process. Technol. 175, 186–191 (2006). https://doi.org/10.1016/j.jmatprotec.2005.04.031

    Article  Google Scholar 

  17. Girish, B.M., Basawaraj, B., Satish, B.M., Somashekar, D.R.: Electrical resistivity and mechanical properties of tungsten carbide reinforced copper alloy composites. Int. J. Compos. Mater. 2, 37–43 (2012). https://doi.org/10.5923/j.cmaterials.20120203.04

  18. Wong, W.L.E., Gupta, M., Lim, C.Y.H.: Enhancing the mechanical properties of pure aluminum using hybrid reinforcement methodology, Mater. Sci. Eng. A. 423 (2006). https://doi.org/10.1016/j.msea.2005.09.122

  19. Eugene, W.W.L., Gupta, M.: Enhancing thermal stability, modulus and ductility of magnesium using molybdenum as reinforcement. Adv. Eng. Mater. 7 (2005). https://doi.org/10.1002/adem.200400137

  20. Saravanan, R., Surappa, M.: Fabrication and characterisation of pure magnesium-30 vol.% SiCP particle composite. Mater. Sci. Eng. A. 276, 108–116 (2000). https://doi.org/10.1016/s0921-5093(99)00498-0

  21. Wong, W.L.E., Karthik, S., Gupta, M.: Development of high performance Mg–Al 2 O 3 composites containing Al 2 O 3 in submicron length scale using microwave assisted rapid sintering. Mater. Sci. Technol. 21, 1063–1070 (2005). https://doi.org/10.1179/174328405X51758

    Article  Google Scholar 

  22. Wong, W.L.E., Gupta, M.: Effect of hybrid length scales (Micro + nano) of SiC reinforcement on the properties of magnesium (2006). www.scientific.net/SSP.111.91

  23. Poddar, P., Srivastava, V.C., De, P.K., Sahoo, K.L.: Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process. Mater. Sci. Eng. A 460–461, 357–364 (2007). https://doi.org/10.1016/j.msea.2007.01.052

    Article  Google Scholar 

  24. Zhu, J., Jiang, W., Li, G., Guan, F., Yu, Y., Fan, Z.: Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J. Mater. Process. Technol. 283, (2020). https://doi.org/10.1016/j.jmatprotec.2020.116699

    Article  Google Scholar 

  25. Chandrashekar, A., Ajaykumar, B.S., Reddappa, H.N.: Mechanical, structural and corrosion behaviour of AlMg4.5/Nano Al2O3 metal matrix composites. Mater. Today Proc. 5, 2811–2817 (2018). https://doi.org/10.1016/j.matpr.2018.01.069

  26. Maqbool, A., Hussain, M.A., Khalid, F.A., Bakhsh, N., Hussain, A., Ho, M.: Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites. Mater. Charact. 86, 39–48 (2013). https://doi.org/10.1016/j.matchar.2013.09.006

    Article  Google Scholar 

  27. Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater. Sci. Eng. A 423, 153–156 (2006). https://doi.org/10.1016/j.msea.2005.10.071

    Article  Google Scholar 

  28. Meenashisundaram, G.K., Seetharaman, S., Gupta, M.: Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates. Mater. Charact. 94, 178–188 (2014). https://doi.org/10.1016/j.matchar.2014.05.021

    Article  Google Scholar 

  29. Wong, W.L.E., Gupta, M.: Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Compos. Sci. Technol. 67 (2007). https://doi.org/10.1016/j.compscitech.2006.07.015

  30. Wong, W.L.E., Gupta, M.: Simultaneously improving strength and ductility of magnesium using nano-size SiC particulates and microwaves. Adv. Eng. Mater. 8, 735–740 (2006). https://doi.org/10.1002/adem.200500209

    Article  Google Scholar 

  31. Wang, J., Guo, X., Qin, J., Zhang, D., Lu, W.: Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions. Mater. Sci. Eng. A 628, 366–373 (2015). https://doi.org/10.1016/j.msea.2015.01.067

