Skip to main content
Log in

Tribological performance and corrosion resistance of HVOF WC-17 wt. % Co coatings: influence of micro-to-nanoscale morphology

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

We investigated the wear and corrosion properties of high-velocity oxygen fuel (HVOF)-sprayed microstructured and near-nanostructured WC-17 wt. % Co coatings fabricated on steel substrates. The near-nanostructured variant exhibited a high hardness value of ~991 Hv, a low corrosion rate of ~0.10624 MPY, a low wear rate of ~0.0012 mm3/m, and a low cumulative wear volume loss of ~0.1304 mm3. Corrosion effects resulted in a reduction of hardness by 23.02% and 30.07% for the near-nanostructured and microstructured samples, respectively; moreover, the wear volume loss of the microstructured coating was 30.02% higher compared to the near-nanostructured coating. We attribute the enhanced corrosion and wear resistance of the near-nanostructured HVOF coating to its dense and uniform surface morphology, low porosity, minimal decarburization, and high hardness. Triboscopic imaging studies further confirmed a low degradation rate, high wear resistance, and minimal wear volume loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baik K, Kim J, Seong B (2007) Improvements in hardness and wear resistance of thermally sprayed WC-Co nanocomposite coatings. Mater Sci Eng A 449:846–849. https://doi.org/10.1016/j.msea.2006.02.295

    Article  Google Scholar 

  2. Khan T, Saha G, Glenesk L (2010) Nanostructured composite coatings for oil sand’s applications. Surf Eng 26(7):540–545. https://doi.org/10.1179/174329409X439050

    Article  Google Scholar 

  3. Mateen A, Khan T (2012) Abrasive wear mechanism in near-nano and microstructured WC-cobalt coatings. Appl Mech Mater 229:678–683. https://doi.org/10.4028/www.scientific.net/AMM.229-231.678

    Article  Google Scholar 

  4. Guilemany JM, Miguel JM, Vizcaino S, Climent F (2001) Role of three-body abrasion wear in the sliding wear behaviour of WC-Co coatings obtained by thermal spraying. Surf Coat Technol 140(2):141–146. https://doi.org/10.1016/S0257-8972(01)01033-7

    Article  Google Scholar 

  5. Wood RJ (2010) Tribology of thermal sprayed WC–Co coatings. Int J Refract Hard Met 28(1):82–94. https://doi.org/10.1016/j.ijrmhm.2009.07.011

    Article  Google Scholar 

  6. Saha GC, Khan TI, Glenesk LB (2009) Development of wear resistant nanostructured duplex coatings by high velocity oxy-fuel process for use in oil sands industry. J Nanosci Nanotechnol 9(7):4316–4323. https://doi.org/10.1166/jnn.2009.M52

    Article  Google Scholar 

  7. Kato K (2002) Classification of wear mechanisms/models. Proc Inst Mech Eng Part J: J Eng Tribol 216(6):349–355. https://doi.org/10.1177/1350650113476440

    Article  Google Scholar 

  8. Turunen E, Varis T, Keskinen J, Fält T, Hannula SP (2006) Improved mechanical properties by nanoreinforced ceramic composite HVOF coatings. In: Advances in Science and Technology, vol 45. Trans Tech Publ, pp 1240–1245. https://doi.org/10.4028/www.scientific.net/AST.45.1240

    Chapter  Google Scholar 

  9. Saha G, Mateen A, Khan T (2010) Tribological studies of conventional microcrystalline and engineered near-nanocrystalline WC-17Co HVOF coatings. NSTI Nanotech 2010:1

    Google Scholar 

  10. Mateen A, Saha GC, Khan TI, Khalid FA (2011) Tribological behaviour of HVOF sprayed near-nanostructured and microstructured WC-17 wt. % Co coatings. Surf Coat Technol 206(6):1077–1084. https://doi.org/10.1016/j.surfcoat.2011.07.075

    Article  Google Scholar 

  11. Saha GC, Mateen A, Khan TI (2010) Tribological performance study of HVOF-sprayed microstructured and nanostructured WC-17 wt. % Co coatings, in ASME 2010 International Mechanical Engineering Congress and Exposition. Ame Soc Mech Eng Dig Collect:153–162. https://doi.org/10.1115/IMECE2010-40086

