Skip to main content
Log in

A new geometric approach for real-time cutting force simulation in 3-axis ball-end milling compatible with graphical game engines

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a virtualized ball-end milling model is presented in Unity game engine environment, in which the machining process is simulated by proposing a new geometric approach. The model calculates and illustrates cutter-workpiece engagement area and cutting forces in a real-time manner. To calculate cutter-workpiece engagement, the workpiece surface is considered a set of nodes. Then, using a new geometric method, the engagement area is calculated at any node on the engaging surface. Utilizing the calculated engagement area and adopting mechanistic force model, the cutting forces applied from each node on the workpiece surface to the tool’s cutting edge are calculated. Adopting the proposed new geometric method simplifies the mechanistic force model to such an extent that the cutting forces are calculated in a real-time manner. The extracted cutter-workpiece engagement areas have been compared with solid model results, and the cutting forces have been compared with the available experimental data. Good agreement between the results proved that the model can calculate the engagement area and cutting forces accurately. By changing the geometrical parameters of the model, it was shown that the speed of analyses can be increased to such an extent that the machining process can be simulated faster than 30 frames per second. The presented model is compatible with any game engine and can be used for augmented reality applications and machining process monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Pacchini APT et al (2019) The degree of readiness for the implementation of Industry 4.0. Comput Ind 113:103125. https://doi.org/10.1016/j.compind.2019.103125

    Article  Google Scholar 

  2. Yau H-T et al (2022) Direct computation of instantaneous cutting force in real-time multi-axis NC simulation. Int J Adv Manuf Technol 119(11):6967–6978. https://doi.org/10.1007/s00170-021-08545-7

    Article  Google Scholar 

  3. Liu M et al (2021) Review of digital twin about concepts, technologies, and industrial applications. J Manuf Syst 58:346–361. https://doi.org/10.1016/j.jmsy.2020.06.017

    Article  Google Scholar 

  4. Guo Z et al (2020) Applications of virtual reality in maintenance during the industrial product lifecycle: a systematic review. J Manuf Syst 56:525–538

    Article  Google Scholar 

  5. Wang R et al (2021) Modified cutting force prediction model considering the true trajectory of cutting edge and in-process workpiece geometry in ball-end milling operation. Int J Adv Manuf Technol 115(4):1187–1199. https://doi.org/10.1007/s00170-021-07285-y

    Article  Google Scholar 

  6. Zheng CM et al (2022) In-process identification of milling parameters based on digital twin driven intelligent algorithm. Int J Adv Manuf Technol 121(9):6021–6033. https://doi.org/10.1007/s00170-022-09685-0

    Article  Google Scholar 

  7. Moufki A et al (2000) Thermoviscoplastic modelling of oblique cutting: forces and chip flow predictions. Int J Mech Sci 42(6):1205–1232. https://doi.org/10.1016/S0020-7403(99)00036-3

    Article  MATH  Google Scholar 

  8. Moufki A et al (2004) Thermomechanical modelling of oblique cutting and experimental validation. Int J Mach Tools Manuf 44(9):971–989. https://doi.org/10.1016/j.ijmachtools.2004.01.018

    Article  Google Scholar 

  9. Budak E, Ozlu E (2008) Development of a thermomechanical cutting process model for machining process simulations. CIRP Ann 57(1):97–100. https://doi.org/10.1016/j.cirp.2008.03.008

    Article  Google Scholar 

  10. Zeroudi N, Fontaine M, Necib K (2012) Prediction of cutting forces in 3-axes milling of sculptured surfaces directly from CAM tool path. J Intell Manuf 23(5):1573–1587. https://doi.org/10.1007/s10845-010-0460-x

    Article  Google Scholar 

  11. Mahnama M, Movahhedy M (2012) Application of FEM simulation of chip formation to stability analysis in orthogonal cutting process. J Manuf Process 14(3):188–194. https://doi.org/10.1016/j.jmapro.2011.12.007

    Article  Google Scholar 

  12. Feng H-Y, Su N (2001) A mechanistic cutting force model for 3D ball-end milling. J Manuf Sci Eng 123(1):23–29. https://doi.org/10.1115/1.1334864

    Article  Google Scholar 

  13. Wang J-J, Zheng C (2002) Identification of shearing and ploughing cutting constants from average forces in ball-end milling. Int J Mach Tools Manuf 42(6):695–705. https://doi.org/10.1016/S0890-6955(02)00002-0

    Article  Google Scholar 

  14. Tandon V, El-Mounayri H, Kishawy H (2002) NC end milling optimization using evolutionary computation. Int J Mach Tools Manuf 42(5):595–605. https://doi.org/10.1016/S0890-6955(01)00151-1

    Article  Google Scholar 

  15. Milfelner M, Cus F (2003) Simulation of cutting forces in ball-end milling. Robot Comput Integr Manuf 19(1-2):99–106. https://doi.org/10.1016/S0736-5845(02)00066-2

