Skip to main content
Log in

CBN wear behavior during a single-grain ultrasonic vibrations grinding PTMCs materials

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Particle-reinforced titanium matrix composites (PTMCs) are extensively utilized in key aerospace structural components due to their low density, high ductility, oxidation resistance, excellent wear, and high temperature properties. However, the quality of machining is significantly impacted by macro-fracture and pull-out of the reinforcing particles. In order to address the aforementioned issues and elucidate the material removal mechanism of cubic boron nitride (cBN), this study introduces ultrasonic machining technology into conventional single cBN grain grinding and conducts comparative experiments. The impact of machining parameters on material removal ratio, abrasive wear, and surface quality is the primary focus of the investigation. Findings indicate that the implementation of radial ultrasonic vibration-assisted grinding (RUAVG) can effectively reduce the pile-up ratio from 17.3 to 58.3%. Due to the impact of ultrasonic vibration on abrasive grains and their interference with reinforced particles, cBN abrasive grains undergo continuous micro-fracturing, resulting in superior self-sharpening capabilities and sustained sharpness and processing performance of the grinding edge. Compared to conventional grinding, RUVAG achieves material removal via cutting and micro-fracture mechanisms, which effectively prevents reinforcement pull-out and significantly enhances machining quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the present article.

References

  1. Kim C, Cho K, Manjili MH, Nezafati M (2017) Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J Mater Sci 52(23):13319–13349

    Article  ADS  CAS  Google Scholar 

  2. Yuan ZW, Liu H, Ma Z, Ma XK, Wang K, Zhang XM (2022) Microstructure and properties of high entropy alloy reinforced titanium matrix composites. Mater Charact 187:111856

    Article  CAS  Google Scholar 

  3. Feng YJ, Zhang WC, Zeng L, Cui GR, Chen WZ (2017) Room-temperature and high-temperature tensile mechanical properties of TA15 titanium alloy and TiB whisker-reinforced TA15 matrix composites fabricated by vacuum hot-pressing sintering. Materials 10(4):424

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Hayat MD, Singh H, He Z, Cao P (2019) Titanium metal matrix composites: an overview. Compos A Appl Sci Manuf 121:418–438

    Article  CAS  Google Scholar 

  5. Chen H, Gui ZZ, Wang XY, Gao XH, Liu DJ (2022) A novel nano interface for particulate-reinforced titanium matrix composites. J Am Ceram Soc 105(1):67–75

    Article  CAS  Google Scholar 

  6. Saba F, Zhang FM, Liu SL, Liu TF (2019) Reinforcement size dependence of mechanical properties and strengthening mechanisms in diamond reinforced titanium metal matrix composites. Compos B Eng 167:7–19

    Article  CAS  Google Scholar 

  7. Tang B, Li JB, Ye JL, Luo H, Wang YT, Guan B, Lu YF, Chen XH, Zheng KH, Pan FS (2022) Strengthening mechanism and microstructure of deformable Ti particles reinforced AZ91 composite. Acta Metall Sin: Engl Lett 35(12):1935–1945

    Article  CAS  Google Scholar 

  8. Mao HB, Zhang YY, Wang J, Cui KK, Liu HL, Yang JL (2022) Microstructure, mechanical properties, and reinforcement mechanism of second-phase reinforced TiC-based composites: a review. Coatings 12(6):801

    Article  CAS  Google Scholar 

  9. Fereiduni E, Ghasemi A, Elbestawi M (2020) Selective laser melting of aluminum and titanium matrix composites: recent progress and potential applications in the aerospace industry. Aerospace 7(6):77

    Article  Google Scholar 

  10. Klocke F, Soo SL, Karpuschewski B, Webster JA, Novovic D, Elfizy A, Axinte DA, Tönissen S (2015) Abrasive machining of advanced aerospace alloys and composites. CIRP Ann Manuf Technol 64(2):581–604

    Article  Google Scholar 

  11. Gemeda BA, Sinha DK, Singh GK, Alghtani AH, Tirth V, Algahtani A, Mengesha GA, Ahmed GMS, Hossain N (2022) Effect of sintering temperatures, reinforcement size on mechanical properties and fortification mechanisms on the particle size distribution of B4C, SiC and ZrO2 in titanium metal matrix composites. Materials 15(16):5525