  12. Wielage B et al (2006) Development and trends in HVOF spraying technology. Surf Coat Technol 201(5):2032–2037. https://doi.org/10.1016/j.surfcoat.2006.04.049

    Article  Google Scholar 

  13. Fedrizzi L, Valentinelli L, Rossi S, Segna S (2007) Tribocorrosion behaviour of HVOF cermet coatings. Corros Sci 49(7):2781–2799. https://doi.org/10.1016/j.corsci.2007.02.003

    Article  Google Scholar 

  14. Herman H, Sampath S (1996) Thermal spray coatings, in Metallurgical and ceramic protective coatings. Springer, pp 261–289

    Book  Google Scholar 

  15. Deuis R, Subramanian C, Yellup J (1996) Abrasive wear of aluminium composites—a review. Wear 201(1-2, 132):–144. https://doi.org/10.1016/S0043-1648(96)07228-6

  16. Boulos MI, Fauchais PL, Heberlein JVR (2021) Introduction to thermal spray. In: Boulos MI, Fauchais PL, Heberlein JVR (eds) Thermal Spray Fundamentals: From Powder to Part. Springer International Publishing, Cham, pp 3–15

    Chapter  Google Scholar 

  17. Hisakado T (1977) The influence of surface roughness on abrasive wear. Wear 41(1):179–190. https://doi.org/10.1016/0043-1648(77)90200-9

    Article  Google Scholar 

  18. Mateen A, Khalid FA, Khan T, Saha G (2011) Wear behaviour of HVOF sprayed WC-cobalt coatings. In: Advanced Materials Research, vol 326. Trans Tech Publ, pp 144–150. https://doi.org/10.4028/www.scientific.net/AMR.326.144

    Chapter  Google Scholar 

  19. Picas JA, Rupérez E, Punset M, Forn A (2013) Influence of HVOF spraying parameters on the corrosion resistance of WC–CoCr coatings in strong acidic environment. Surf Coat Technol 225:47–57. https://doi.org/10.1016/j.surfcoat.2013.03.015

    Article  Google Scholar 

  20. Bolleddu V, Racherla V, Bandyopadhyay PP (2016) Comparative study of air plasma sprayed and high velocity oxy-fuel sprayed nanostructured WC-17 wt % Co coatings. Int J Adv Manuf Technol 84(5):1601–1613. https://doi.org/10.1007/s00170-015-7824-5

    Article  Google Scholar 

  21. Asl SK, Sohi MH, Hokamoto K, Uemura M (2006) Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings. Wear 260(11):1203–1208. https://doi.org/10.1016/j.wear.2005.07.013

    Article  Google Scholar 

  22. Voorwald H, Souza R, Pigatin W, Cioffi M (2005) Evaluation of WC–17Co and WC–10Co–4Cr thermal spray coatings by HVOF on the fatigue and corrosion strength of AISI 4340 steel. Surf Coat Technol 190(2-3):155–164. https://doi.org/10.1016/j.surfcoat.2004.08.181

    Article  Google Scholar 

  23. Lim SC, Ashby MF, Overview no. (1987) 55 wear-mechanism maps. Acta Metall 35(1):1–24. https://doi.org/10.1016/0001-6160(87)90209-4

    Article  Google Scholar 

  24. Dent A, DePalo S, Sampath S (2002) Examination of the wear properties of HVOF sprayed nanostructured and conventional WC-Co cermets with different binder phase contents. J Therm Spray Technol 11(4):551–558. https://doi.org/10.1361/105996302770348691

    Article  Google Scholar 

  25. Chen H, Gou G, Tu M, Liu Y (2009) Structure and wear behaviour of nanostructured and ultrafine HVOF spraying WC–17Co coatings. Surf Eng 25(7):502–506. https://doi.org/10.1179/026708408X329489

    Article  Google Scholar 

  26. Perry JM, Hodgkiess T, Neville A (2002) A comparison of the corrosion behavior of WC-Co-Cr and WC-Co HVOF thermally sprayed coatings by in situ atomic force microscopy (AFM). J Therm Spray Technol 11(4):536–541. https://doi.org/10.1361/105996302770348673