    Article  Google Scholar 

  16. Hoon Ko J, Cho D-W (2005) 3D ball-end milling force model using instantaneous cutting force coefficients. J Manuf Sci Eng 127(1):1–12. https://doi.org/10.1115/1.1826077

    Article  Google Scholar 

  17. Tsai C-L, Liao Y-S (2008) Prediction of cutting forces in ball-end milling by means of geometric analysis. J Mater Process Technol 205(1-3):24–33. https://doi.org/10.1016/j.jmatprotec.2007.11.083

    Article  Google Scholar 

  18. Wan M et al (2007) Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. Int J Mach Tools Manuf 47(11):1767–1776. https://doi.org/10.1016/j.ijmachtools.2006.06.012

    Article  Google Scholar 

  19. Cao Q et al (2013) The effects of cutter eccentricity on the cutting force in the ball-end finish milling. Int J Adv Manuf Technol 69(9):2843–2849. https://doi.org/10.1007/s00170-013-5205-5

    Article  Google Scholar 

  20. Lazoglu I, Boz Y, Erdim H (2011) Five-axis milling mechanics for complex free form surfaces. CIRP Ann 60(1):117–120. https://doi.org/10.1016/j.cirp.2011.03.090

    Article  Google Scholar 

  21. Jun MB et al (2012) A new mechanistic approach for micro end milling force modeling. J Manuf Sci Eng 134(1). https://doi.org/10.1115/1.4005429

  22. Wan M et al (2017) Working mechanism of helix angle on peak cutting forces together with its design theory for peripheral milling tools. J Mater Process Technol 249:570–580. https://doi.org/10.1016/j.jmatprotec.2017.06.030

    Article  Google Scholar 

  23. Dikshit MK, Puri AB, Maity A (2017) Analysis of cutting force coefficients in high-speed ball end milling at varying rotational speeds. Mach Sci Technol 21(3):416–435. https://doi.org/10.1080/10910344.2017.1284562

    Article  Google Scholar 

  24. Ghorbani M, Movahhedy MR (2019) An analytical model for cutter-workpiece engagement calculation in ball-end finish milling of doubly curved surfaces. Int J Adv Manuf Technol 102(5):1635–1657. https://doi.org/10.1007/s00170-018-3188-y

    Article  Google Scholar 

  25. Ghorbani M, Movahhedy MR (2019) Extraction of surface curvatures from tool path data and prediction of cutting forces in the finish milling of sculptured surfaces. J Manuf Process 45:273–289. https://doi.org/10.1016/j.jmapro.2019.07.008

    Article  Google Scholar 

  26. Sadeghi M, Haghighat H, Elbestawi M (2003) A solid modeler based ball-end milling process simulation. Int J Adv Manuf Technol 22(11):775–785. https://doi.org/10.1007/s00170-002-1452-6

    Article  Google Scholar 

  27. Jung T-S, Yang M-Y, Lee K-J (2005) A new approach to analysing machined surfaces by ball-end milling, part I. Int J Adv Manuf Technol 25(9):833–840. https://doi.org/10.1007/s00170-003-1930-5

    Article  Google Scholar 

  28. Wei Z et al (2011) Cutting force prediction in ball end milling of sculptured surface with Z-level contouring tool path. Int J Mach Tools Manuf 51(5):428–432. https://doi.org/10.1016/j.ijmachtools.2011.01.011

    Article  Google Scholar 

  29. Abainia, S., et al. Prediction of milling forces by integrating a geometric and a mechanistic model. in Proceedings of the World Congress on Engineering. 2012.

  30. Wei Z et al (2013) Prediction of cutting force in ball-end milling of sculptured surface using improved Z-map. Int J Adv Manuf Technol 68(5):1167–1177. https://doi.org/10.1007/s00170-013-4909-x

    Article  Google Scholar 

  31. Wei Z-C, Wang M-J, Han X-G (2010) Cutting forces prediction in generalized pocket machining. Int J Adv Manuf Technol 50(5):449–458. https://doi.org/10.1007/s00170-010-2528-3

    Article  Google Scholar 

  32. Yigit IE, Lazoglu I (2015) Analysis of tool orientation for 5-axis ball-end milling of flexible parts. CIRP Ann 64(1):97–100. https://doi.org/10.1016/j.cirp.2015.04.067

    Article  Google Scholar 

  33. Boz Y, Erdim H, Lazoglu I (2015) A comparison of solid model and three-orthogonal dexelfield methods for cutter-workpiece engagement calculations in three-and five-axis virtual milling. Int J Adv Manuf Technol 81(5):811–823. https://doi.org/10.1007/s00170-015-7251-7

    Article  Google Scholar 

  34. Sai L et al (2018) An approach to modeling the chip thickness and cutter workpiece engagement region in 3 and 5 axis ball end milling. J Manuf Process 34:7–17. https://doi.org/10.1016/j.jmapro.2018.05.018

    Article  Google Scholar 

  35. Nishida I et al (2018) Cutting force simulation in minute time resolution for ball end milling under various tool posture. J Manuf Sci Eng 140(2):021009. https://doi.org/10.1115/1.4038499

    Article  Google Scholar 

  36. Lotfi S et al (2019) Cutter-workpiece engagement calculation in 3-axis ball end milling considering cutter runout. J Manuf Process 41:74–82. https://doi.org/10.1016/j.jmapro.2019.03.025

    Article  Google Scholar 

  37. Tunc LT (2019) Smart tool path generation for 5-axis ball-end milling of sculptured surfaces using process models. Robot Comput Integr Manuf 56:212–221. https://doi.org/10.1016/j.rcim.2018.10.002

    Article  Google Scholar 

  38. Basso I et al (2022) Influences of the workpiece material and the tool-surface engagement (TSE) on surface finishing when ball-end milling. J Manuf Process 75:219–231. https://doi.org/10.1016/j.jmapro.2021.12.059

    Article  Google Scholar 

  39. Ong S, Jiang L, Nee A (2002) An internet-based virtual CNC milling system. Int J Adv Manuf Technol 20(1):20–30. https://doi.org/10.1007/s001700200119

    Article  Google Scholar 

  40. Altintas Y et al (2005) Virtual machine tool. CIRP Ann 54(2):115–138. https://doi.org/10.1016/S0007-8506(07)60022-5

    Article  Google Scholar 

  41. Soori M, Arezoo B, Habibi M (2014) Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines. J Manuf Syst 33(4):498–507. https://doi.org/10.1016/j.jmsy.2014.04.007

    Article  Google Scholar 

  42. Merdol SD, Altintas Y (2008) Virtual cutting and optimization of three-axis milling processes. Int J Mach Tools Manuf 48(10):1063–1071. https://doi.org/10.1016/j.ijmachtools.2008.03.004

    Article  Google Scholar 

  43. Han Z et al (2017) Cutting deflection control of the blade based on real-time feedrate scheduling in open modular architecture CNC system. Int J Adv Manuf Technol 90(9):2567–2579. https://doi.org/10.1007/s00170-016-9444-0

    Article  Google Scholar 

  44. Tong X et al (2020) Real-time machining data application and service based on IMT digital twin. J Intell Manuf 31(5):1113–1132. https://doi.org/10.1007/s10845-019-01500-0

    Article  Google Scholar 

  45. Finkeldey F et al (2020) Real-time prediction of process forces in milling operations using synchronized data fusion of simulation and sensor data. Eng Appl Artif Intell 94:103753. https://doi.org/10.1016/j.engappai.2020.103753

    Article  Google Scholar 

  46. Ma H et al (2021) High efficiency calculation of cutter-workpiece engagement in five-axis milling using distance fields and envelope theory. J Manuf Process 68:1430–1447. https://doi.org/10.1016/j.jmapro.2021.06.055

    Article  Google Scholar 

  47. Goldstone W (2009) Unity game development essentials. Packt Publishing Ltd.

    Google Scholar 

  48. Rahman M (2017) Game development with Unity. In: Beginning Microsoft Kinect for Windows SDK 2.0. Springer, pp 207–226. https://doi.org/10.1007/978-1-4842-2316-1_7

    Chapter  Google Scholar 

  49. Lee P, Altintaş Y (1996) Prediction of ball-end milling forces from orthogonal cutting data. Int J Mach Tools Manuf 36(9):1059–1072. https://doi.org/10.1016/0890-6955(95)00081-X

    Article  Google Scholar 

  50. Wojciechowski S (2015) The estimation of cutting forces and specific force coefficients during finishing ball end milling of inclined surfaces. Int J Mach Tools Manuf 89:110–123. https://doi.org/10.1016/j.ijmachtools.2014.10.006

    Article  Google Scholar 

  51. Imani B, Sadeghi M, Elbestawi M (1998) An improved process simulation system for ball-end milling of sculptured surfaces. Int J Mach Tools Manuf 38(9):1089–1107. https://doi.org/10.1016/S0890-6955(97)00074-6

    Article  Google Scholar 

  52. Lamikiz A et al (2004) Cutting force estimation in sculptured surface milling. Int J Mach Tools Manuf 44(14):1511–1526. https://doi.org/10.1016/j.ijmachtools.2004.05.004

    Article  Google Scholar 

  53. Ozturk E, Budak E (2007) Modeling of 5-axis milling processes. Mach Sci Technol 11(3):287–311. https://doi.org/10.1080/10910340701554808

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mahmoodreza Forootan: conceptualization, methodology, software, validation, writing—original draft, and writing—review and editing. Javad Akbari: supervision and writing—review and editing. Mohammad Ghorbani: supervision, validation, writing—review and editing.

Corresponding author

Correspondence to Javad Akbari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forootan, M., Akbari, J. & Ghorbani, M. A new geometric approach for real-time cutting force simulation in 3-axis ball-end milling compatible with graphical game engines. Int J Adv Manuf Technol 128, 4003–4022 (2023). https://doi.org/10.1007/s00170-023-12025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12025-5

Keywords

Navigation