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan ZW, Liu H, Ma Z, Ma XK, Wang K, Zhang XM (2022) Effect of heat treatment on the microstructure and properties of CoCrFeNiMo0.2 particles reinforced titanium matrix composites. J Alloys Compd 928:166985

    Article  CAS  Google Scholar 

  13. Escaich C, Shi ZD, Baron L, Balazinski M (2020) Machining of titanium metal matrix composites: progress overview. Materials 13(21):5011

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu JR, Qiu FX, Zhang WD, Wang J, Yang K, Luo YJ, Zhang N, Wu ZG (2023) Novel titanium matrix composites reinforced by NiCoCr medium entropy particles. J Market Res 24:5260–5270

    CAS  Google Scholar 

  15. Xi XX, Ding WF, Li Z, Xu JH (2017) High speed grinding of particulate reinforced titanium matrix composites using a monolayer brazed cubic boron nitride wheel. Int J Adv Manuf Technol 90(5–8):1529–1538

    Article  Google Scholar 

  16. Li BK, Zhao B, Ding WF, Fu YC, Li CH, Wang R, Zhao YJ (2022) CBN grain wear and its effects on material removal during grinding of FGH96 powder metallurgy superalloy. Adv Manuf 11(1):21–38

    Article  Google Scholar 

  17. Zhao B, Ding WF, Dai JB, Xi XX, Xu JH (2014) A comparison between conventional speed grinding and super-high speed grinding of (TiCp + TiBw)/Ti–6Al–4V composites using vitrified CBN wheel. Int J Adv Manuf Technol 72(1–4):6975

    Google Scholar 

  18. Ding WF, Huang Q, Zhao B, Cao Y, Tang ML, Deng MM, Liu GL, Zhao ZC, Chen QL (2023) Wear characteristics of white corundum abrasive wheel in ultrasonic vibration-assisted grinding of AISI 9310 steel. Ceram Int 49(8):12832–12839

    Article  CAS  Google Scholar 

  19. Zhang K, Yin Z, Dai CW, Miao Q, Zhang P, Cao ZY (2023) Material removal mechanism of SiC ceramics by elliptic ultrasonic vibration-assisted grinding (EUVAG) using single grain. Ceram Int 49(6):10041–10055

    Article  CAS  Google Scholar 

  20. Chen Y, Hu ZW, Yu YQ, Lai ZY, Zhu JG, Xu XP, Peng Q (2022) Processing and machining mechanism of ultrasonic vibration-assisted grinding on sapphire. Mater Sci Semicond Process 142:106470

    Article  CAS  Google Scholar 

  21. Cao Y, Zhu YJ, Li HN, Wang CX, Su HH, Yin Z, Ding WF (2020) Development and performance of a novel ultrasonic vibration plate sonotrode for grinding. J Manuf Process 57:174–186

    Article  Google Scholar 

  22. Li PT, Xu J, Zuo HF, Wang HC, Liu Y (2022) The material removal mechanism and surface characteristics of Ti-6Al-4V alloy processed by longitudinal-torsional ultrasonic-assisted grinding. Int J Adv Manuf Technol 119(11–12):7889–7902

    Article  Google Scholar 

  23. Cao Y, Yin JF, Ding WF, Xu JH (2021) Alumina abrasive wheel wear in ultrasonic vibration-assisted creep-feed grinding of Inconel 718 nickel-based superalloy. J Mater Process Technol 297:117241

    Article  CAS  Google Scholar 

  24. Li SS, Qiao JP, Wu HQ, Zeng J, Cui HH, Ming F, Wu YB (2021) Improving the grindability of Inconel 718 by hydrogen embrittlement in ultrasonic-assisted grinding. Int J Adv Manuf Technol 114(7–8):2045–2054

    Article  Google Scholar 

  25. Qiao GC, Cheng Z, Zheng W, Yi SC, Zhang FJ (2022) Grinding force model for longitudinal-torsional ultrasonic-assisted face grinding of ceramic matrix composites. Int J Adv Manuf Technol 120(11–12):7721–7733

    Article  Google Scholar 

  26. An QL, Chen J, Ming WW, Chen M (2021) Machining of SiC ceramic matrix composites: a review. Chin J Aeronaut 34(4):540–567

    Article  Google Scholar 

  27. Sun BY, Fu XB, Yuan X, Gu Y (2022) Research on ultrasonic vibration grinding technology of SiCp/Al composites. Diamond Abrasives Eng 42(6):713–719

    Google Scholar 

  28. Dong GJ, Wang L, Gao SD (2022) Grinding force model for rotary ultrasonic grinding of TiBw mesh reinforced titanium matrix composites. Diamond Abrasives Eng 42(1):97–103

    Google Scholar 

  29. Yang ZC, Zhu LD, Zhang GX, Ni CB, Lin B (2020) Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tools Manuf 156:103594

    Article  Google Scholar 

  30. Ning FD, Cong WL (2020) Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of the art and future perspectives. J Manuf Process 51:174–190

    Article  Google Scholar 

  31. Yang CY, Zhang NH, Su H, Ding WF (2022) Research on abrasive wear dress of CBN honing tool based on single abrasive cutting. Diamond Abrasives Eng 42(6):728–737

    Google Scholar 

  32. Gao T, Zhang XP, Li CH, Zhang YB, Yang M, Jia DZ, Ji HJ, Zhao YJ, Li RZ, Yao P, Zhu LD (2020) Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding. J Manuf Process 51:44–61

    Article  Google Scholar 

  33. Jia DZ, Li CH, Zhang YB, Yang M, Zhang XP, Li RZ, Ji HJ (2019) Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. Int J Adv Manuf Technol 100(1–4):457–473

    Article  Google Scholar 

  34. Yang YY, Yang M, Li CH, Li RZ, Said Z, Ali HM, Sharma S (2023) Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant. Front Mech Eng 18(1):1

    Article  Google Scholar 

  35. Wu BF, Zhao B, Ding WF, Su HH (2021) Investigation of the wear characteristics of microcrystal alumina abrasive wheels during the ultrasonic vibration-assisted grinding of PTMCs. Wear 477:203844

    Article  CAS  Google Scholar 

  36. Bhaduri D, Soo SL, Aspinwall DK, Novovic D, Bohr S, Harden P, Webster JA (2017) Ultrasonic assisted creep feed grinding of gamma titanium aluminide using conventional and super abrasive wheels. CIRP Ann Manuf Technol 66(1):341–344

    Article  Google Scholar 

  37. Wang Y, Geng S, Cheng ZZ, Dong YH, Yang S, Zhang XF, Lin B (2021) Experimental study of surface generating process in tangential ultrasonic vibration assisted grinding for titanium alloys. Proc Inst Mech Eng C J Mech Eng Sci 235(19):4161–4170

    Article  CAS  Google Scholar 

  38. Xiao GJ, Zhuo XQ, Li SC, Chen BQ, Zhao ZY, Wang YX (2023) Study on surface creation law of planar two-dimensional ultrasonic-assisted abrasive belt grinding. J Mater Process Technol 312:117847

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 92160301, 92060203, 52175415, and 52205475), the Science Center for Gas Turbine Project (Nos. P2022-A-IV-002–001 and P2023-B-IV-003–001), the Natural Science Foundation of Jiangsu Province (No. BK20210295), the Superior Postdoctoral Project of Jiangsu Province (No. 2022ZB215), the National Key Laboratory of Science and Technology on Helicopter Transmission (Nanjing University of Aeronautics and Astronautics) (No. HTL-A-22G12).

Author information

Authors and Affiliations

Authors

Contributions

Yansong Yue: experimentation, data curation, and writing the original draft. Jiahao Song: data collection. Wenfeng Ding: manuscript revision. Biao Zhao: experimentation and methodology. Jiuhua Xu: resources.

Corresponding author

Correspondence to Wenfeng Ding.

Ethics declarations

Ethics approval and consent to participate

The article follows the guidelines of the Committee on Publication Ethics (COPE) and involves no studies on human or animal subjects.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y., Song, J., Ding, W. et al. CBN wear behavior during a single-grain ultrasonic vibrations grinding PTMCs materials. Int J Adv Manuf Technol 131, 2525–2536 (2024). https://doi.org/10.1007/s00170-023-11940-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11940-x

Keywords

Navigation