    Article  Google Scholar 

  27. Guilemany J, Dosta S, Miguel J (2006) The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders. Surf Coat Technol 201(3-4):1180–1190. https://doi.org/10.1016/j.surfcoat.2006.01.041

    Article  Google Scholar 

  28. Saha GC, Khan TI, Zhang GA (2011) Erosion-corrosion resistance of microcrystalline and near-nanocrystalline WC-17Co high velocity oxy-fuel thermal spray coatings. Corros Sci 53(6):2106–2114. https://doi.org/10.1016/j.corsci.2011.02.028

    Article  Google Scholar 

  29. Khan MN, Shah S, Shamim T (2019) Investigation of operating parameters on high-velocity oxyfuel thermal spray coating quality for aerospace applications. Int J Adv Manuf Technol 103(5):2677–2690. https://doi.org/10.1007/s00170-019-03696-0

    Article  Google Scholar 

  30. Stewart DA, Shipway PH, McCartney DG (2000) Microstructural evolution in thermally sprayed WC–Co coatings: comparison between nanocomposite and conventional starting powders. Acta Mater 48(7):1593–1604. https://doi.org/10.1016/S1359-6454(99)00440-1

    Article  Google Scholar 

  31. Ren J, Ahmad R, Zhang G, Rong Y, Ma Y (2021) A parametric simulation model for HVOF coating thickness control. Int JAdv Manuf Technol 116(1):293–314. https://doi.org/10.1007/s00170-021-07429-0

    Article  Google Scholar 

  32. Clément J, Torres P, Gil FJ, Planell JA, Terradas R, Martinez S (1999) Evaluation by Vickers indentation of fracture toughness of a phosphate biodegradable glass. J Mater Sci: Mater Med 10(7):437–441. https://doi.org/10.1023/A:1008935316741

    Article  Google Scholar 

  33. Saha GC, Khan TI (2010) The corrosion and wear performance of microcrystalline WC-10Co-4Cr and near-nanocrystalline WC-17Co high velocity oxy-fuel sprayed coatings on steel substrate. Metall Mater Trans A 41(11):3000–3009. https://doi.org/10.1007/s11661-010-0296-1

    Article  Google Scholar 

  34. Verdon C, Karimi A, Martin J-L (1998) A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: microstructures. Mater Sci Eng A 246(1-2):11–24. https://doi.org/10.1016/S0921-5093(97)00759-4

    Article  Google Scholar 

  35. Wang L-J, Qiu P-X, Yan L, Zhou W-X, Gou G-Q, Hui C (2013) Corrosion behavior of thermal sprayed WC cermet coatings containing metallic binders in saline environment. T Nonferr Metal Soc 23(9):2611–2617. https://doi.org/10.1016/S1003-6326(13)62775-2

    Article  Google Scholar 

  36. Pirso J, Letunovitš S, Viljus M (2004) Friction and wear behaviour of cemented carbides. Wear 257(3):257–265. https://doi.org/10.1016/j.wear.2003.12.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Tahir I. Khan at Bradford University for sponsoring the HVOF cermet samples.

Funding

This work was supported by the Dongil Cultural Scholarship Foundation, the Kyungpook National University Research Fund, and the BK21 (Electronic Electric Convergence Talent Nurturing Education Research Center) funded by the Ministry of Education of Korea and the HEC grant NRPU No. 20-3043/NRPU/R&D/HEC13628.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. G. A. Z., K.-W. (G. H.) A. C., T. A., S. M., and A. M. were involved in the material preparation, data collection, data analysis, and interpretation. G. A. Z., K.-W. (G. H.) A. C., T. A., and A. M. performed the validation. The first draft of the manuscript was co-prepared by G. A. Z., K.-W. (G. H.) A. C., and T. A., and all authors contributed to the review and editing of the manuscript. G. A. Z., A. M., and K.-W. (G. H.) A. C. managed the formal analysis, visualization, project administration, and supervision.

Corresponding author

Correspondence to K.-W. (G.H.) A. Chee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G.A., Chee, KW.(.A., Ahmed, T. et al. Tribological performance and corrosion resistance of HVOF WC-17 wt. % Co coatings: influence of micro-to-nanoscale morphology. Int J Adv Manuf Technol 128, 4091–4102 (2023). https://doi.org/10.1007/s00170-023-11943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11943-8

Keywords

Navigation