    Article  Google Scholar 

  32. Huang, L., Wang, L., Qian, M., Zou, J.: High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires. Scr. Mater. 141, 133–137 (2017). https://doi.org/10.1016/j.scriptamat.2017.08.007

    Article  Google Scholar 

  33. Materion Corporation (n.d.). https://materion.com/products/metal-matrix-composites/supremex/aluminum-silicon-carbide-composites

  34. DWA Aluminum Composites USA (n.d.). https://www.dwa-usa.com/al-mmc-material-systems.html

  35. Advanced Materials Technology (AMT) (n.d.). https://www.amt-advanced-materials-technology.com/materials/

  36. Jiang, L.Y., Liu, T.T., Zhang, C.D., Zhang, K., Li, M.C., Ma, T., Liao, W.H.: Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting. Mater. Sci. Eng. A 734, 171–177 (2018). https://doi.org/10.1016/j.msea.2018.07.092

    Article  Google Scholar 

  37. Wen, X., Wang, Q., Mu, Q., Kang, N., Sui, S., Yang, H., Lin, X., Huang, W.: Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: microstructure and mechanical properties. Mater. Sci. Eng. A 745, 319–325 (2019). https://doi.org/10.1016/j.msea.2018.12.072

    Article  Google Scholar 

  38. Gu, D., Ma, J., Chen, H., Lin, K., Xi, L.: Laser additive manufactured WC reinforced Fe-based composites with gradient reinforcement/matrix interface and enhanced performance. Compos. Struct. 192, 387–396 (2018). https://doi.org/10.1016/j.compstruct.2018.03.008

    Article  Google Scholar 

  39. Li, B., Qian, B., Xu, Y., Liu, Z., Zhang, J., Xuan, F.: Additive manufacturing of ultrafine-grained austenitic stainless steel matrix composite via vanadium carbide reinforcement addition and selective laser melting: Formation mechanism and strengthening effect. Mater. Sci. Eng. A 745, 495–508 (2019). https://doi.org/10.1016/j.msea.2019.01.008

    Article  Google Scholar 

  40. Pouzet, S., Peyre, P., Gorny, C., Castelnau, O., Baudin, T., Brisset, F., Colin, C., Gadaud, P.: Additive layer manufacturing of titanium matrix composites using the direct metal deposition laser process. Mater. Sci. Eng. A 677, 171–181 (2016). https://doi.org/10.1016/j.msea.2016.09.002

    Article  Google Scholar 

  41. Traxel, K.D., Bandyopadhyay, A.: Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing. Addit. Manuf. 31, (2020). https://doi.org/10.1016/j.addma.2019.101004

    Article  Google Scholar 

  42. Zhang, B., Bi, G., Chew, Y., Wang, P., Ma, G., Liu, Y., Moon, S.K.: Comparison of carbon-based reinforcement on laser aided additive manufacturing Inconel 625 composites. Appl. Surf. Sci. 490, 522–534 (2019). https://doi.org/10.1016/j.apsusc.2019.06.008

    Article  Google Scholar 

  43. Li, B., Zhang, L., Yang, B.: Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting. Compos. Commun. 19, 56–60 (2020). https://doi.org/10.1016/j.coco.2020.03.001

    Article  Google Scholar 

  44. Hunt, W., Miracle, D.: ASM handbook vol. 21 composites. ASM International (2001). https://doi.org/10.31399/asm.hb.v21.9781627081955

  45. Specialty Materials Incorporated (n.d.). http://specmaterials.com/f16landingbrace.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Leong Eugene Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, W.L.E., Seetharaman, S. (2021). Metal Matrix Composites. In: Shyha, I., Huo, D. (eds) Advances in Machining of Composite Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-71438-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71438-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71437-6

  • Online ISBN: 978-3-030-71438-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics